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Abstract

Background - Non-alcoholic fatty liver disease (NAFLD)
is a globally widespread disease. Recent investigations
have highlighted a close association between immunity
and NAFLD, but the causality between them has not been
thoroughly examined.

Methods - A total of 731 immunological traits and NAFLD
cohorts were derived from genome-wide association study
summary data, and single nucleotide polymorphisms sig-
nificantly associated with immune traits were identified as
instrumental variables. Moreover, 731 phenotypes include
absolute cell counts, median fluorescence intensity (MFI),
morphological parameters, and relative cell counts. The bidir-
ectional two-sample Mendelian randomization (MR) was per-
formed primarily using the inverse-variance weighted methods,
and sensitivity analysis was carried out simultaneously.
Results — Four immunophenotypes were identified to exert
a protective effect against NAFLD, including HLA-DR* CD4" %
lymphocytes, SSC-A on CD4*, CD24 MFI on IgD™CD38", and
CD8 MFI on CD28 CD8". Seven immunophenotypes were
identified to be hazardous, including CD28" CD45RA*
CD8%™opCD8™™, CD127 MFI on CD28" DN (CD4 CD8"), CD20
MFI on IgD* CD38™, CD20 MFI on transitional, IgD MFI on
transitional, CD3 MFI on central memory CD8™, and CD45
MFI on CD33”"HLA-DR* CD14". However, reverse MR showed
NAFLD had no causal effect on immunophenotypes.
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Conclusion — The study demonstrated a potential causal
link between several immunophenotypes and NAFLD, which
contributes to advancing research and treatment of NAFLD
based on immune-mediated mechanisms.
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1 Introduction

In 1980, non-alcoholic fatty liver disease (NAFLD) was first
proposed to define conditions with histological features
similar to those of alcoholic liver diseases [1]. NAFLD pro-
gresses through non-alcoholic fatty liver and non-alcoholic
steatohepatitis (NASH), potentially resulting in severe fibrosis
and cirrhosis [2]. Although numerous studies have pinpointed
effective interventions for specific cirrhosis-related complica-
tions [3], there remains a lack of viable therapeutic options
for liver fibrosis, irrespective of the underlying etiology,
including NAFLD [4]. With a global prevalence of 25%, NAFLD
is acknowledged as the primary contributor to chronic liver
diseases and cirrhosis, imposing a significant burden on the
global economy, especially in the Middle East, Asia, and North
Africa [5].

Unfortunately, the prevalence of metabolic risk factors
for hepatocellular carcinoma (HCC), like NAFLD, is rising
and could eventually become the predominant cause of
HCC worldwide [6]. The precise etiology of NAFLD remains
unclear. Research indicates that NAFLD development is attrib-
uted to metabolism, gut microbiota, immune responses, and
environmental elements. A comprehensive understanding of
the disease as a complex interplay of various etiological fac-
tors based on immune responses will help to refine the cur-
rent clinical insight into NAFLD and unveil new therapeutic
options [7,8]. A study has demonstrated that activation of
silent information regulator 1 (SIRT1), a transcription factor
associated with the pathogenesis of NAFLD, can significantly
repress inflammatory responses during liver injury [9].
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Importantly, activation of intestinal lymphocytes and
immune responses in the liver is associated with chronic
low-grade inflammation, a primary etiology of NAFLD [8].

The inflammatory environment in NASH is predomi-
nantly governed by immune cells from the innate and
adaptive systems. Immune cells secrete inflammatory med-
iators to induce hepatocyte death, while stressed hepato-
cytes are more prone to cytokine-mediated cell death, thus
releasing molecular substances known as damage-asso-
ciated molecular patterns (DAMPs)[10]. Many infiltrated
innate immune cells, encompassing neutrophils, mono-
cytes, dendritic cells (DCs), and Kupffer cells, contain pat-
tern recognition receptors (PRRs). DAMPs activate PRRs to
induce sterile inflammation through immune responses
[11]. Thus, innate immune responses are acknowledged
as crucial contributors to NASH development. However,
accumulating evidence suggests that adaptive immunity
is equally important. It has been reported that liver injury
and lobular inflammation are closely associated with the
degree of recruitment of CD4" and CD8" T lymphocytes in
the methionine choline-deficient model of NASH [12]. Evi-
dence from high fructose-induced models of NAFLD sup-
ports that CD8" T cell depletion can protect mice from
developing steatosis [13]. However, contrary to previous
beliefs that adaptive immunity predominantly facilitates
NASH progression, recent research indicates that adaptive
immune responses may be a double-edged sword [14,15].
While previous observational articles have unveiled the
association between immune cells and NAFLD [16,17], this
association may be disrupted by confounders and reverse
causality. Additional evidence is warranted to uncover a
more robust causal connection. Hence, it is urgent to adopt
additional research methods to reveal the causality between
immune inflammation and NAFLD, as well as to pinpoint
potential treatments.

Mendelian randomization (MR) is a methodological
tool that leverages genetic variation as an instrumental
variable (IV) to imitate the biological connection between
a particular exposure and outcome. Genetic variants such
as IVs are allocated from parents to offspring during
gamete formation, constituting a form of natural randomi-
zation. This approach may minimize the influence of con-
founders, optimize resource allocation, and avoid reverse
causality to a certain degree [13,18]. MR has been applied to
infer causal relationships among various diseases [19]. This
study employed bidirectional MR to uncover the causal
connection of immune cells with NAFLD.
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2 Materials and methods

2.1 Study design

A two-sample MR approach was utilized to determine the
causal relationship between 731 immune cell signatures
(spanning 7 panels) and NAFLD. The study flowchart is
displayed in Figure 1. Genetic variations served as IVs,
which required that valid IVs for causal inference satisfied
three crucial assumptions: (1) IVs have a direct connection
to the exposure; (2) IVs are independent of confounders,
meaning that they are not associated with the outcome
through confounding pathways; and (3) IVs influence the
outcome exclusively via the exposure. All research refer-
enced in the genome-wide association study (GWAS) was
authorized by ethical review committees and obtained
informed consent from each participant.

2.2 GWAS data sources

Publicly available GWAS summary data for various immune
traits are accessible from GCST0001391 to GCST0002121 [20].
A total of 731 immunophenotypes in the GWAS catalog were
categorized into seven panels: B cells, conventional DCs,
maturation stages of T cells, myeloid cells, monocytes, Treg,
and T, B, natural killer (TBNK) cells. TBNK panel is a com-
monly employed immune-monitoring tool that allows for
simultaneous detection of T, B, and NK cells. The 731 pheno-
types include absolute cell counts (AC, n = 118), median fluor-
escence intensity (MFL, n = 389) for surface antigen levels,
morphological parameters (MP, n = 32), and relative cell
counts (RC, n = 192). GWAS initially focused on 731 immune
traits, leveraging data from 3,757 European samples. Based on
3,757 Sardinian samples, GWAS discerned nearly 22 million
single-nucleotide polymorphisms (SNPs) using high-density
arrays after adjustment for age, sex, and age? [20,21].

2.3 Data source for NAFLD

The largest genome-wide analysis for NAFLD was acquired
from 4 cohorts of European participants with health records,
encompassing 8,434 cases and 770,180 controls, as well as
approximately 6.8 million SNPs [22].
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Figure 1: The study flowchart. Assumption 1: IVs have direct connection to the exposure; Assumption 2: IVs are independent of confounders;
Assumption 3: IVs influence the outcome exclusively via the exposure; NAFLD, non-alcoholic fatty liver disease; SNPs, Single-nucleotide poly-

morphisms; MR, Mendelian randomization.

2.4 Selection of IVs

Genetic variants were selected from GWAS for IV models
according to recent studies [20,23]. Those with a P-value
less than 1 x 1075 were identified. Then, we eliminated SNPs
with notable linkage disequilibrium, defined as r* > 0.001
and a distance <10,000 kilobases, to confirm the indepen-
dence of the screened SNPs. The PhenoScanner database
was utilized to examine whether SNPs meet both the inde-
pendent and exclusion assumptions, while SNPs directly
associated with confounders and outcomes were removed
[24]. The F-value was calculated, and IVs with a value >10
were retained, indicating the absence of weak instru-
mental bias [25]. Finally, data from both databases were
harmonized to ensure that the influence of exposure and
outcomes aligned with the same effector allele. Addition-
ally, palindromic SNPs were removed during the process.

2.5 Statistical analysis

2.5.1 MR analysis

Based on the summarized data from 731 immunological
traits (n = 3,757) and NAFLD (n = 778,614) derived from

GWAS, the analysis was done in R software 432 utilizing the
“TwoSampleMR” package 0.5.8 (available at http://www.Rproject.
org). Inverse-variance weighted (IVW), weighted mode, weighted
median, MR-Egger, and simple mode were adopted to illustrate
the causal association between 731 immune traits and NAFLD,
with IVW as the primary method [26,27]. Findings were
visualized utilizing scatter, forest, and funnel plots. Given
the risk of type 1 errors in multiple testing, the false dis-
covery rate (FDR) correction was implemented.

2.6 Sensitivity analysis

Horizontal pleiotropy was checked by the MR-Egger method
and MR-PRESSO tests [28], with P > 0.05 indicating that the
IVs of immune cells did not have significant horizontal pleio-
tropy for NAFLD. Cochran’s Q statistics was used to judge
heterogeneity in both the IVW and MR-Egger methods [29],
with P > 0.05 implying no significant heterogeneity. The
robustness of results was testified via the leave-one-out
method.

Informed consent: Not applicable.

Ethics approval: Not applicable.
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3 Results

3.1 Causal effect of immunophenotypes on
NAFLD

MR analysis, primarily based on the IVW method, fol-
lowing FDR correction (Prpg < 0.05), identified 11 immuno-
phenotypes with causal associations with NAFLD. The
comprehensive characteristics of the 11 immunophenotypes,
including their parental populations, are shown in Table 1.
HLA-DR* CD4" % lymphocytes (OR = 0.935, 95% CI =
0.879-0.995, P = 0.034, Pppr = 0.044), SSC-A on CD4" (OR =
0.944, 95% CI = 0.895-0.997, P = 0.037, Prpg = 0.043), CD24 on
IgDCD38™ (OR = 0.963, 95% CI = 0.930-0.996, P = 0.029, Pppg =
0.046), and CD8 on CD28CD8™ (OR = 0.935, 95% CI = 0.880-0.994,
P = 0.031, Prpr = 0.045) showed a negative causal association
with NAFLD (Figure 2). The scatter plots depicted a negative
slope for these four immunophenotypes, indicating that the
increase in the expression of these four immunophenotypes
may decrease the likelihood of NAFLD (Figure 3). In contrast,
CD28" CD45RA" CD8™o6CDSA™ (OR = 1.032, 95% CI = 1.012-1.053,
P = 0.001, Pppg = 0.003), CD127 on CD28" DN (CD4 CD8") (OR =
1.074, 95% CI = 1.004-1.150, P = 0.039, Pgpg = 0.039), CD20 on IgD*
CD38™ (OR = 1.046, 95% CI = 1.005-1.089, P = 0.027, Prpg = 0.046),
CD20 on transitional (OR = 1.044, 95% CI = 1.003-1.087, P = 0.034,
Prpr = 0.046), IgD on transitional (OR = 1.058, 95% CI =
1.007-1.113, P = 0.027, Prpr = 0.049), CD3 on central memory
(CM) CD8"™ (OR = 1.053, 95% CI = 1.003-1.105, P = 0.039, Pppg =
0.041), and CD45 on CD33” HLA-DR" CD14™ (OR = 1.050, 95% CI =
1.003-1.100, P = 0.038, Prpr = 0.042) showed positive causal asso-
ciation with NAFLD (Figure 4). The scatter plots illustrated the
positive slope of these seven immunophenotypes, indicating that
as the expression of these seven immunophenotypes increased,
the likelihood of NAFLD correspondingly enhanced (Figure 5).

In addition to the IVW method, MR Egger (OR = 1.029,
95% CI = 1.006-1.052, P = 0.020), weighted median (OR =
1.030, 95% CI = 1.002-1.058, P = 0.036), simple mode (OR =
1.058, 95% CI = 1.004-1.114, P = 0.049), and weighted mode
(OR =1.029, 95% CI = 1.007-1.052, P = 0.016) yielded similar
results on CD28" CD45RA* CD8%™oCD8™, MR Egger (OR =
1.117, 95% CI = 1.016-1.226, P = 0.041), weighted median (OR =
1.082, 95% CI = 1.015-1.154, P = 0.015), and weighted mode
(OR = 1.080, 95% CI = 1.011-1.155, P = 0.041) yielded similar
results on CD3 on CM CD8™. MR Egger (OR = 0.948, 95% CI =
0.910-1.002, P = 0.044) yielded similar results on CD24 on
IgD"CD38". Weighted median (OR = 1.099, 95% CI = 1.008-1.198,
P = 0.044) yielded similar results on CD127 on CD28" DN
(CD4°CD8) (Table S1).

Forest plots showed SNP effects on the causal connec-
tions of immunophenotypes with NAFLD (Figure S1). In

Table 1: Comprehensive characteristics of the 11 immunophenotypes

Number of SNPs Trait type

Sample size

Parental population

Trait

GWAS ID

Panel

Relative count

5,160,296

4,903,739

— o

5,044,894
5,048,951
5,048,951
5,048,951

4,849,646
5,147,619

Relative count

MFI

4,849,609
4,842,706
4,129,845

MFI

MFI

=R R el e e A R B A R

3,595
3,113

CD45" CD3" CD4"
CD45" CD3" CD4*
CD19'IgD™CD38"

HLA DR* CD4" %lymphocyte

SSC-A on CD4"

ebi-a-GCST90001626
ebi-a-GCST90002081
ebi-a-GCST90001769
ebi-a-GCST90001751

ebi-a-GCST90001763
ebi-a-GCST90001828
ebi-a-GCST90002120
ebi-a-GCST90001665
ebi-a-GCST90001925
ebi-a-GCST90001846
ebi-a-GCST90002042

TBNK

TBNK

3,648
3,657

CD24 on IgD"CD38™
CD20 on IgD*CD38""
CD20 on transitional
IgD on transitional

B cell

CD19" IgD* CD38"

B cell

3,657

CD19" CD38" CD24"
CD19" CD38" CD24*

CD8" CD28"

B cell

3,657

B cell
Treg
Treg
Treg

2,920

CD8 on CD28°CD8"™"

3,440
2,918

CD4™ CD8Y™ CD28* CD45RA"

CD4™ CD8 CD28"

CD28"* CD45RA*CD8YMopCD8Y™

CD127 on CD28" DN (CD4°CD8")

CD3 on CM CD8""

2,910
1,579

CD4~ CD8®" CD45RA™ CCR7*

Maturation stages of T cell

Myeloid cell

CD45* 7ADD™ CD14~ CD33°" HLA DR*

CD45 on CD33° HLA-DR*CD14~
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Panel Exposure Number of SNPs OR(95%Cl) P_value P_FDR
TBNK  HLA DR+ CD4+%lymphocyte 13 —-—' 0.935 (0.879-0.995) 0.034 0.044
TBNK  SSC-A on CD4+ 21 —-—E 0.944 (0.895-0.997) 0.037 0.043
Bcell CD24 onlgD- CD38- 22 < 0.963 (0.930-0.996) 0.029 0.046
Treg CD8 on CD28- CD8br 15 —-—' 0.935 (0.880-0.994) 0.031 0.045
_—

Figure 2: Forest plots showed protective effects of immunophenotypes (study group n = 3,757) on NAFLD (study group n = 778,614). TBNK, T cells,

B cells, Natural killer cells; br, bright; HLA, Human Leucocyte Antigen.
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Figure 3: Causal effects of immune cells (study group n = 3,757) on NAFLD (study group n = 778,614). (a) Scatter plot between HLA-DR" CD4" %
lymphocyte and NAFLD risk. (b) Scatter plot between SSC-A on CD4* and NAFLD risk. (c) Scatter plot between CD24 on IgD"CD38™ and NAFLD risk.

(d) Scatter plot between CD8 on CD28°CD8"" and NAFLD risk.

funnel plots, IVs were symmetrically distributed, which
proved that the analysis followed the randomization prin-
ciple (Figure S2).

3.2 Sensitivity analysis

Our findings indicated that all Q-pval values from the hetero-
geneity tests were >0.05, suggesting no significant heterogeneity.
Additionally, MR-Egger and MR-PRESSO analyses demonstrated
no significant horizontal pleiotropy for each immunophenotype,

indicating that SNPs had no substantial impact on the outcome
via exposure-unrelated factors (Table 2). The Leave-one-out plots
had no significant hiases, further proving the stability and relia-
bility of the results (Figure S3).

3.3 Causal effect of NAFLD on
immunophenotypes

The IVW method was the primary method of reverse MR
analysis on the 11 immunophenotypes. No causal association
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Panel Exposure Number of SNPs OR(95%Cl) P_value P_FDR
B cell CD20 on IgD+ CD38br 20 I 1.046 (1.005-1.089) 0.027 0.046
B cell CD20 on transitional 18 E—!— 1.044 (1.003-1.087) 0.034 0.046
B cell 1gD on transitional 23 - 1.058 (1.007-1.113) 0.027 0.049
Treg CD28+CD45RA+ CD8dim %CD8dim 21 E- 1.032 (1.012-1.053) 0.001 0.030
Treg CD127 on CD28+ DN (CD4-CD8-) 17 + 1.074 (1.004-1.150) 0.039 0.039
Maturation stages of T cell CD3 on CM CD8br 14 - 1.053 (1.003-1.105) 0.039 0.041
Myeloid cell CD45 on CD33br HLA DR+ CD14- 15 >—-— 1.050 (1.003-1.100) 0.038 0.042
—_

Figure 4: Forest plots showed promotional effects of immunophenotypes (study group n = 3,757) on NAFLD (study group n = 778,614). TBNK, T cells,
B cells, Natural killer cells; DN, double negative; br, bright; CM, central memory; HLA, Human Leucocyte Antigen.
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Figure 5: Causal effects of immune cells (study group n = 3,757) on NAFLD (study group n = 778,614). (a) Scatter plot between CD20 on IgD* CD38"" and
NAFLD risk. (b) Scatter plot between CD20 on transitional and NAFLD risk. (c) Scatter plot between IgD on transitional and NAFLD risk. (d) Scatter plot
between CD28" CD45RA* CD8%™M9%CD8Y™ and NAFLD risk. (e) Scatter plot between CD3 on CM CD8"" and NAFLD risk. (f) Scatter plot between CD127 on
CD28" DN (CD47CD87) and NAFLD risk. (g) Scatter plot between CD45 on CD33"" HLA-DR* CD14~ and NAFLD risk.
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was revealed between NAFLD and any immunophenotype
(Table S2 and Figure S4).

4 Discussion

The links between immune cells and NAFLD and the
impact of genetics on NAFLD progression are not well
understood [30]. Hence, the MR techniques were used to
determine the possible causal association between 731
immune traits and NAFLD utilizing public genetic informa-
tion. After effective screening, 199 SNPs associated with 11
immunophenotypes and NAFLD were screened as IVs. Our
findings indicated that four immunophenotypes decreased
the risk of NAFLD, including HLA-DR* CD4" % lymphocytes
and SSC-A on CD4" in the TBNK panel, CD24 on IgD"CD38~
in the B-cell lineage, and CD8 on CD28~ CD8™ in the Treg
panel. In contrast, CD127 on CD28" DN and CD28" CD45RA*
CD8%™M%CD8Y™ in the Treg lineage, CD20 on IgD" CD38™,

A bidirectional Mendelian randomization study = 7

CD20 on transitional, IgD on transitional in the B-cell panel,
CD3 on CM CD8" in the matured T-cell panels, and CD45 on
CD33""HLA-DR' CD14™ in the myeloid cell panel promoted
NAFLD development. With IVW as the key method, ana-
lyses utilizing weighted median, MR Egger, and simple
mode also yielded consistent results with those obtained
from IVW in certain immune cell characteristics. This
further strengthens our conclusions and enhances the
reliability of the results.

T and B lymphocytes, representatives of adaptive immu-
nity, demonstrate crucial roles in regulating immune responses
and inflammation. T cells are grouped into CD4", CD8", and
Treg cells. Our findings discovered that CD3 on CM CD8" pro-
moted NAFLD development. Consistent with the recent litera-
ture reports, the frequency of CM CD8" T cells in human
peripheral blood is positively associated with hepatic steatosis
and lobular inflammation [31]. In addition, the frequency of
CM CD8" T cells is also significantly increased in the liver of
NAFLD mouse models [32]. However, their precise mechanisms
on NAFLD progression require further investigations.

Table 2: Tests for pleiotropy and heterogeneity between immune cells and NAFLD

Panel Exposure SNPs MR Presso MR_Egger regression Heterogeneity
global test
Pval Intercept P_intercept Method @ Q-Pval
TBNK HLA DR* CD4" %lymphocyte 13 0.57 -0.01 0.27 MR Egger 10.40 0.49
vw 11.78 0.46
SSC-A on CD4* 21 0.74 0.00 0.70 MR Egger 15.76 0.67
vw 15.92 0.72
Treg CD8 on CD28~ CD8br 15 0.68 -0.01 0.46 MR Egger 10.67 0.64
vw 11.26 0.67
CD28"CD45RA™ CD8dim% 21 0.60 0.00 0.52 MR Egger 18.95 0.46
CD8dim
VW 19.38 0.50
CD127 on CD28* DN 17 0.16 0.01 0.52 MR Egger 21.53 0.12
(CD47CD8")
vw 2215 0.14
B cells CD24 on IgD™CD38~ 22 0.94 0.01 0.39 MR Egger 11.27 0.94
vw 12.03 0.94
CD20 on IgD* CD38br 20 0.80 0.00 0.72 MR Egger 15.13 0.65
VW 15.26 0.7
CD20 on transitional 18 0.15 0.00 0.96 MR Egger 25.78 0.06
vw 2578 0.08
IgD on transitional 23 0.65 0.00 0.64 MR Egger 18.87 0.59
VW 19.09 0.64
Maturation stages of T CD3 on CM CD8br 14 0.77 -0.02 0.18 MR Egger 7.41  0.83
cells
vw 9.44 074
Myeloid cells CD45 on CD33br HLA 15 0.94 -0.02 0.31 MR Egger 6.14 0.94
DR CD14~
VW 726 0.92
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Various preclinical and clinical studies have demon-
strated that CD4" T cells also contribute to NASH progression
[33,34]. CD4" T cell depletion using therapeutic antibodies
could decrease the production of inflammatory cytokines
and fibrosis, underscoring their significance in the clinical
progression of NASH [35]. In contrast, we identified two
CD4" T cell subsets that exhibited protective effects against
NAFLD:HLA-DR" CD4" lymphocytes and SSC-A* CD4" T cells.
Recent articles have revealed the heterogeneity of CD4" T cells
[36]. Experimental evidence suggests that antigen-presenting
cells (APCs) expressing Notch ligands can induce develop-
ing CD4" T cells to express the anti-inflammatory cytokine
interleukin (IL)-10, thereby exerting an opposite effect to
typical CD4" T cells [37]. IL-10 is vital in negatively regulating
inflammation, mainly by selectively blocking inflammatory
cytokines, cell-surface molecules, chemokines, and other mole-
cules involved in inflammation [38]. Recent findings uncover
that a newly discovered CD4" T cell subset attenuates palmi-
tate-induced lipotoxicity in the absence of IL-17 in a PI3K/
AKT-dependent fashion [39,40]. This further highlights the
heterogeneity of CD4" T cells and the distinct functions of
various T cell subsets. CD4" T cell subsets identified in our
research should be validated through further investigations.

Our research revealed that CD8 on CD28 CD8" Treg
cells exerted protective effects against NAFLD. They belong
to CD8" suppressor T cells [41] and are involved in the
development of autoimmune diseases and immune toler-
ance in organ transplantation [42,43]. On the one hand,
CD8" CD28™ Treg cells upregulate ILT3 and ILT4 on DCs
and monocytes, making these APCs tolerogenic cells, exhi-
biting low levels of costimulatory molecules and antigen-
specific non-responsiveness in CD4" T helper cells [44].
CD8" CD28™ Treg cells are activated by the TLR2 pathway
in macrophages predominantly via the production of IL-4
and IL-10, which are critical in preventing inflammatory
responses [45]. These mechanisms all support the potential
protection of CD8" CD28™ Treg cells on NAFLD. CD127, also
known as the IL-7R a chain, regulates the expression of
recombination activating genes in double-negative T cells
(DNTs) and initiates the VD] rearrangement of the TCRp
chain, thus promoting the survival and proliferation of
DNTSs [46]. DNTs can activate the NLRP3 and TNFR2-STATS5-
NF-xB signaling pathway by secreting TNF-q, thereby facil-
itating the differentiation of Th9 cells and contributing to
liver fibrosis [47]. Earlier research has indicated that a
subset of cytotoxic/inhibitory lymphocytes, characterized
by CD3" CD4 CD8%™, exhibits high expression of CD45RA
in the peripheral blood lymphocytes of healthy individuals
[48]. In comparison to CD8Y™ T cells expressing CD45RO,
these cells expressing CD45RA are in a naive state. Another
study indicates that CD8™ T cells with migratory capacity
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express high levels of CD28 [49]. CD28 is an important co-
stimulatory molecule for T cells that plays a critical role in
inflammatory diseases by upregulating inflammatory cyto-
kines [50]. Therefore, we speculate that CD28" CD45RA* CD8%™
T cells may be a subset of naive CD8" T cells with strong
proliferative, activation, and migratory capacities. However,
the relationship between CD28" CD45RA* CD8Y™ T cells and
NAFLD still requires further research for confirmation.

Our research indicated that four distinct types of B
cells were associated with NAFLD progression. Previous
investigations have shown the complex involvement of B
cells in NAFLD progression due to the diverse B cell sub-
types and their activities [51]. On the one hand, CD24 is
heavily glycosylated and localized to lipid rafts on the B
cell surface [52]. It is an initial protein expressed during the
maturation of B cells in the late pre-B cell stage, like mar-
ginal B cells [53]. It can modulate immune functions by
secreting IL-10 [54], thereby hindering NAFLD progression.
On the other hand, the function of CD24 varies among
B-cell subtypes and is linked to energy metabolism during
B-cell differentiation [55]. Investigations have revealed that
intrahepatic B cells are activated in mouse models of NASH,
and NASH progression in mice can be markedly ameliorated
through B-cell deficiency [56]. CD20, a surface protein specific
to B cells, is the target of anti-CD20 antibodies in therapies for
depleting B cells [57]. By targeting B cells, anti-CD20 mono-
clonal antibody therapy reduces inflammatory activity.
Although the precise mechanism remains uncertain, this
therapy can clinically relieve multiple diseases, such as mul-
tiple sclerosis and asthma [58,59]. This is in line with our
findings and could offer a target for NAFLD treatment.

DCs originating from the myeloid lineage are also
known as conventional dendritic cells (cDCs), which are
integral components of the innate immune system and
play a crucial role in both innate and adaptive immune
responses [60]. Our research identified an immunopheno-
type characterized by CD45 on CD33”"HLA-DR* CD14~, which
is derived from myeloid cells and may be a phenotype of
cDCs that promotes NAFLD development. In patients with
NAFLD/NASH, c¢DCls are more abundant and activated, cri-
tically driving liver pathology by promoting the reprogram-
ming of inflammatory T cells [61]. However, in mouse
models, CD103 cDC1s have been identified as a protective
subset of DCs that modulate the balance of proinflammatory
and anti-inflammatory and protect the liver from metabolic
injury [62]. cDC2s act as potent stimulators of CD4" T cells,
leading to the differentiation of helper T cells and guiding
the immune system toward different pathways [63]. How-
ever, research on its relationship associated with NAFLD is
currently limited. Further study is required to uncover the
role of DCs in the development of NAFLD.
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Nevertheless, the reverse MR analysis revealed that
NAFLD did not appear to have a causal effect on immuno-
phenotypes. However, as normal-NAFL-NASH progresses,
immune-activated cell infiltration is significantly increased,
indicating the remodeling of the immune microenvironment
alongside disease progression [64]. The accumulation of liver
metabolites due to NAFLD may lead to immune dysregulation.
For instance, the depletion of fatty acid-induced cytotoxic
CD4" and self-reactive CXCR6" CD8* T cells, both essential
for immune surveillance, could potentially initiate NAFLD
and HCC progression [65]. Additionally, a recent study
detected the distinct immunophenotypes and functions at
different stages of NAFLD through cytometry by time-of-
flight and bioinformatic analysis and revealed that the dis-
ease stages were associated with an inactive phenotype
compared to controls [66]. Therefore, further foundational
and clinical studies are warranted to establish the causal
relationship between NAFLD and immunophenotypes.

This study, by MR analysis, illustrated the association
between immune cells and NAFLD using data from a well-
powered GWAS cohort. The merits of this investigation are
highlighted as follows. First, the results were not disrupted
by horizontal pleiotropy and confounders, preventing the
likelihood of reverse causality. Second, the causal association
between certain immunophenotypes and NAFLD was eluci-
dated, paving the way for new immune targets in NAFLD
treatment and providing a crucial theoretical basis for devel-
oping immunotherapeutic targets. Furthermore, an FDR was
utilized to address statistical biases from multiple compari-
sons and to control false positives in multiple hypothesis
testing.

5 Limitation

Nevertheless, our research also has constraints. First, our
research relied on a European database, which might intro-
duce demographic bias into the MR findings. Subsequent stu-
dies should incorporate various ethnic backgrounds while
also segmenting data by gender and other demographic fac-
tors. Second, the results were analyzed using a relaxed
threshold, which could result in some false positives, although
it facilitated a more detailed exploration of the pronounced
link between immune cells. Moreover, confounders could not
be ruled out completely, although sensitivity analysis was
performed to exclude SNPs associated with potential confoun-
ders. Further investigation is necessary to uncover the
complex connection between diverse innate and adaptive
immune cells and NAFLD and to delineate their precise
mechanisms.

A bidirectional Mendelian randomization study = 9

6 Conclusion

The MR analysis reveals a potential genetic link between
immunophenotypes and NAFLD. Furthermore, our results
refine the theoretical understanding of NAFLD-immune
crosstalk, providing a fresh framework for immunoregula-
tion in NAFLD therapy.
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