
Research Article

Jinzhong Yao, Huan Deng, Peng Wang, Bo Li*, Zaisheng Qin*

Dynamic changes in lactate-related genes in
microglia and their role in immune cell
interactions after ischemic stroke

https://doi.org/10.1515/med-2025-1178
received January 3, 2025; accepted March 13, 2025

Abstract
Objectives ‒ This study aims to elucidate the dynamic
changes in lactate-related genes (LRGs) in microglia fol-
lowing ischemic stroke (IS) and their associations with
immune cells.
Methods ‒ We performed differential expression analysis
on bulk-sequencing (GSE30655 and GSE35338) and scRNA-seq
data (GSE174574) to identify differentially expressed genes.
These genes were intersected with lactate genes from
MSigDB to identify post-stroke LRGs. We used t-SNE to visua-
lize LRG distribution across cell types and selected microglia
for cell–cell communication, pseudo time, and functional
enrichment analyses. These findings were integrated with
the GSE225948 scRNA-seq dataset to examine LRG trends in
the chronic phase of IS. Finally, CIBERSORT was used to
explore immune cell infiltration changes and LRG-immune
cell associations post-IS.
Results ‒ Nine LRGs were identified, including Spp1, Per2,
Col4a1, Sfxn4, C1qbp, Myc, Apln, Cdo1, and Cav1, with Spp1,
C1qbp, and Myc highly expressed in microglia. C1qbp and
Myc are crucial in the acute phase, while Spp1 impacts both
acute and chronic phases of IS. Microglia subcluster ana-
lysis revealed four subclusters (MG0-MG3). Immune cell
infiltration analysis showed significant associations between
these genes and immune cells.

Conclusion ‒ In summary, Spp1, C1qbp, and Myc are LRGs
that are predominantly expressed in microglia and play
regulatory roles in various stages of IS.

Keywords: ischemic stroke, microglia, single-cell RNA
sequencing, lactate metabolism

1 Introduction

Ischemic stroke (IS) is a prevalent and devastating condi-
tion that leads to significant disability and poses a substan-
tial health burden, with many survivors facing long-term
impairments and diminished quality of life [1]. Among the
various types of strokes, IS constitutes approximately 80%
and is caused by sudden blockage of the cerebral artery,
often due to a blood clot or thrombus [2]. This blockage
leads to ischemic damage, where the affected brain tissue
does not receive adequate blood supply, causing cell death
and permanent neurological impairment [3].

Microglia are crucial for the initiation and perpetuation
of cerebral infarction through their adoption of distinct
polarization states following ischemia, thereby exerting a sub-
stantial impact on the neuroinflammatory response and sub-
sequent neuronal damage [4]. Following ischemia, microglia
rapidly polarize into two distinct states: the pro-inflammatory
M1 phenotype and the anti-inflammatory M2 phenotype [5].
The polarization of microglia is governed by a complex inter-
play of factors such as peroxisome proliferator-activated
receptor γ (PPARγ) [6], the interferon regulatory factor (IRF)
family [7], and Toll-like receptor 4 (TLR4) [8], which are key
regulators of microglial polarization.

During cerebral ischemic acidosis, substantial lactate
accumulation occurs intracellularly as the primary mode of
energy metabolism shifts from aerobic to glycolytic processes
to maintain ATP supply [9]. Furthermore, the permeation
of lactate from peripheral blood into the brain, facilitated
by a compromised blood–brain barrier, exacerbates lactate
accumulation within the brain [10]. Lactate, once viewed
solely as a metabolic byproduct, is now recognized for its
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pivotal role in cellular function and its potential as a thera-
peutic target, supported by recent research into lactate meta-
bolism and its disease treatment implications [11]. The role of
lactate in modulating cellular function is further underscored
by its link to synaptic plasticity, a key area of investigation in
central nervous system (CNS) pathologies [12]. Additionally,
lactate serves as a precursor that promotes histone lactylation
and influences histone lysine lactylation (Kla) levels [13]. Lac-
tylation of histone lysine residues, a novel post-translational
modification (PTM), can stimulate gene transcription within
chromatin, enhance the expression of homeostatic genes like
arginase 1 (Arg1), and induce a phenotypic shift in macro-
phages fromM1 to M2 [14]. Recent single-cell RNA sequencing
(scRNA-seq) analyses have demonstrated that microglia are
capable of rapid metabolic reprogramming and the use of
various bioenergetic substrates, suggesting a regulatory role
for lactate in microglial function [15]. Moreover, the research
underscores the influence of lactate on microglial function,
potentially harnessed to modulate neuroinflammation and
enhance brain health, a process that may be attributed to
the reprogramming of microglial glycolysis [15,16]. In mice
and microglia, the H3K9 lactylation site is a key site involved
in histone lactylation, which further promotes glycolysis and
induces neuronal injury [17]. Furthermore, lactate can mod-
ulate the microglia inflammatory responses and alleviate cer-
ebral ischemia injury by inhibiting the CCL7/NF-κB signaling
pathway induced by HIF-1α [18]. Overall, it is evident that
lactate accumulation due to ischemia can impact the biolo-
gical functions of microglia. Identifying the LRGs in microglia
post-IS will aid in understanding which LRGs are involved in
the reprogramming process of microglia.

The advent of scRNA-seq has marked a significant
paradigm shift in our understanding of cellular heteroge-
neity and gene expression dynamics, particularly in the
context of IS [19]. This technology enables detailed pro-
filing of gene expression patterns at the single-cell level,
elucidating cellular response diversity, identifying rare cell
types, and revealing complex transcriptional programs
that underpin biological processes [20]. Most importantly,
scRNA-seq offers unique insights into cell subpopulations
and their functions in pathophysiological processes, parti-
cularly in the context of IS [21].

The primary objective of this study was to identify
LRGs by integrating bulk sequencing and scRNA-seq ana-
lyses. Furthermore, this study aimed to elucidate the role of
LRGs in modulating microglial responses to IS and identify
potential gene targets for manipulation to enhance neuropro-
tection or mitigate ischemic injury. This approach could pave
the way for the development of innovative therapies that
target metabolic pathways in microglia, potentially reducing
the severity of ischemic injury and promoting neurological
recovery in patients with stroke.

2 Materials and methods

2.1 Data acquisition

The research flow diagram is presented in Figure 1. The
datasets utilized for our analysis were procured from the
Gene Expression Omnibus (GEO) repository [22]. This
public database archives and distributes high-throughput

Figure 1: Flowchart of this study.
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gene expression data. Specifically, we accessed two Series
Matrix Files, GSE30655 and GSE35338, which were instru-
mental in our comparative genomic studies. Additionally,
to facilitate the scRNA-seq analysis, we employed two
single-cell data files identified as GSE174574 [23] and
GSE225948 [24]. The overall description of these datasets
is listed in Table 1. A total of 318 lactate-related genes
(LRGs) were obtained from the Molecular Signatures Data-
base [25] (http://www.gsea-msigdb.org/gsea/index.jsp).

2.2 Data integration and batch effect
correction

Normalization of the datasets GSE30655 and GSE35228 was
conducted via the “limma” R package [26] to merge into a
unified, comprehensive dataset. To address potential batch
effects, which could introduce bias into our analysis, we
employed the Combat method facilitated by the “sva” R
package [27]. This method was specifically designed to
adjust for unwanted variations owing to batch effects,
thus enhancing the accuracy and validity of our findings.

2.3 Differential expression analysis and
visualization

Differential expression analysis was applied to identify genes
with significant changes in expression between stroke groups
and sham groups using the “limma” package in R [26]. Genes
were considered significantly differentially expressed if they
exhibited an absolute log2 fold change (|logFC|) greater than
0.5 and an adjusted p-value less than 0.05. The results were
visualized through volcano plot via “ggplot2” and heatmap
via “pheatmap” R package, respectively.

2.4 Single-cell data processing and cell
annotation

We utilized the GEO datasets GSE174574 and GSE225948 for
single-cell RNA sequencing analysis. Following rigorous

quality control to exclude low-quality cells and those
with excessive mitochondrial DNA content, we imple-
mented the “LogNormalize” method to normalize gene
expression values and stabilize variance across the dataset.
The “vst”method in Seurat was employed to identify highly
variable genes, which were subsequently subjected to prin-
cipal component analysis for dimensionality reduction and
to elucidate major sources of variation. Clustering was con-
ducted based on transcriptomic profiles, and batch effects
were mitigated utilizing the harmony algorithm. The
“FindAllMarkers” function in Seurat, corroborated with
the previous published literature, facilitated the annotation
of cell types within each cluster. Finally, t-SNE visualization
offers a comprehensive two-dimensional representation
of the cellular landscape, highlighting distinct cellular
populations.

2.5 Ligand–receptor interaction analysis
(CellChat)

The CellChat R package was utilized to analyze ligand–
receptor interactions based on normalized gene expression
profiles, which facilitated the quantification of communi-
cation strengths between distinct cell types and the identi-
fication of key cellular communicators. The constructed
cell–cell communication network was visualized through
various graphical representations to illustrate the interac-
tions and their intensities, thereby providing insights into
potential signaling pathways.

2.6 Microglial subtype identification

To refine the classification of microglial subtypes and track
the expression patterns of Spp1, C1qbp, and Myc, we ana-
lyzed their distribution across subtypes and compared
their expression levels between stroke groups and sham
groups. The spatial distribution of these genes was visua-
lized using t-SNE/UMAP, and violin plots were used to
represent their expression profiles.

Table 1: Detailed information of the datasets used in this study

GEO datasets Platform Sample source Stroke cases Control cases Cohort type

GSE30655 GPL1261 Brain (Mus musculus) 7 3 Bulk RNA sequencing
GSE35338 GPL1261 Brain (Mus musculus) 5 4 Bulk RNA sequencing
GSE174574 GPL21103 Brain (Mus musculus) 3 3 Single-cell RNA sequencing
GSE225948 GPL9057 Brain (Mus musculus) 4 4 Single-cell RNA sequencing
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2.7 Gene set variation analysis (GSVA)

GSVA is a non-parametric, unsupervised method employed to
evaluate gene set enrichment dynamics across samples within
an expression dataset. For this analysis, genesets were
extracted from the Molecular Signatures Database (MSigDB)
database using the “msigdbr” R package. Subsequently, lac-
tate-related genesets were identified by filtering the compre-
hensive gene set with the keyword “lactate.” All fourmicroglial
subclusters were analyzed using LRGs to elucidate the biolo-
gical function of each microglial type in lactate metabolism.

2.8 Gene set enrichment analysis (GSEA)
pathway enrichment analysis

To elucidate the biological functions of Spp1, C1qbp, and Myc,
we utilized bulk sequencing data for GSEA. Initially, we stra-
tified the expression matrix into high- and low-expression
groups based on the variation in the expression levels of these
three genes and subsequently performed differential analysis
using the limma package. Following ENTREZID conversion,
we conducted an analysis using the clusterProfiler package
and ultimately selected the top five pathways by normalized
enrichment score for visualization.

2.9 Functional enrichment analysis of
microglia MG1

To explore the biological functions and pathways of micro-
glia MG1, we performed a functional enrichment analysis
of the top 50 differentially expressed genes (DEGs) from
these cells. Utilizing the ClusterProfiler R package, we con-
ducted a Gene Ontology (GO) analysis to identify significantly
enriched GO terms, which were visualized as a bar plot where
the height and color of each bar represent the enrichment scores
and gene counts, respectively. For pathway analysis, we inves-
tigated the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways using the same package, and the results were depicted
in a bubble chart with bubble sizes indicating the number of
associated genes and color intensity reflecting the significance of
enrichment. Additionally, we employed a chord diagram to
visually map the interactions between key genes.

2.10 Pseudotime trajectory analysis

Pseudotime trajectory analysis was conducted via Monocle
2 (version 2.32) to explore the microglial subclusters and
examine the expression dynamics of Spp1, C1qbp, and Myc

within these subtypes across stroke and sham groups.
Through pseudotime trajectory analysis, microglial cells
were ordered along a developmental sequence from less
mature to more mature states based on the expression of
key marker genes. This analysis allowed us to track
changes in the expression of Spp1, C1qbp, and Myc during
cellular development, visualized through UMAP plots
colored by pseudotime values.

2.11 Immune cell infiltration analysis

To study the disease immune microenvironment, we used
the R package “CIBERSORT” to calculate immune cell infil-
tration based on the merged bulk-seq dataset. The results
were visualized in stacked bar plots to illustrate the dis-
tribution of immune cells across samples and box plots to
assess their variability. Spearman correlation coefficients
were calculated to measure LRGs and immune cell correla-
tions, and the results were visualized using a correlation
heatmap. Finally, correlation lollipop chart were used to
specifically analyze the associations between LRGs and 22
immune cells.

3 Results

3.1 Identification of DEGs in stroke mice

Box-plot analysis of the raw data demonstrated that the
gene expression levels displayed heterogeneity across sam-
ples within both datasets (Figure 2a). This batch effect was
subsequently mitigated through quantile normalization to
ensure a more accurate comparison (Figure 2b). Using the
selection criteria of |log2FC| > 0.5 and adjusted p-value
<0.05, 682 DEGs were identified, comprising 482 upregu-
lated and 200 downregulated genes (Figure 2c). The top
ten upregulated and downregulated genes were selected
for visualization using a volcano plot (Figure 2d).

3.2 Cell subpopulation annotation of single-
cell data and lactate-related DEG
identification

In the present study, we conducted a comprehensive
scRNA-seq analysis to discern diverse cell populations
within both the stroke and sham groups. The t-SNE plot
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shows the distribution and heterogeneity among the iden-
tified cell types (Figure 3a). Sixteen major cell types were
annotated based on their specific marker genes and in
accordance with previous studies [23], including astro-
cytes, capillary endothelial cells, CNS border-associated
macrophages, ependymocytes, lymphocytes, microglia,
monocytes, neural progenitor cells, oligodendrocytes, oli-
godendrocyte progenitor cells, and smooth muscle cells.
The stacked bar plots (Figure 3b) depict the proportional
changes in each cell type within the brains of the subjects

who experienced IS. In the control group, capillary
endothelial cells and microglial subset 1 were predomi-
nant, constituting >50% of the total cellular composition.
In contrast, in the stroke groups, there was a significant
upregulation in the expression of venous endothelial cells,
microglia, and astrocytes. Subsequently, we performed dif-
ferential expression analysis to compare the gene expres-
sion across each cell type within the two groups (Figure S1).
Further intersecting these DEGs with bulk sequencing data,
scRNA-seq results, and LRGs enabled us to successfully

Figure 2: Datasets normalization and differential analysis (a) and (b) Comparison of GSE30655 and GSE35388 before and after batch effect correction.
(c) Heatmap of the DEGs between sham and MCAO samples; red represents up-regulated genes, and blue represents down-regulated genes. (d) The
volcano plot illustrates the distribution of DEGs, with the top 10 significantly up-regulated (blue) and down-regulated (red) genes marked for
emphasis.
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Figure 3: Cell subpopulation annotation of single-cell data and LR-DEG identification. (a) Cell annotation of 16 clusters, 16 clusters annotated into 14
cell types, astrocyte, capillary endothelial cells, CNS border-associated macrophages, ependymocytes, lymphocytes, microglia, monocyte-derived cells,
neural progenitor cells, neutrophils, oligodendrocytes, pericytes, smooth muscle cells, perivascular fibroblast-like cells, and venous endothelial cells.
(b) The cell ratio between sham MCAO groups. (c) Venn diagram displaying nine LR-DEGs in IS that overlapped bulk RNA sequencing analysis, single-
cell RNA sequencing analysis, and LRGs. (d) and (e) The distribution and expression level of the nine LR-DEGs in cells; blue represents high expression
in tSNE, and black represents low expression. The size of the circle represents the percentage it occupies. (f) The gene expression level of the nine
LR-DEGs.
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identify nine lactate-related differentially expressed genes
(LR-DEGs) (Figure 3c). The t-SNE plot (Figure 3d) and
bubble plot (Figure 3e) visualized the distribution and
expression levels of the nine LR-DEGs across the 14 cell
types. The box plot illustrates that in the stroke group,
the expression levels of Spp1 and Cav1 were significantly
elevated, whereas the expression level of Per2 was reduced
(Figure 3f).

3.3 Intercellular communication analysis
and signaling pathway analysis

To elucidate the intercellular relationships among the
diverse cell types, we conducted an intercellular commu-
nication analysis. Figure 4a and 4b presents the cell–cell
interaction network, with each node representing a dis-
tinct cell type. The edge interconnecting nodes denote the
strength and frequency of interactions, with line thickness
and density indicative of the extent of communication.
Thicker lines imply more intense or frequent interactions.
Notably, endothelial cells, microglia, and monocyte-
derived cells occupy central positions within the network.
Subsequently, we focused on intercellular communication
between microglia and other cell types (Figure 4c). This

analysis revealed significant interactions between micro-
glia, monocyte-derived cells, and neutrophils, as evidenced
by the robust edges connecting the corresponding nodes
within the cell–cell interaction network. Figure S2 displays
the overall communication conditions for all cell clusters
in terms of quantity and strength. To reveal the biological
functions associated with each cell type, we performed a
comprehensive analysis of signaling pathways. The
heatmap and circular plot (Figure 4d–f) illustrate the cen-
tral role of microglia as primary signal emitters in the SPP1
pathway. Conversely, monocyte-derived cells have been
identified as key signal recipients, underscoring their
receptive roles in this biological interaction.

3.4 Microglia subcluster analysis

To gain a comprehensive understanding of the regulatory
functions of microglia at the onset of IS, we performed a
subcluster analysis of the microglial population. Our find-
ings demonstrated that microglia can be classified into
four distinct subclusters (Figure 5a). In the sham group,
MG0 was predominant, indicating that the majority of
the cells were in a resting state. Conversely, in the MCAO
group, MG1 was markedly increased and emerged as the

Figure 4: Intercellular communication analysis and signaling pathway analysis. (a) and (b) Circos diagrams illustrate the density of interactions
between various pairs of cell types. The thickness of a line in the Circos plot corresponds to the intensity of interactions among distinct cell types.
(c) Microglia communication with a diverse range of cell types. (d) and (e) The major signaling inputs and outputs among different cell types.
(f) The circos diagram of Spp1 signaling pathway between different cell types.
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Figure 5: Microglia subclusters analysis and functional enrichment analysis of cluster 1. (a) The four subclusters of microglia. (b) Microglia density
changes by groups. (c) Distribution of the three key LR-DEGs in microglia and the expression level of these genes. (d) GSVA analysis of four microglia
subclusters.
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predominant subcluster. This increase suggests the transi-
tion of these cells into an activated state, acting as effector
cells that are critical for the pathogenesis of IS (Figure 5b).
Additionally, the MCAO group showed elevated expression
levels of Spp1, C1qbp, and Myc, which were primarily loca-
lized within MG1. Notably, C1qbp expression remained
relatively stable across MG1 in both MCAO and sham
groups 1-day post-stroke (Figure 5c). This observation
implies that C1qbp may play a crucial role in the regulation
of microglial resilience. Subsequently, we used the
GSE225948 dataset to further explore the dynamic change
of LRGs 14 days post-stroke. In this dataset, we observed a
significant decrease in LRG expression levels at 14 days
post-stroke compared to 1-day post-stroke, with C1qbp

and Myc showing the most marked reductions, nearly
returning to sham group levels (Figure S3c). Our results
suggest that C1qbp and Myc are primarily active during
the acute phase of IS. In contrast, the expression of Spp1
remains elevated in MG2 and MG3 at 14 days post-stroke,
with levels similar to those on day 1 (Figure S3d–e). This
indicates that Spp1 plays a key role in both the acute and
chronic phases of IS. In summary, C1qbp and Myc are pri-
marily involved in the acute response to IS, while Spp1
exerts neuroregulatory effects during both the acute and
chronic phases of IS. GSVA analysis revealed that MG1 was
highly enriched in lactate transmembrane transport and
lactate transmembrane transporter activity, indicating that
MG1 plays a vital role in lactate metabolism (Figure 5d).

Figure 6: Functional enrichment analysis of the microglia MG1. (a) GO enrichment analysis of microglia MG1. (b) KEGG pathway enrichment analysis.
(c)–(e). The chord diagram displays the connectivity between key genes and enriched GO terms. (f)–(h) GSEA of LRGs. KEGG signaling pathways
involved in Spp1, C1qbp, and Myc.
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3.5 Functional enrichment analysis of the
microglia MG1 and GSEA analysis of LRGs

GO (Figure 6a) and KEGG (Figure 6b) pathway analyses
were performed to elucidate the biological functions spe-
cific to microglial MG1. Biological process (BP) analysis
indicated that genes within this subcluster are primarily asso-
ciated with “‘inflammatory response,” “immune response,”
and “response to wounding,” highlighting the engagement
of immune-related pathways. Furthermore, cellular compo-
nent (CC) enrichment highlighted “plasma membrane” and
“integral component of membrane,” suggesting a correlation
between MG1 marker genes and membrane-associated struc-
tures. Molecular function (MF) enrichment emphasized
“cytokine activity” and “receptor binding,” underscoring the
critical role of cytokine signaling in mediating immune
responses. KEGG pathway enrichment analysis further con-
firmed that pathways associated with immune responses and
inflammation, particularly “cytokine–cytokine receptor inter-
action” and the “TNF signaling pathway,” were significantly
enriched. This enrichment pattern suggests that microglial
cells within MG1 are primarily involved in immune signaling
and inflammatory processes. The chord diagram (Figure
6c–e) revealed the functional enrichment of the most highly

expressed genes within MG1. The results revealed that Spp1
was significantly enriched across various functional processes,
particularly in “immune cell migration,” “inflammation,”
“acute-phase response,” and “cellular signal transduction.”
GSEA of KEGG signaling pathways for the LRGs indicated
that Spp1 is predominantly associated with the complement
and coagulation cascades, IL-17 signaling pathway, and TNF
signaling pathway. C1qbp was significantly enriched in endo-
metrial cancer, glyoxylate and dicarboxylate metabolism, and
proteasome pathways. Myc exhibited significant enrichment
in glycosaminoglycan degradation, non-alcoholic fatty liver
disease, and proteasome pathways (Figure 6f–h).

3.6 Pseudotime analysis of microglial
subpopulations

Pseudotime analysis revealed that microglia subcluster 0
(MG0) and microglia subcluster 1 (MG1) exhibit distinct
trajectories along two principal components, suggesting
that these subpopulations may represent divergent cellular
states. This observation is consistent with prior research,
which documented the upregulation of MG1 following IS
concurrent with the downregulation of MG0 (Figure 7a).

Figure 7: Single-cell trajectory analysis of microglia subclusters. (a)–(c). The three different differentiation states of microglia MG0 and MG1. (d) and
(e) Dynamic expression of three key LR-DEGs across microglia states and subclusters. (f) Heatmap of LR-DEGs across different states.
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The pseudotime values presented in Figure 7b illustrate a
temporal progression from MG0 to MG1, where darker
blue shades represent earlier stages, and lighter shades
represent later stages. The U-shaped trajectory suggests a
dynamic transition between cellular states. The microglial
transition can be characterized by three distinct states
(Figure 7c): red cells (state 1) occupy the early pseudotime,
green cells (state 2) form a compact cluster at the midpoint
of the trajectory, and blue cells (state 3) predominate in the
later pseudotime stages. The expression levels of Spp1,
assessed in the late stage (Figure 7d) and MG1 (Figure 7e),
highlight its critical role in microglial responses to IS, par-
ticularly in later stages of inflammation and tissue repair.
Furthermore, the heatmap (Figure 7f) shows that Spp1
expression is maximized at cell fate of 2.

3.7 Immune cell infiltration

To quantitatively evaluate the immune cell landscape after IS,
we employed CIBERSORT on the bulk RNA sequencing data.
The analysis revealed that macrophages were the predomi-
nant immune cells in theMCAO group (Figure 8a). In contrast,

the sham group displayed a more uniform distribution of
immune cells with lower activation markers, suggesting a
baseline or quiescent state. Further analysis using a box
plot revealed significant differences in the abundance of var-
ious immune cell types between the MCAO and sham groups
(Figure 8b). Notably, T cells (CD8 memory), M2 macrophages,
and plasma cells significantly increased in the MCAO group,
whereas immature dendritic cells (DCs) and activated NK
cells markedly decreased. The correlation heatmap (Figure
8c) underscored the strong association between LRGs and
immune cell infiltration (Figure S4). Spp1 showed a strong
positive correlation with activated DCs (activated), M2 macro-
phages, and mast cells and a negative correlation with Th17.
Cells, T cells, CD4 memory, and gamma delta T cells (Figure
8d). C1qbp was positively correlated with T cells CD8, naive
and activated natural killer cells (inactivated) and negatively
correlated with monocytes, T cells, CD4 memory, and resting
natural killer cells (NK, resting) (Figure 8e). Myc expression
was positively associated with activated DC cells, activated NK
cells, and a negative association with immature DC cells,
naive CD4 T cells, and resting NK cells (Figure 8f). In summary,
the observed changes in immune cell proportions following
IS, in conjunction with gene correlation analysis, suggest
that lactate metabolism plays a crucial role in modulating

Figure 8: Immune cell infiltration. (a) Bar plot showing the composition of 21 types of immune cells across samples. (b) Correlation heatmap of 21
types of immune cells and LR-DEGs. Red indicates a positive correlation, and green indicates a negative correlation. *p-value <0.05, **p-value <0.01,
and ***p-value <0.001. (c) Box plot of 21 types of immune cells across different samples. (d)–(f). Correlation between expression levels of the Spp1,
C1qbp, and Myc. The larger the circle, the stronger the correlations.
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immune response. These observations offer valuable insights
into the complex molecular mechanisms governing neuroin-
flammation and the subsequent post-stroke recovery.

4 Discussion

This study provides novel insights into the intricate rela-
tionship between lactate metabolism and microglial
dynamics following IS. By integrating bulk sequencing
and scRNA-seq, we systematically characterized the tem-
poral expression trajectories of lactate-associated genes
within microglia, highlighting dynamic changes in the
expression levels of Spp1, C1qbp, and Myc during the late
stages of post-ischemic recovery. These findings under-
score the pivotal function of microglial lactate metabolism
in the pathophysiology of stroke and offer promising ther-
apeutic targets for modulating microglial responses in IS.

Lactate metabolism plays a crucial role in brain energy
dynamics during and after an IS [28]. When oxygen levels
are reduced due to ischemia, the brain shifts from oxida-
tive phosphorylation to anaerobic glycolysis, leading to
lactate accumulation [29]. Lactate, once considered merely
a byproduct of anaerobic metabolism, has gained recogni-
tion as a significant metabolic substrate and signaling
molecule that plays a crucial role in modulating immune
and inflammatory responses in the brain [30]. Through our
analysis, we identified nine LRGs that play a crucial role in
modulating the reparative functions of various cell types in
response to ischemic lesions. Specifically, Per2 and Cav1 have
been shown to promote microglial polarization and inflam-
matory responses, which are essential for mitigating brain
injury following ischemia [31,32]. Additionally, Col4a1, Apln,
and Cav1 are significantly associated with the normal func-
tioning of vascular endothelial cells and are critical for pre-
serving the integrity of the blood–brain barrier (BBB). The
aberrant expression of these genes may impair the recovery
process after stroke [33,34]. Sfxn4 and Cdo1 are implicated in
mitochondrial energy metabolism. We hypothesized that
these genes may contribute to neuroprotection by enhancing
mitochondrial biogenesis following IS [35,36]. Our findings
revealed that these LRGs are predominantly expressed in
monocyte-derived cells, astrocytes, microglia, and vascular
endothelial cells, which are crucial for both health and dis-
ease. This distribution suggests that following IS, these genes
contribute tomaintaining cerebral homeostasis by preserving
energy metabolism, antioxidant defenses, and anti-inflamma-
tory processes.

Polarization of microglia is a critical process in the
neuroinflammatory response following IS, and LRGs play

a significant role in this process. Our results indicated that
Spp1, C1qbp, andMyc are prominently enriched in microglial
cells, which serve as the principal immune components of
the CNS and are crucially involved in the pathogenesis of
IS. The dynamic changes in the expression of these genes
suggest their involvement in the transition of microglia
from the MG0 microglia subcluster to the MG1 subcluster,
underscoring the pivotal role of MG1 in the context of IS.
Functional analysis of the MG1 subcluster revealed its
crucial involvement in the immune response and anti-
inflammatory activities. These cells play a significant role
in modulating immune and inflammatory responses in the
CNS post-ischemia. Therefore, we speculate that this tran-
sition is consistent with the polarization of microglia from
a pro-inflammatory state to an anti-inflammatory state and
that these three LRGs perform their neuroprotection at the
late stage of IS.

Spp1, also known as osteopontin (OPN), is a multifunc-
tional glycoprotein that is widely expressed in various tis-
sues, including the CNS. Spp1 is significantly involved in
modulating immune responses, inflammation, and tissue
repair processes [37]. Post-IS, Spp1 expression is markedly
upregulated in multiple cell types of the neurovascular
unit, including microglia, endothelial cells, and astrocytes
[38]. Elevated Spp1 expression plays a dual role: initially
promoting a pro-inflammatory response aimed at clearing
cellular debris and subsequently fostering a reparative
environment that supports tissue healing [39]. Prior
scRNA-seq studies have shown that certain subsets of
microglia and macrophages exhibit increased Spp1 expres-
sion following ischemic events, which persist throughout
the later stages of stroke recovery and play a critical role in
mediating the transition from a pro-inflammatory to an
anti-inflammatory microglial phenotype [40]. C1qbp is a
multifunctional protein that plays a crucial role in diverse
cellular processes and is primarily recognized for its reg-
ulatory function in the immune system. In addition to its
immune functions, C1qbp is involved in energy metabolism
by maintaining mitochondrial function, particularly in
monocyte-derived cells and microglia. Within ischemic
lesions, C1qbp upregulation enables microglia to meet
increased metabolic demands and oxidative stress asso-
ciated with neuroinflammation [41]. Myc is a key transcrip-
tion factor that is essential for the regulation of cell cycle
progression, apoptosis, and cellular transformation. In IS,
Myc upregulation can mediate the transformation of
microglia into dendritic-like cells, driven by the ERK/Myc
signaling pathway. This pathway is crucial for microglial
responses to ischemic injury, highlighting its role in post-
stroke neuroinflammation [42]. Furthermore, it redirects
metabolism towards oxidative phosphorylation under
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conditions of low glucose and high lactate levels, thereby
promoting cell survival and function under hypoxic condi-
tions by inhibiting glycolysis and increasing energy pro-
duction [43]. Myc upregulation also promotes glycolysis
and excessive lactic acid production by regulating the
expression of GLUT1 and key glycolytic enzymes, including
HK and PFK1 [44].

As the innate immune cell in the brain, microglia can
exert its regulatory function in various diseases by inter-
acting with other brain cells. In neurodegenerative disor-
ders, microglia and neurons are interconnected primarily
through the SPP1–ITGAV receptor–ligand pair, and this
association is bidirectional. Additionally, microglia and
astrocytes interact through the GAS6–MERTK and
RELN–ITGB1 receptor–ligand pairs [45]. In an acute demye-
lination mouse model, activated astrocytes express mul-
tiple ligands, including Cx3cl1, Csf1, Il34, and Gas6, which
act on both homeostatic and activated microglia, thereby
potentially mediating microglial activation, recruitment,
and enhancing their phagocytic activity [46,47]. It has
also been reported that the Spp1 intercellular interaction
pathway is significantly increased in mice with temporal
lobe epilepsy. This interaction can be observed in all glial
cells, with microglia and astrocytes displaying the stron-
gest communication strength among others [48]. Gu et al.
have also identified a microglial subcluster in rats with
hemorrhagic stroke, characterized by the highest expres-
sion of Lcn2, Msr1, and Spp1 at 24 h post-stroke. These cells
exhibit significant interactions with endothelial cells and
participate in the inflammatory response. Furthermore,
these microglia can also interact with neurons via the
Lcn2-SLC22A17 signaling pathway to induce neuronal
death [49]. In Alzheimer’s disease, specific transcription
factors, such as MYC and CTNNB1, are altered in inhibitory
neurons, leading to altered communication patterns
between microglia and neurons. This microglia–neuron
interaction may be mediated through the APOE–LRP8
ligand–receptor pair [50]. Although the analysis of cell–cell
communication helps us understand the pattern of cellular
interactions, it is, to some extent, unable to fully simulate
the interconnections between cells in physiological and
pathological conditions. First, when analyzing cell–cell
communication, we use the point-to-point model of ligan-
d–receptor to simulate cellular connections. However,
under biological conditions, cellular connections are
multi-dimensional, and relying solely on the ligand–re-
ceptor scale may not comprehensively reflect the strength
of cellular interactions. Additionally, scRNA-seq analysis
lacks spatial location information, and biological connec-
tions between cells often rely on spatial location. More-
over, scRNA-seq analysis lacks spatial location information,

whereas biological connections between cells often rely on
physical proximity. Although spatial transcriptomics can
provide cell location information, it is difficult to accurately
identify inter-cell interactions due to its low resolution. Cel-
lular communication is a dynamic process, whereas scRNA-
seq analysis primarily focuses on cellular changes at a specific
point in time, failing to reflect changes in inter-cellular con-
nections over time. Therefore, to achieve a comprehensive
understanding of cellular interactions, we propose that the
application of scRNA-seq analysis, combined with the verifi-
cation of biological experiments, can provide solid evidence
for understanding cellular communication.

Our findings indicate that C1qbp and Myc are predo-
minantly expressed in the MG1 microglial subset post-
ischemia and exhibit particularly high levels in the early
stages of the disease, while in the chronic phase of IS, the
expression level of these two genes is downregulated to the
normal state. This observation suggests that C1qbp and Myc
may serve as initiator genes in response to ischemic lesions,
potentially inducing microglial polarization to counteract
neuroinflammation. In contrast, Spp1 expression is upregu-
lated at later stages of IS andwill last for 2 weeks, suggesting a
role for Spp1 in neurorestorative functions during the subse-
quent recovery phase following stroke.

Neuroinflammation following IS is triggered not only
by resident immune cells but also by infiltrating immune
cells from the peripheral immune system [51]. In our study,
we characterized the post-IS infiltration patterns of
immune cells and observed an increase in activated DCs
and a concurrent decrease in memory B cells, plasma cells,
memory CD4 T cells, and immature DCs. These findings
highlight the dynamic and complex nature of the immune
response after cerebral ischemia and demonstrate con-
trasting infiltration behaviors among specific immune
cell populations. The elevated presence of activated DCs
suggests a potential role in antigen presentation and the
initiation of immune responses, while the diminished pre-
sence of other cell types, such as memory B cells and
plasma cells, may indicate the resolution of initial inflam-
matory responses or a transition in the immune landscape
towards a regulatory phenotype. These observations
enhance our understanding of immune cell dynamics in
the context of stroke and may inform the development of
targeted immunomodulatory therapies.

In the present study, we employed an integrative
approach of bulk-sequencing and scRNA-seq analyses to
identify nine LRGs that exhibit dynamic expression pat-
terns in microglia post-ischemia. By analyzing the distribu-
tion of these genes, we focused on temporal expression
changes within microglia, potentially revealing the cellular
response to IS. Additionally, by conducting a sub-clustering
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analysis of microglial populations, we delineated the phe-
notypic transitions of microglia at the onset of IS, thereby
elucidating their biological functions throughout the dis-
ease process. However, our study has some limitations. The
specific mechanisms underlying the action of these signa-
ture genes require further elucidation using both in vitro
and in vivo experimental models.

5 Conclusion

In conclusion, through a series of bioinformatics analyses,
we successfully identified nine signature genes (Spp1, Per2,
Col4a1, Sfxn4, C1qbp, Myc, Apln, Cdo1, and Cav1) associated
with IS and LRGs. Furthermore, three major LRGs are pre-
dominantly expressed in microglia and contribute to the
polarization of these cells. Notably, the expression level of
Spp1 increases significantly at the late stage of IS, sug-
gesting that this gene may serve a neuroprotective function
during later phases of the disease. Consequently, our find-
ings provide novel insights for investigating dynamic
alterations in LRGs within microglia. This discovery could
facilitate the targeting of these LRGs at appropriate time
points to modulate lactate metabolism, thereby potentially
enhancing the therapeutic efficacy against IS.
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