Review Article

Xueting Yu[#], Huimei He[#], Jie Wen, Xiuyuan Xu, Zhaojuan Ruan, Rui Hu, Fang Wang, Haibing Ju*

Diabetes-related cognitive impairment: Mechanisms, symptoms, and treatments

https://doi.org/10.1515/med-2024-1091 received May 11, 2024; accepted October 18, 2024

Abstract

Background – Diabetes-related cognitive impairment is increasingly recognized as a significant complication, profoundly impacting patients' quality of life. This review aims to examine the pathophysiological mechanisms, clinical manifestations, risk factors, assessment and diagnosis, management strategies, and future research directions of cognitive impairment in diabetes.

Methodology – A comprehensive literature search was conducted using PubMed, Medline, and other medical databases to identify, review, and evaluate published articles on cognitive impairment in diabetes. The search focused on studies examining pathophysiology, clinical presentations, risk factors, diagnostic approaches, and management strategies.

Results – The review of current literature revealed that chronic hyperglycemia, insulin resistance, and vascular factors are major contributing factors to cognitive deficits in diabetes. Clinical manifestations include impairments in attention, memory, executive function, visuospatial abilities, and language. Risk factors encompass disease duration, glycemic control, presence of complications, age, education level, and comorbidities. Assessment tools include cognitive screening instruments, neuropsychological testing, and neuroimaging

These authors are regarded as co-first authors.

Xueting Yu, Huimei He, Xiuyuan Xu, Zhaojuan Ruan: Endocrine Department, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650000, Yunnan, China

Jie Wen, Fang Wang: Executive Ward Department, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650000, Yunnan, China **Rui Hu:** Department of Hematology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650000, Yunnan, China

techniques. Management strategies involve glycemic control optimization, lifestyle modifications, cognitive training, and pharmacological interventions.

Conclusion – This review highlights the significant prevalence and impact of cognitive impairment in diabetes, resulting from complex metabolic and vascular disturbances. Early detection and multifaceted interventions are crucial for preserving cognitive function and improving patient outcomes. Future research should focus on neuroprotective strategies, biomarker identification, and personalized approaches. Collaborative efforts between clinicians and researchers are essential to effectively address this growing healthcare challenge and enhance the quality of life for individuals with diabetes-related cognitive impairment.

Keywords: diabetes, cognitive dysfunction, hyperglycemia, executive function, neuroprotection

1 Introduction

Diabetes mellitus, a chronic metabolic disorder characterized by dysregulated glucose homeostasis, is a major public health concern worldwide [1]. While the traditional complications of diabetes, such as retinopathy [2], nephropathy, and cardiovascular disease, have been extensively studied [3], increasing attention is being directed toward the impact of diabetes on cognitive function and brain health. Cognitive impairment, defined as a decline in one or more cognitive domains including attention, memory, executive function, visuospatial abilities, and language, has emerged as a prevalent complication of both type 1 and type 2 diabetes [4-7]. This impairment can range from subtle deficits in specific cognitive domains to more severe forms, such as vascular dementia or Alzheimer's disease [8]. The pathophysiology of diabetes-associated cognitive dysfunction is multifaceted, involving direct effects of chronic hyperglycemia, insulin dysregulation, vascular pathologies, and potentially other mechanisms.

Cognitive impairment in individuals with diabetes is increasingly recognized as a significant clinical concern, with far-reaching implications for patients, healthcare

^{*} Corresponding author: Haibing Ju, Endocrine Department, 920th Hospital of Joint Logistics Support Force, PLA, No. 212 Daguan Road, Xishan District, Kunming, 650000, Yunnan, China, e-mail: juhaibing114@163.com

systems, and society as a whole. Epidemiological studies have consistently reported a striking higher prevalence of cognitive deficits and an increased risk of dementia among people with diabetes compared to those without the condition [9]. According to the International Diabetes Federation, approximately 537 million adults (20-79 years) were living with diabetes in 2021, and this number is projected to rise to 783 million by 2045 [9]. In terms of cognitive impairment, it has been estimated that individuals with diabetes have a 73% higher risk of all types of dementia, a 56% higher risk of Alzheimer's disease, and a 127% higher risk of vascular dementia compared to individuals without diabetes. Alarmingly, the prevalence of mild cognitive impairment in diabetes has been estimated to range from 20 to 30%, while the risk of developing dementia is approximately 1.5 to 2.5 times higher in individuals with diabetes [10]. These cognitive impairments can profoundly impact various aspects of daily life, from basic functional abilities and independence to disease self-management and overall quality of life. Moreover, the consequences extend beyond the individual, placing substantial burdens on caregivers and healthcare resources, resulting in increased healthcare costs and societal economic strain.

This narrative review examines cognitive impairment in diabetes, focusing on pathophysiological mechanisms, clinical manifestations, risk factors, and current assessment and management strategies. By synthesizing existing knowledge and identifying research gaps, we aim to underscore the significance of this complication and guide future research and clinical advancements in the field.

2 Literature search and scrutiny

A comprehensive literature search was conducted to identify relevant studies on cognitive impairment in diabetes. The following electronic databases were searched from their inception to March 31, 2024: PubMed/MEDLINE, Embase, Web of Science, and Cochrane Library. The search strategy included a combination of Medical Subject Headings terms and keywords related to diabetes and cognitive impairment. The main search terms for diabetes included "diabetes mellitus," "type 1 diabetes," "type 2 diabetes," "insulin resistance," and "hyperglycemia." For cognitive impairment, the terms "cognitive dysfunction," "cognitive decline," "dementia," "mild cognitive impairment," "Alzheimer's disease," and "vascular dementia" were used. These terms were combined using Boolean operators (AND, OR) to refine the search. Studies were included if they met the following criteria: published in English, focused on the relationship between diabetes and cognitive impairment, included human subjects, and were original research articles, systematic reviews, or meta-analyses. Studies were excluded if they were not peer-reviewed (e.g., conference abstracts, letters to the editor), focused solely on animal models, or were case reports or small case series (n < 10).

3 Pathophysiology underlying the cognitive impairment of diabetes

3.1 Effects of hyperglycemia on the brain

Chronic hyperglycemia is a major contributor to cognitive impairment in diabetes [11] (Figure 1). It induces oxidative stress through reactive oxygen species (ROS) production [12], causing neuronal damage and cognitive deficits [13]. Hyperglycemia also accelerates the formation of advanced glycation end-products (AGEs) [14], leading to neuroinflammation and impaired insulin signaling [15,16]. It disrupts cerebral blood flow and blood—brain barrier (BBB) integrity [17], causing endothelial dysfunction, reduced cerebral perfusion [18], and increased BBB permeability, allowing neurotoxic substances to enter the brain [19].

3.2 Role of insulin resistance and dysregulation

Insulin functions as a critical neuromodulator in the brain, influencing neuronal survival, synaptic plasticity, and cognitive processes [20–22]. In diabetes, insulin resistance and dysregulation disrupt brain insulin signaling, impairing neuronal function and cognition [23,24]. This leads to decreased glucose uptake, increased oxidative stress, and impaired synaptic plasticity [1]. Chronic hyperglycemia exacerbates insulin resistance through oxidative stress, inflammation, and AGE accumulation [12,25]. Insulin dysregulation in both type 1 and 2 diabetes affects neurotransmitter systems, neuronal energy metabolism, and neurogenesis [26,27].

3.3 Vascular factors and cerebrovascular disease

Diabetes is a risk factor for cerebrovascular disease, impacting cognitive function [28]. Stroke can cause focal neuronal damage and cognitive impairment [29,30]. Diabetics are at increased risk of silent brain infarcts and

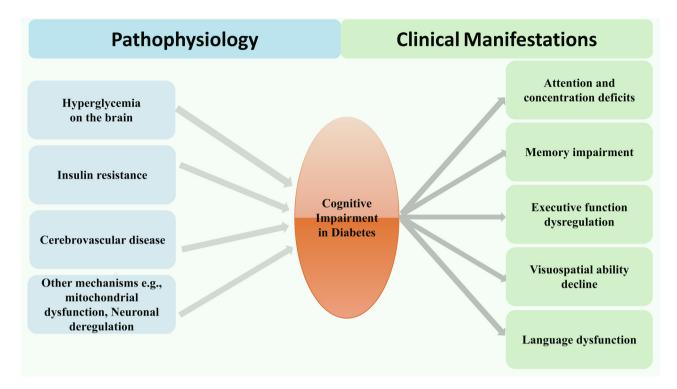


Figure 1: The pathophysiology and clinical manifestations of cognitive impairment in diabetic patients. The pathophysiology of cognitive impairment in diabetes involves several interconnected mechanisms. Hyperglycemia: chronic high blood glucose levels lead to oxidative stress, formation of AGEs, and disruption of the BBB, causing neuronal damage and cognitive deficits [11–19]. Insulin resistance and dysregulation: Impaired insulin signaling in the brain affects neuronal survival, synaptic plasticity, and neurotransmitter regulation, contributing to cognitive dysfunction [20-27]. Vascular injury: Diabetes-related vascular pathologies, including endothelial dysfunction, atherosclerosis, and cerebral hypoperfusion, can lead to ischemic brain damage and cognitive decline [28-36]. Neurotransmitter dysregulation: Alterations in neurotransmitter systems, such as acetylcholine, dopamine, and glutamate, affect various cognitive processes [37]. Mitochondrial dysfunction: Impaired energy metabolism and increased ROS production in neurons contribute to cognitive impairment [38]. Neuroinflammation: Chronic low-grade inflammation associated with diabetes can exacerbate neuronal damage and cognitive decline. Impaired neurogenesis and synaptic plasticity: Diabetes can disrupt the formation of new neurons and synaptic connections, crucial for learning and memory [38,39]. Epigenetic modifications: Diabetes-induced epigenetic changes can alter gene expression patterns, potentially contributing to cognitive dysfunction [40-43]. Navigation or interpreting visual information [61,62]. Cognitive impairment in diabetes primarily affects the following domains: Attention and concentration deficits [49-53]; memory impairment (short-term and long-term) [54–58]; executive function dysregulation [59,60]; visuospatial ability decline [61,62]; and language dysfunction [63–66].

white matter lesions [31], disrupting brain connectivity and contributing to cognitive deficits [32]. Diabetes-associated endothelial dysfunction and impaired cerebrovascular autoregulation compromise brain oxygen and nutrient delivery [33,34], leading to reduced vasoreactivity and increased ischemic injury susceptibility [35]. Vascular pathologies like atherosclerosis increase the risks of cerebral hypoperfusion and microvascular ischemic lesions, exacerbating cognitive decline [36].

3.4 Other potential mechanisms

In addition to the mechanisms discussed above, several other biological processes have been implicated in the development of cognitive impairment in diabetes (Figure 1):

- 1. Dysregulation of neurotransmitter systems: Diabetes has been associated with alterations in the levels and signaling of various neurotransmitters, such as acetylcholine, dopamine, and glutamate, which play crucial roles in cognitive processes like attention, memory, and executive function [9,37].
- 2. Mitochondrial dysfunction: Hyperglycemia, oxidative stress, and insulin resistance can lead to mitochondrial dysfunction in neurons, resulting in impaired energy metabolism, increased ROS production, and ultimately neuronal damage and cognitive deficits [38].
- 3. Impaired neurogenesis and synaptic plasticity: Diabetes has been shown to disrupt adult neurogenesis, the process of generating new neurons in specific brain regions like the hippocampus. Additionally, insulin resistance and other metabolic disturbances can impair synaptic

plasticity, which is crucial for learning and memory formation [38,39].

- 4. Epigenetic modifications: Emerging evidence suggests that diabetes can induce epigenetic changes, such as DNA methylation and histone modifications, which can alter gene expression patterns and contribute to cognitive impairment [40–43].
- 5. Comorbidities: Diabetes often coexists with other conditions like depression, obesity, and sleep disturbances, which can exacerbate cognitive deficits through shared pathways or additive effects [44,45]. For example, depression has been linked to neuroinflammation, decreased neurogenesis, and altered neurotransmitter levels, all of which can impact cognitive function [46–48].

4 Clinical manifestations

4.1 Attention and concentration deficits

Impairments in attention and concentration are among the most commonly reported cognitive deficits in individuals with diabetes [49] (Figure 1). These deficits manifest as difficulty sustaining focused attention, increased distractibility, and reduced processing speed [50,51]. Patients may struggle to concentrate on tasks, follow conversations or instructions, and experience frequent attention lapses, affecting daily functioning and productivity. Research has shown that individuals with diabetes may exhibit deficits in specific attention components, such as divided attention (attending to multiple stimuli simultaneously) and selective attention (focusing on relevant information while filtering distractions) [52,53]. These attentional impairments significantly impact activities requiring multitasking.

4.2 Memory impairment

Memory deficits are a prominent feature of cognitive impairment in diabetes, affecting both short-term (working) and long-term memory [54]. Short-term memory impairments manifest as difficulty remembering instructions, names, or carrying out multi-step tasks. Long-term memory deficits can compromise the ability to recall past events, learned information, or previously acquired skills, significantly impacting daily life and independence [55–57]. Specific memory types, such as episodic memory (personal experiences) and semantic memory (general knowledge), may be differentially affected, with some studies suggesting more pronounced impairment in episodic memory in individuals with diabetes [58].

4.3 Executive function dysregulation

Executive functions, encompassing higher-order cognitive processes, are often impaired in individuals with diabetes [59]. This impairment manifests as difficulties in planning, organization, cognitive flexibility, decision-making, judgment, inhibition, and self-regulation. Individuals may struggle with formulating and executing plans, prioritizing tasks, organizing information, and adapting to changing demands. They may also exhibit impaired decision-making abilities, poor risk assessment, and challenges in evaluating the consequences of actions [59]. Additionally, difficulties in controlling impulses, regulating emotions and behavior, and resisting distractions are common. Executive dysfunction profoundly impacts the ability to navigate complex situations, solve problems, and engage in goal-directed behaviors [60]. This can lead to challenges in diabetes self-care, work responsibilities, and everyday activities.

4.4 Visuospatial ability decline

Individuals with diabetes may experience visuospatial deficits, affecting their perception, processing, and manipulation of visual and spatial information [61]. These deficits can manifest as impaired visual perception (difficulty recognizing objects, faces, or patterns), spatial disorientation (challenges with navigation and understanding spatial relationships), and constructional apraxia (difficulty copying geometric designs or assembling structures from visual cues) [62]. These impairments have real-world implications for tasks such as driving, reading maps, interpreting diagrams, and activities requiring visualmotor coordination like dressing, cooking, or using tools. Awareness of these potential impacts and seeking appropriate support and strategies are important for the effective management of visuospatial deficits in individuals with diabetes.

4.5 Language dysfunction

Language deficits, though less commonly reported, are significant in individuals with diabetes [63]. These can manifest as word-finding difficulties, comprehension deficits, and fluency disturbances [64,65]. Word-finding difficulties involve challenges in recalling specific words or names. Comprehension deficits may lead to difficulties in understanding complex information or following instructions. Fluency disturbances can cause disruptions in speech

flow, with hesitations or disorganized patterns. These language deficits, often subtle, can interfere with effective communication, comprehension of complex information, and self-expression, potentially impacting social interactions, educational or occupational performance, and quality of life [66].

5 Risk factors

5.1 Diabetes-related factors (duration, glycemic control, complications)

Longer disease duration in diabetes is consistently associated with a higher risk of cognitive impairment [67]. Prolonged exposure to chronic hyperglycemia, oxidative stress, and metabolic disturbances can lead to progressive neuronal damage and cognitive decline [68]. Poor glycemic control, indicated by elevated glycated hemoglobin levels, correlates with more significant cognitive deficits [69]. Sustained hyperglycemia exacerbates oxidative stress, inflammation, and vascular dysfunction, contributing to cognitive impairment [51]. Other diabetes complications, such as retinopathy, nephropathy, and cardiovascular disease, further increase the likelihood of cognitive impairment [70]. These complications share common mechanisms like microvascular and macrovascular damage, leading to neuronal injury and cognitive deficits [71]. Effectively managing disease duration, glycemic control, and complications is crucial for minimizing diabetes' impact on cognitive function.

5.2 Demographic factors (age, education, socioeconomic status [SES])

Increasing age is a well-established risk factor for cognitive decline in individuals with diabetes. The aging brain is more susceptible to hyperglycemia, oxidative stress, and vascular damage, potentially accelerating cognitive impairment [72]. Lower educational attainment is associated with a higher risk of cognitive impairment in diabetics. Education is believed to build cognitive reserve, potentially mitigating neuronal damage and delaying cognitive deficits [73]. Furthermore, individuals with diabetes and low SES are at increased risk of cognitive impairment [74,75]. Those with low SES may face barriers to quality healthcare, struggle with treatment adherence, and have a higher burden of other health conditions, all potentially contributing to long-term cognitive decline [74,75].

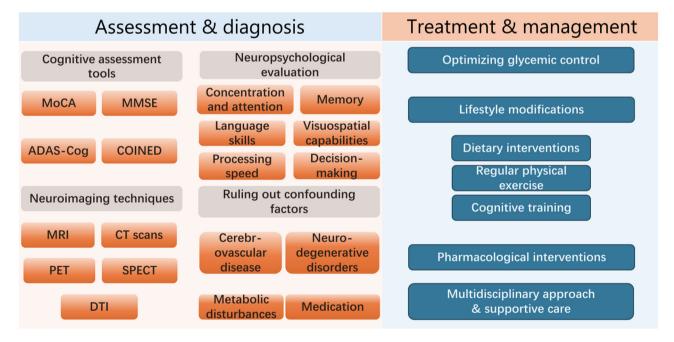
5.3 Comorbidities (hypertension, dyslipidemia, depression)

Elevated blood pressure in diabetes increases cognitive impairment risk by exacerbating vascular damage, cerebral hypoperfusion, and cerebrovascular lesions [76]. Abnormal lipid profiles, including high low-density lipoprotein cholesterol and triglycerides, also increase this risk [77]. Dyslipidemia leads to atherosclerosis, endothelial dysfunction, and cerebrovascular disease, affecting brain blood flow and nutrient delivery. Depression, often coexisting with diabetes, exacerbates cognitive deficits through neuroinflammation, neurotransmitter dysregulation, and decreased neurogenesis [78,79]. Managing hypertension, dyslipidemia, and depression is crucial for preventing cognitive impairment and promoting brain health in diabetics.

5.4 Lifestyle factors (diet, physical activity, smoking)

Unhealthy dietary patterns, high in refined carbohydrates, saturated fats, and ultra-processed foods increase cognitive impairment risk in diabetics by promoting oxidative stress, inflammation, and metabolic dysregulation [80]. Regular physical activity has protective effects, improving glycemic control, reducing inflammation, and stimulating neurogenesis and brain plasticity [81]. Cigarette smoking significantly increases cognitive decline risk in diabetics by exacerbating oxidative stress, inflammation, and vascular damage [82]. Prioritizing a balanced diet, incorporating regular exercise, and smoking cessation are crucial strategies for preserving cognitive function in individuals with diabetes.

By identifying and addressing these modifiable risk factors, healthcare professionals can implement targeted interventions to mitigate the risk of cognitive impairment in individuals with diabetes, ultimately improving cognitive outcomes and quality of life.


Diagnosis, assessment, and management

6.1 Cognitive assessment approaches

Cognitive screening tools play a vital role in detecting cognitive impairments and determining the need for further evaluation, especially in clinical settings. These tools help healthcare professionals identify potential issues early on and take appropriate actions. Among the commonly used cognitive screening tools in diabetes are the Montreal cognitive assessment, mini-mental state examination, Alzheimer's disease assessment scale-cognitive subscale, and psychometrics and cognitive impairment screening in diabetes [83] (Figure 2). While cognitive screening tools provide a quick assessment of cognitive function, they are not diagnostic instruments [84]. Positive screening results should prompt further evaluation using comprehensive neuropsychological testing. Neuropsychological evaluation consists of a thorough assessment of cognitive functions utilizing standardized assessments administered by trained neuropsychologists, which covers a variety of cognitive areas, including concentration and attention, memory (verbal, visual, short term, long term), functions related to executive tasks (such as planning, problem-solving, and cognitive flexibility), language skills (naming, fluency, comprehension), visuospatial capabilities (perception, construction, spatial reasoning), and processing speed [85]. Through neuropsychological testing, a detailed profile of an individual's cognitive strengths and weaknesses can be obtained for creating tailored interventions and tracking cognitive alterations over the long term.

Neuroimaging techniques, such as magnetic resonance imaging and computed tomography scans, offer a valuable means of understanding both the structural and functional changes within the brain that are linked to cognitive impairment [86]. These imaging modalities can detect macrostructural changes like brain atrophy, white matter lesions, infarcts, and other abnormalities that may play a role in cognitive deficits [86,87]. Additionally, functional imaging techniques like functional magnetic resonance imaging, positron emission tomography, and single-photon emission computed tomography provide important information on brain activity and metabolism, offering insights into regional brain function and neural network connectivity. This can help pinpoint areas of altered brain function that are associated with cognitive impairment. Furthermore, diffusion tensor imaging enables the evaluation of the integrity of white matter tracts in the brain, which are essential for efficient communication between different brain regions [88]. Neuroimaging findings can complement cognitive and neuropsychological assessments by shedding light on the underlying pathophysiology of cognitive impairment in individuals with diabetes.

When evaluating cognitive impairment in individuals with diabetes, it is essential to carefully consider and exclude other possible factors and comorbidities. Key

Figure 2: Assessment and diagnosis approaches for cognitive impairment in diabetic patients and the management strategies. Key research achievements in the field of diabetes and cognitive dysfunction include establishing the link between diabetes and increased risk of cognitive impairment and dementia [9,10], pinpointing risk factors including disease duration, glycemic control, and comorbidities [67–82], developing assessment tools like cognitive screening and neuroimaging techniques [83–88], and exploring management strategies such as glycemic control optimization, lifestyle modifications, and potential pharmacological interventions [91–108].

assessments include evaluating vascular cognitive impairment by examining cerebrovascular diseases such as stroke or white matter lesions [89], differentiating diabetes-related cognitive impairment from neurodegenerative disorders like Alzheimer's disease or Lewy body dementia, reviewing medications for potential cognitive side effects, and evaluating metabolic disturbances such as hypoglycemia, hypothyroidism, or vitamin deficiencies [90]. Thorough assessment and ruling out confounding factors enables healthcare professionals to accurately identify and characterize cognitive impairment in individuals with diabetes, facilitating the implementation of appropriate interventions and management strategies.

6.2 Treatment and management strategies

6.2.1 Glycemic control

Achieving and maintaining optimal glycemic control is crucial in managing diabetes-related cognitive impairment, as chronic hyperglycemia contributes to oxidative stress, neuroinflammation, and neuronal injury [91]. Intensive glycemic control through lifestyle modifications, oral hypoglycemic agents, and/or insulin therapy can improve cognitive function and slow cognitive decline in diabetics [92] (Table 1). The diabetes control and complications trial and its follow-up, the epidemiology of diabetes interventions and complications, showed that intensive glucose control in type 1 diabetes was associated with better cognitive test performance [93]. Similarly, the action to control cardiovascular risk in diabetes trial linked intensive glucose-lowering therapy to modest cognitive benefits in type 2 diabetes [94]. However, it is crucial to balance tight glycemic control with the risks of hypoglycemia, as recurrent low blood sugar episodes can adversely affect cognitive function. Severe hypoglycemic events have been associated with increased dementia risk and cognitive decline, potentially due to neuronal damage from glucose deprivation and excitotoxic neurotransmitter release [95].

6.2.2 Lifestyle modifications

Adopting a balanced, healthy diet is crucial for managing cognitive decline in diabetics. Diets rich in fruits, vegetables, whole grains, lean proteins, and healthy fats have been linked to improved cognitive function and lower risk of decline [96]. The Mediterranean diet, high in plantbased foods, olive oil, and fish, shows potential in protecting brain health [97,98]. Specific components like omega-3 fatty acids may also benefit cognitive function [99]. Regular physical activity is consistently associated with improved cognitive outcomes and decreased decline risk in diabetics [100]. Exercise enhances glycemic control and insulin sensitivity, reduces inflammation, increases cerebral blood flow, and stimulates neurogenesis and brain plasticity [101]. Aerobic activities have shown effectiveness in boosting cognitive performance, particularly in executive function, memory, and processing speed [102]. Resistance training and mindbody practices may also enhance cognitive functions [103].

Table 1: Summary of management strategies for cognitive impairment in diabetic patients

Management strategy	Description	References
Glycemic control	Optimizing blood glucose levels through lifestyle modifications, oral hypoglycemic agents, and/ or insulin therapy	[91–95]
Lifestyle modifications	Diet: Adopting a balanced diet rich in fruits, vegetables, whole grains, lean proteins, and healthy fats; Mediterranean diet	[96–99]
	Physical activity: Regular aerobic exercise and resistance training to improve cognitive function	[100-102]
	Mind-body practices: Tai Chi, yoga, and other mind-body exercises	[103]
Cognitive training	Structured exercises to enhance specific cognitive domains, often delivered through computerized platforms or mobile apps	[104,105]
Pharmacological interventions	Cholinesterase inhibitors: Medications like donepezil and rivastigmine for memory and attention enhancement	[106]
	Antidiabetic drugs: Metformin and glucagon-like peptide-1 (GLP-1) agonists with potential neuroprotective properties	[107]
	Antioxidants and neuroprotective compounds: Resveratrol, curcumin, and omega-3 fatty acids (under investigation)	[108]
Multidisciplinary approach	Collaborative care involving endocrinologists, neurologists, dietitians, exercise physiologists, and other healthcare professionals	[109]
Early detection and intervention	Regular cognitive screening and monitoring integrated into routine diabetes care	[110,111]

However, personalized workout regimens should be developed under healthcare provider guidance, considering individual factors such as age, health conditions, and physical limitations.

6.2.3 Cognitive training

Cognitive training programs, consisting of structured exercises to enhance specific cognitive areas, are accessible through computerized platforms, mobile apps, or face-toface sessions. Recent findings suggest these interventions could benefit individuals with diabetes-related cognitive impairment, especially when combined with lifestyle changes and medication [104]. These programs aim to boost cognitive reserve, stimulate neuroplasticity, and potentially slow or alleviate cognitive deterioration. Integrating lifestyle adjustments such as nutritious diet, regular physical activity, and cognitive training into comprehensive care plans for diabetics offers diverse advantages [105]. These interventions address underlying metabolic issues while enhancing brain health, potentially reducing cognitive deficits, and improving overall quality of life and well-being.

6.2.4 Pharmacological interventions

While no food and drug administration-approved medications exist for treating diabetes-related cognitive impairment, various pharmacological agents have been explored. Cholinesterase inhibitors like donepezil and rivastigmine, originally for Alzheimer's disease, have shown some memory and attention enhancements in diabetics with mild cognitive impairment [106]. Antidiabetic drugs such as metformin and GLP-1 agonists have demonstrated neuroprotective properties that could benefit cognitive function, though further studies are needed [107]. Antioxidants and neuroprotective compounds like resveratrol, curcumin, and omega-3 fatty acids are under investigation, but more extensive clinical trials are required to confirm their efficacy [108]. Other medications targeting specific mechanisms linked to cognitive impairment, including insulin sensitizers, anti-inflammatory agents, and drugs addressing vascular risk factors, are currently under scrutiny [104].

6.2.5 Multidisciplinary approach and supportive care

The multifactorial nature of cognitive impairment in diabetes necessitates a collaborative, comprehensive approach

involving various healthcare professionals. This team may include endocrinologists and primary care physicians managing glycemic control and complications, neurologists and neuropsychologists conducting cognitive assessments and developing personalized interventions [109]. Dietitians and exercise physiologists can guide healthy dietary patterns and tailored exercise programs. Social workers and support groups offer emotional support and resources, while occupational therapists assist with adaptive strategies and environmental modifications. This multidisciplinary approach, including ongoing monitoring and follow-up assessments, enhances overall management and support for individuals with diabetes-related cognitive impairment and their caregivers, improving well-being and quality of life. Healthcare professionals can track cognitive changes and adjust interventions as needed, providing comprehensive care for this complex condition.

7 Prevention and future directions

7.1 Importance of early detection and intervention

Early detection and intervention are crucial in mitigating cognitive impairment in diabetics. Cognitive deficits can be subtle and insidious, making early recognition challenging. Timely identification and intervention can potentially slow or reverse cognitive decline, preserve function, and improve quality of life. Regular cognitive screening and monitoring should be integrated into routine diabetes care, especially for those with known risk factors or comorbidities. Early detection facilitates prompt implementation of appropriate interventions, including lifestyle modifications, cognitive training, and potential pharmacological treatments [110]. Moreover, early intervention helps individuals and caregivers better understand and manage challenges associated with cognitive deficits, enabling the adoption of coping strategies and necessary adjustments to daily activities and routines [111].

7.2 Potential neuroprotective strategies

Current management of diabetes-related cognitive impairment focuses on modifiable risk factors and symptomatic relief. However, there is growing interest in neuroprotective strategies to potentially delay or halt cognitive decline, with various avenues under active exploration.

Targeting insulin resistance and insulin signaling: Targeting insulin resistance and signaling could yield neuroprotective benefits in diabetes-related cognitive impairment [112,113]. Insulin plays a critical role in preserving neurons, promoting synaptic plasticity, and supporting cognitive function [114]. Insulin resistance, characteristic of type 2 diabetes and a potential consequence of prolonged hyperglycemia, can disrupt brain insulin signaling, compromising neuronal function and cognition [115]. Ongoing research explores novel insulin sensitizers, compounds facilitating insulin transport across the BBB, and intranasal insulin formulations that could directly deliver insulin to the brain, potentially augmenting its neuroprotective properties [116].

Anti-inflammatory and antioxidative strategies: Oxidative stress and inflammation significantly contribute to neuronal damage and cognitive decline in diabetes [117]. Compounds with strong anti-inflammatory and antioxidative properties could potentially protect brain cells. Natural substances like resveratrol, curcumin, and omega-3 fatty acids are being investigated for their ability to alleviate oxidative stress, reduce brain inflammation, and enhance neuronal survival and adaptability [118,119]. Additionally, researchers are exploring synthetic compounds with antioxidative and anti-inflammatory qualities that target specific biological processes associated with cognitive decline [120].

Modulation of epigenetic mechanisms: Recent studies suggest that epigenetic changes, such as DNA methylation and histone modifications, play a crucial role in cognitive decline development. These alterations can modify gene expression patterns, leading to neuronal dysfunction and cognitive impairment [40,121]. Therapies or substances targeting these epigenetic pathways show potential for neuroprotection in diabetics [122]. By modulating gene expression patterns, these treatments could potentially restore normal neuronal function, support neuronal survival, and mitigate cognitive deficits.

Stem cell therapy and regenerative medicine: Research is exploring the potential of stem cells and regenerative medicine techniques to enhance neurogenesis, neural repair, and functional recovery in the diabetic brain [123,124]. Stem cell therapies could involve introducing exogenous stem cells or activating endogenous neural stem cells to replace damaged or dysfunctional neurons [125]. Scientists are also investigating the use of growth factors, small molecules, and other biomolecules to stimulate neurogenesis and promote neural repair and regeneration [126-128]. These strategies aim to restore the brain's structural and functional integrity, potentially reversing or mitigating cognitive decline.

Lifestyle interventions and multimodal approaches: While pharmacological and regenerative medicine techniques show promise, holistic lifestyle interventions combining dietary changes, physical activity, cognitive exercises, and other strategies may offer synergistic neuroprotective benefits and improve overall brain health [129]. A comprehensive approach addressing multiple mechanisms and vulnerabilities could enhance the effectiveness of neuroprotective methods and improve cognitive outcomes for diabetics. Although many potential neuroprotective strategies are still in the early research stages, requiring thorough evaluation through rigorous clinical trials, their ongoing exploration holds promise for developing novel and effective interventions to combat diabetes-related cognitive impairment.

7.3 Areas for further research

Significant progress has been made in understanding the relationship between diabetes and cognitive impairment, but there are several areas that require further research. Priority should be given to elucidating the underlying molecular mechanisms linking diabetes with cognitive decline, including the interplay between hyperglycemia, insulin resistance, and vascular dysfunction [130]. Identifying reliable biomarkers and developing risk prediction models are crucial for early detection and timely intervention. Large-scale clinical trials are needed to evaluate the efficacy and safety of various interventions, encompassing pharmacological agents, cognitive training programs, and multimodal approaches. Longitudinal cohort studies tracking cognitive function, metabolic parameters, and biomarkers in diabetic patients from early disease stages are crucial for identifying early predictors and progression patterns of cognitive decline [131].

Advanced neuroimaging studies correlating brain structural and functional changes with cognitive performance over time can provide crucial insights into the underlying neurobiological mechanisms of diabetes-related cognitive decline. Complementing these findings, epigenetic and molecular studies are essential for investigating potential biomarkers and mechanisms, which can lead to the development of targeted interventions. To inform clinical decision-making and health policy, comparative effectiveness research on different pharmacological interventions, including cost-effectiveness analyses, should be conducted. The advent of big data and machine learning approaches offers promising avenues for identifying patterns and developing predictive models for early intervention. Ultimately, the integration of these research approaches can pave the way for personalized and precision medicine tailored to individual risk profiles, potentially leading to better outcomes for patients with diabetes at risk for cognitive decline [132].

8 Conclusion

Cognitive impairment is a prevalent complication of diabetes mellitus, affecting various cognitive domains. Its multifactorial pathophysiology involves chronic hyperglycemia, insulin resistance, and vascular factors. Risk factors include disease duration, poor glycemic control, diabetes complications, age, education level, comorbidities, and unhealthy lifestyle. Early detection and accurate diagnosis are crucial, utilizing cognitive screening tools, neuropsychological testing, and neuroimaging. Management strategies involve optimizing glycemic control, lifestyle modifications, pharmacological interventions, and a multidisciplinary approach. Current treatments primarily target modifiable risk factors and provide symptomatic relief. Ongoing research focuses on neuroprotective strategies, including targeting insulin resistance, exploring antioxidant and anti-inflammatory approaches, modulating epigenetic mechanisms, and leveraging regenerative medicine.

Recognizing cognitive impairment as a significant diabetes complication has important clinical implications. Routine cognitive screening and monitoring should be integrated into standard diabetes care, especially for high-risk individuals. Early detection enables prompt intervention. Healthcare professionals should adopt a holistic approach, addressing glycemic control and other modifiable risk factors. Multidisciplinary teams should collaborate to provide comprehensive assessment, personalized interventions, and continuous monitoring. Cognitive rehabilitation and training programs should be considered adjuncts to pharmacological and lifestyle interventions. Research efforts should continue to elucidate underlying mechanisms, identify biomarkers and risk prediction models, evaluate interventions through clinical trials, and explore personalized medicine approaches. Proactively addressing cognitive impairment in diabetics can improve outcomes, quality of life, and independence, reducing the burden on patients, caregivers, and healthcare systems.

Abbreviations

AGEs advanced glycation end-products

BBB blood-brain barrier GLP-1 glucagon-like peptide-1

ROS reactive oxygen species SES socioeconomic status

Acknowledgments: Not applicable.

Funding information: This work was supported by Yunnan Province Xingdian Talent Medical and Health Talent Project (project approval number 2023MY020) and Open Project of Yunnan Blood Clinical Medical Center (project approval number 2022LCZXKF-XY11).

Author contributions: The authors confirm contribution to the article as follows: study conception and design: Haibing Ju; data collection: Huimei He and Jie Wen; analysis and interpretation of results: Xiuyuan Xu, Zhaojuan Ruan, Rui Hu, and Fang Wang; and draft manuscript preparation: Xueting Yu and Haibing Ju. All authors reviewed the results and approved the final version of the manuscript.

Conflict of interest: The authors declare that they have no competing interests.

Data availability statement: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

- [1] Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020 Aug;21(17):6275.
- [2] Umemura T, Kawamura T, Hotta N. Pathogenesis and neuroimaging of cerebral large and small vessel disease in type 2 diabetes: A possible link between cerebral and retinal microvascular abnormalities. J Diabetes Investig. 2017 Mar;8(2):134–48.
- [3] Morales J, Handelsman Y. Cardiovascular outcomes in patients with diabetes and kidney disease: JACC review topic of the week. J Am Coll Cardiol. 2023 Jul;82(2):161–70.
- [4] Warburton JW. Memory disturbance and the Parkinson syndrome. Br J Med Psychol. 1967 Jun;40(2):169–71.
- [5] Boller F, Passafiume D, Keefe NC, Rogers K, Morrow L, Kim Y. Visuospatial impairment in Parkinson's disease. Role of perceptual and motor factors. Arch Neurol. 1984 May;41(5):485–90.
- [6] Downes JJ, Roberts AC, Sahakian BJ, Evenden JL, Morris RG, Robbins TW. Impaired extra-dimensional shift performance in medicated and unmedicated Parkinson's disease: evidence for a specific attentional dysfunction. Neuropsychologia. 1989;27(11–12):1329–43.
- [7] Dalrymple-Alford JC, Kalders AS, Jones RD, Watson RW. A central executive deficit in patients with Parkinson's disease. J Neurol Neurosurg Psychiatry. 1994 Mar;57(3):360–7.
- [8] Iadecola C. The pathobiology of vascular dementia. Neuron. 2013 Nov;80(4):844–66.

- [9] Ortiz GG, Mireles-Ramírez MA, Morales-Sánchez EW, Bitzer-Quintero OK, Ramírez-Jirano LJ, Larios-Tato LG, et al. Cognitive disorder and dementia in type 2 diabetes mellitus. World J Diabetes. 2022 Apr;13(4):319-37.
- [10] Wium-Andersen IK, Rungby J, Jørgensen MB, Sandbæk A, Osler M, Wium-Andersen MK. Risk of dementia and cognitive dysfunction in individuals with diabetes or elevated blood glucose. Epidemiol Psvchiatr Sci. 2019 Jun 18:29:e43.
- [11] Antar SA, El-Shohdy NS, Almeldin SM, Abdelhay N, Abdelmonsef AH, Abdeldayem SA. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed Pharmacother. 2023 Dec;168:115734.
- [12] Gonzalez P. Pasin AM. Occhiutto ML. Majewski M. Ventura C. Chiaradia P, et al. Hyperglycemia and oxidative stress: an integral, updated and critical overview of their metabolic interconnections. Int J Mol Sci. 2023 May;24(11):9621.
- Davies DA, Adlimoghaddam A, Albensi BC. Role of Nrf2 in synaptic plasticity and memory in Alzheimer's disease. Cells. 2021 Jul;10(8):1884.
- [14] Khalid M, Petroianu G, Adem A. Advanced glycation end products and diabetes mellitus: Mechanisms and perspectives. Biomolecules. 2022 Apr;12(4):568.
- [15] Reddy Addi U, Jakhotia S, Reddy SS, Reddy GB. Age-related neuronal damage by advanced glycation end products through altered proteostasis. Chem Biol Interact. 2022 Mar;355:109840.
- [16] D'Cunha NM, Foscolou A, Tyrovolas S, Chrysohoou C, Rallidis L, Polychronopoulos E, et al. The effects of dietary advanced glycation end-products on neurocognitive and mental disorders. Nutrients. 2022 Jun;14(12):2481.
- [17] Zhao Q, Gao J, Li W, Cai D. Lycium Barbarum polysaccharides ameliorates hyperglycemia-exacerbated cerebral ischemia/ reperfusion injury via protecting blood-brain barrier. Transpl Immunol. 2023 Feb:76:101757.
- Del Prato S. Diabetes and vascular disease: New therapeutic avenues. Vasc Pharmacol. 2024 Mar;154:107247.
- Rom S, Zuluaga-Ramirez V, Gajghate S, Seliga A, Winfield M, Heldt NA, et al. Hyperglycemia-driven neuroinflammation compromises BBB leading to memory loss in both diabetes mellitus (DM) type 1 and type 2 mouse models. Mol Neurobiol. 2019 Mar:56(3):1883-96.
- [20] Milstein JL, Ferris HA. The brain as an insulin-sensitive metabolic organ. Mol Metab. 2021 Oct;52:101234.
- Rhea EM, Leclerc M, Yassine HN, Capuano AW, Tong H, Petyuk VA, et al. State of the science on brain insulin resistance and cognitive decline due to Alzheimer's disease. Aging Dis. 2024 Aug;15(4):1688-725.
- [22] Ansari MA, Al-Jarallah A, Babiker FA. Impaired insulin signaling alters mediators of hippocampal synaptic dynamics/plasticity: a possible mechanism of hyperglycemia-induced cognitive impairment. Cells. 2023 Jun;12(13):1728.
- Chen W, Cai W, Hoover B, Kahn CR. Insulin action in the brain: cell [23] types, circuits, and diseases. Trends Neurosci. 2022 May;45(5):384-400.
- [24] Dodd GT, Kim SJ, Méquinion M, Xirouchaki CE, Brüning JC, Andrews ZB, et al. Insulin signaling in AgRP neurons regulates meal size to limit glucose excursions and insulin resistance. Sci Adv. 2021 Feb;7(9):eabf4100.
- Caturano A, Acierno C, Nevola R, Varriale M, Mozzillo E, Fattorusso V, et al. Oxidative stress in type 2 diabetes: Impacts

- from pathogenesis to lifestyle modifications. Curr Issues Mol Biol. 2023 Jul;45(8):6651-66.
- [26] Sebastian MJ, Khan SK, Pappachan JM, Jeeyavudeen MS. Diabetes and cognitive function: An evidence-based current perspective. World J Diabetes. 2023 Feb;14(2):92-109.
- [27] Dakic T, Jevdjovic T, Lakic I, Ruzicic A, Jasnic N, Djurasevic S, et al. The expression of insulin in the central nervous system: What have we learned so far? Int J Mol Sci. 2023 Apr;24(7):6586.
- [28] Mosenzon O, Cheng AY, Rabinstein AA, Sacco S. Diabetes and stroke: What are the connections? J Stroke. 2023 Jan;25(1):26-38.
- [29] Iadecola C, Duering M, Hachinski V, Joutel A, Pendlebury ST, Schneider JA, et al. Vascular cognitive impairment and dementia: JACC scientific expert panel. J Am Coll Cardiol. 2019 lun:73(25):3326-44.
- Elendu C, Ogbonna K, Uko CK, Oyibo SO, Uke UA, Unadike BC. [30] Stroke and cognitive impairment: understanding the connection and managing symptoms. Ann Med Surg (Lond). 2023 Aug;85(12):6057-66.
- [31] Meinel TR, Triulzi CB, Kaesmacher J, Mujanovic A, Pasi M, Leung LY, et al. Management of covert brain infarction survey: A call to care for and trial this neglected population. Eur Stroke J. 2023 Dec;8(4):1079-88.
- Badji A, Youwakim J, Cooper A, Westman E, Marseglia A. Vascular [32] cognitive impairment - Past, present, and future challenges. Ageing Res Rev. 2023 Sep;90:102042.
- Wolf V, Abdul Y, Li W, Ergul A. Impact of diabetes and ischemic [33] stroke on the cerebrovasculature: A female perspective. Neurobiol Dis. 2022 Jun;167:105667.
- Walsh HJ, Junejo RT, Lip GYH, Fisher JP. The effect of hypertension [34] on cerebrovascular carbon dioxide reactivity in atrial fibrillation patients. Hypertens Res. 2024 Jun;47(6):1678-87.
- [35] Yang S, Park JH, Lu HC. Axonal energy metabolism, and the effects in aging and neurodegenerative diseases. Mol Neurodegener. 2023 Jul:18(1):49.
- [36] Li Y, Xiao Y, Liu C. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther. 2023 May;8(1):152.
- Thakur AK, Tyagi S, Shekhar N. Comorbid brain disorders asso-[37] ciated with diabetes: therapeutic potentials of prebiotics, probiotics and herbal drugs. Transl Med Commun. 2019 Dec:4(1):1-4.
- [38] Kowalczyk P, Samczuk P, Charkiewicz K, Wołczyński S, Zaręba K, Zabielski P, et al. Mitochondrial oxidative stress-a causative factor and therapeutic target in many diseases. Int J Mol Sci. 2021 Dec;22(24):13444.
- [39] Zalouli V, Tsilifis V, Karamichos D, Zisimopoulou V, Katz S, Lazaris AC, et al. Adult hippocampal neurogenesis (AHN) controls central nervous system and promotes peripheral nervous system regeneration via physical exercise. Biomed Pharmacother. 2023 Sep;165:115078.
- [40] Wang K, Zhu Q, Yao S, Yao Y. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct Target Ther. 2022 Oct;7(1):374.
- [41] Kandilya D, Maskomani S, Shyamasundar S, Tambyah PA, Shiao Yng C, Lee YK, et al. High glucose alters the DNA methylation pattern of neurodevelopment associated genes in human neural progenitor cells in vitro. Sci Rep. 2020 Sep;10(1):15676.
- [42] Suarez R, Vidal-Gómez X, Moreno-Castellanos N, Frühbeck G, Catalán V. Epigenetics in obesity and diabetes mellitus: New insights. Nutrients. 2023 Feb;15(4):933.

- [43] Natarajan R. Epigenetic mechanisms in diabetic vascular complications and metabolic memory: The 2020 Edwin Bierman Award Lecture. Diabetes. 2021 Feb;70(2):328-37.
- [44] Bair MJ, Robinson RL, Katon W, Kroenke K. Depression and pain comorbidity: a literature review. Arch Intern Med. 2003 Nov;163(20):2433-45.
- Bozkurt B, Aguilar D, Deswal A, Dunbar SB, Francis GS, Horwich T, [45] et al. Contributory risk and management of comorbidities of hypertension, obesity, diabetes mellitus, hyperlipidemia, and metabolic syndrome in chronic heart failure: a scientific statement from the american heart association. Circulation. 2016 Dec;134(23):e535-78.
- Correia AS, Cardoso A, Vale N. Oxidative stress in depression: the link with the stress response, neuroinflammation, serotonin. neurogenesis and synaptic plasticity. Antioxid (Basel). 2023 Jan;12(2):337.
- [47] Kim YK, Kim OY, Song J. Alleviation of depression by glucagon-like peptide 1 through the regulation of neuroinflammation, neurotransmitters, neurogenesis, and synaptic function. Front Pharmacol. 2020 Aug;11:1270.
- [48] Ho N, Sommers MS, Lucki I. Effects of diabetes on hippocampal neurogenesis: links to cognition and depression. Neurosci Biobehav Rev. 2013 Sep;37(8):1346-62.
- [49] Kim HG. Cognitive dysfunctions in individuals with diabetes mellitus. Yeungnam Univ J Med. 2019 Sep;36(3):183-91.
- [50] Dybjer E, Nilsson PM, Engström G, Helmer C, Nägga K. Pre-diabetes and diabetes are independently associated with adverse cognitive test results: a cross-sectional, population-based study. BMC Endocr Disord. 2018 Nov;18(1):91.
- [51] Aderinto N, Adebayo PB, Abiodun OA, Umuerri EM, Akinyemi RO, Owolabi MO. The impact of diabetes in cognitive impairment: A review of current evidence and prospects for future investigations. Medicine (Baltimore). 2023 Oct;102(43):e35557.
- **[521** Mitsea E, Drigas A, Skianis C. Well-being technologies and positive psychology strategies for training metacognition, emotional intelligence and motivation meta-skills in clinical populations: a systematic review. Psych. 2024 Mar;6(1):305-44.
- Murai T, Johensin HK, Fischer W, Zimprich A, Kummer MP, Heckmann M, et al. Improving preclinical to clinical translation of cognitive function for aging-related disorders: the utility of comprehensive touchscreen testing batteries in common marmosets. Cogn Affect Behav Neurosci. 2024 Mar;24(2):325-48.
- Γ**54**1 Goyal P, Choi JO, Grigorian L, Dunlay SM, Lindman BR, Levy WC, et al. Cognitive impairment in heart failure: a heart failure society of America scientific statement. J Card Fail. 2024 Mar;30(3):488-504.
- [55] Sommerfield AJ, Deary IJ, McAulay V, Frier BM. Short-term, delayed, and working memory are impaired during hypoglycemia in individuals with type 1 diabetes. Diabetes Care. 2003 Feb;26(2):390-6.
- Babler E, Strickland CJ. Moving the journey towards indepen-[56] dence: Adolescents transitioning to successful diabetes selfmanagement. J Pediatr Nurs. 2015 Sep-Oct;30(5):648-60.
- Kneck A, Klang B, Fagerberg I. Learning to live with illness: [57] experiences of persons with recent diagnoses of diabetes mellitus. Scand J Caring Sci. 2011 Sep;25(3):558-66.
- Lutz ND, Ngo HVV, Born J, Rasch B, Diekelmann S. Sleep shapes the associative structure underlying pattern completion in multielement event memory. Proc Natl Acad Sci U S A. 2024 Feb;121(9):e2314423121.

- [59] Zhao Q, Roberts RO, Ding D, Cha RH, Guo Q, Meng HJ, et al. Executive function and diabetes: a clinical neuropsychology perspective. Front Psychol. 2020 Sep;11:2112.
- [60] Vincent C, Hall PA. Executive function in adults with type 2 diabetes: a meta-analytic review. Psychosom Med. 2015 Jul-Aug;77(6):631-42.
- [61] Yun HS, Kim HS, Woo JH, Chung YJ, Oh SJ, Park HD, et al. Diabetes reduces the cognitive function with the decrease of the visual perception and visual motor integration in male older adults. J Exerc Rehabil. 2013 Oct;9(5):470-6.
- [62] Di Rosa M, Zucchelli A, Brunori M, Malara A, Abbatecola AM, Fumagalli S, et al. Cognitive impairment, chronic kidney disease, and 1-year mortality in older patients discharged from acute care hospital, I Clin Med. 2020 Jul:9(7):2174.
- [63] Dickinson JK, Guzman SJ, Maryniuk MD, O'Brian CA, Kadohiro JK, Jackson RA, et al. The use of language in diabetes care and education. Diabetes Care. 2017 Dec;40(12):1790-9.
- [64] Okrainec K, Booth GL, Hollands S, Bell CM. Impact of language barriers on complications and mortality among immigrants with diabetes: a population-based cohort study. Diabetes Care. 2015 Feb:38(2):189-96.
- [65] Dickinson JK, Guzman SJ, Wooldridge JS. The emotional impact of negative language in people with diabetes: a descriptive study using a semantic differential scale. Sci Diabetes Self Manag Care. 2023 Jun;49(3):193-205.
- Dickinson JK. Commentary: The effect of words on health and [66] diabetes. Diabetes Spectr. 2017 Feb;30(1):11-6.
- [67] Zilliox LA, Chadrasekaran K, Kwan JY, Russell JW. Diabetes and cognitive impairment. Curr Diab Rep. 2016 Sep;16(9):87.
- [68] Zhang S, Jin Y, Chen J, Liu Y, Zhang X, Zhang X. Cognitive dysfunction in diabetes: abnormal glucose metabolic regulation in the brain. Front Endocrinol (Lausanne). 2023 Aug;14:1192602.
- [69] Al-Shehaili SM. Altoonisi MM. Al-Shammari LT. Alzahrani AY. Abdulaal MH, Alshammari AS, et al. The effect of poor glycemic control on cognitive function in children and adolescents with type 1 diabetes mellitus: A single-center cross-sectional study (2019-2020). Saudi Med J. 2023 Oct;44(10):1006-12.
- [70] Kawamura T, Umemura T, Hotta N. Curious relationship between cognitive impairment and diabetic retinopathy. J Diabetes Investiq. 2015 Jan;6(1):21-3.
- [71] Horton WB, Barrett EJ. Microvascular dysfunction in diabetes mellitus and cardiometabolic disease. Endocr Rev. 2021 Ian:42(1):29-55.
- [72] Gupta M, Bali P, Salama M, Rossner Jr P, Vasudevan S, Navarro-Yepes J, et al. Molecular mechanisms underlying hyperglycemia associated cognitive decline. IBRO Neurosci Rep. 2023 Jun;14:57-63.
- [73] Chen P, Yu X, Li Q, Cao X, Tan X, Liu X, et al. Cognition, educational attainment and diabetes distress predict poor health literacy in diabetes: A cross-sectional analysis of the SHELLED study. PLoS One. 2022 Apr;17(4):e0265265.
- [74] Hill-Briggs F, Adler NE, Berkowitz SA, Chin MH, Gary-Webb TL, Navas-Acien A, et al. Social determinants of health and diabetes: a scientific review. Diabetes Care. 2021 Jan;44(1):258-79.
- [75] Berkowitz SA, Karter AJ, Lyles CR, Liu JY, Schillinger D, Adler NE, et al. Low socioeconomic status is associated with increased risk for hypoglycemia in diabetes patients: the Diabetes Study of Northern California (DISTANCE). J Health Care Poor Underserved. 2014 May;25(2):478-90.

- [76] Santisteban MM, Iadecola C, Carnevale D. Hypertension, neurovascular dysfunction, and cognitive impairment. Hypertension. 2023 Jan;80(1):22-34.
- [77] Yu Y, Ma X, Guo Y, Wang Y, Shen M, Chen Z, et al. Correlation between serum lipid profiles and cognitive impairment in old age: a cross-sectional study. Gen Psychiatr. 2023 Mar;36(2):e101009.
- [78] Gorska-Ciebiada M. Sarvusz-Wolska M. Ciebiada M. Loba I. Mild cognitive impairment and depressive symptoms in elderly patients with diabetes: prevalence, risk factors, and comorbidity. | Diabetes Res. 2014;2014:179648.
- Elliott R, Zahn R, Deakin JF, Anderson IM. Affective cognition and its disruption in mood disorders. Neuropsychopharmacology. 2011 lan:36(1):153-82.
- [80] Tan BL, Norhaizan ME. Effect of high-fat diets on oxidative stress, cellular inflammatory response and cognitive function. Nutrients. 2019 Nov;11(11):2579.
- [81] Feter N, Caputo EL, Smith EC, Barbosa LP, Leite JS, Doring IR, et al. Leisure-time physical activity may attenuate the impact of diabetes on cognitive decline in middle-aged and older adults: findings from the ELSA-brasil study. Diabetes Care. 2024 Mar;47(3):427-34.
- [82] Restifo D, Plataniotis C, Katsoulis M, Nazarzadeh M, Archangelidi O, Mantzari E, et al. Impact of cigarette smoking and its interaction with hypertension and diabetes on cognitive function in older Americans. J Alzheimers Dis. 2022;90(4):1705-12.
- Wei YC, Yang YW, Hsu YH, Cheng WY, Wu CL, Wang WF. Normative [83] data of mini-mental state examination, montreal cognitive assessment, and Alzheimer's disease assessment scale-cognitive subscale of community-dwelling older adults in Taiwan. Dement Geriatr Cogn Disord. 2022;51(4):365-76.
- Tsoi KK, Chan JY, Hirai HW, Wong SY, Kwok TC. Cognitive tests to detect dementia: a systematic review and meta-analysis. JAMA Intern Med. 2015 Sep;175(9):1450-8.
- [85] Zucchella C, Federico A, Martini A, Tinazzi M, Bartolo M, Tamburin S. Neuropsychological testing. Pract Neurol. 2018
- Aderinto N, Adebayo PB, Amusan SA, Owolabi MO. The essential role of neuroimaging in diagnosing and managing cerebrovascular disease in Africa: a review. Ann Med. 2023 Dec;55(2):2251490.
- Zhang Y, Schuff N, Ching C, Tosun D, Zhan W, Nezamzadeh M, [87] et al. Joint assessment of structural, perfusion, and diffusion MRI in Alzheimer's disease and frontotemporal dementia. Int J Alzheimers Dis. 2011;2011:546871.
- Chanraud S, Zahr N, Sullivan EV, Pfefferbaum A. MR diffusion [88] tensor imaging: a window into white matter integrity of the working brain. Neuropsychol Rev. 2010 Jun;20(2):209-25.
- [89] Rundek T, Della-Morte D, Gardener H, Dong C, Markert MS, Gutierrez J, et al. Vascular cognitive impairment (VCI). Neurotherapeutics. 2022 Jan;19(1):68-88.
- [90] Ghosh A. Endocrine, metabolic, nutritional, and toxic disorders leading to dementia. Ann Indian Acad Neurol. 2010 Dec;13(Suppl
- [91] Chen X, Miao J, Wang H, Gao Z, Cheng W, Wu Y, et al. Hyperoside attenuates neuroinflammation, cognitive impairment and oxidative stress via suppressing TNF-alpha/NF-kappaB/caspase-3 signaling in type 2 diabetes rats. Nutr Neurosci. 2022 Aug;25(8):1774-84.

- [92] Kawamura T, Umemura T, Hotta N. Cognitive impairment in diabetic patients: Can diabetic control prevent cognitive decline? J Diabetes Investig. 2012 Oct 18;3(5):413-23.
- [93] Jacobson AM, Ryan CM, Braffett BH, Gubitosi-Klug RA, Lorenzi GM, Luchsinger JA, et al. Cognitive performance declines in older adults with type 1 diabetes: results from 32 years of follow-up in the DCCT and EDIC Study. Lancet Diabetes Endocrinol. 2021 Jul:9(7):436-45.
- [94] Jiao T, Bhatt DL, Tsujita K, Inzucchi SE, Chiang CE, Wong ND, et al. Some patients with type 2 diabetes may benefit from intensive glycaemic and blood pressure control: A post-hoc machine learning analysis of ACCORD trial data. Diabetes Obes Metab. 2024 Apr;26(4):1502-9.
- Suh SW, Gum ET, Hamby AM, Chan PH, Swanson RA. Hypoglycemic [95] neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. J Clin Invest. 2007 Apr;117(4):910-8.
- Marchand NE, Jensen MK. The role of dietary and lifestyle factors [96] in maintaining cognitive health. Am J Lifestyle Med. 2018 Apr;12(4):268-85.
- [97] Santos-Buelga C, Gonzalez-Manzano S, Gonzalez-Paramas AM. Wine, polyphenols, and mediterranean diets. What else is there to say? Molecules. 2021 Sep;26(18):5537.
- [98] Scoditti E, Tumolo MR, Garbarino S. Mediterranean diet on sleep: a health alliance. Nutrients. 2022 Jul;14(14):2806.
- [99] Robinson JG, Ijioma N, Harris W. Omega-3 fatty acids and cognitive function in women. Womens Health (Lond). 2010 Jan;6(1):119-34.
- [100] Zhao RR, O'Sullivan AJ, Fiatarone Singh MA. Exercise or physical activity and cognitive function in adults with type 2 diabetes, insulin resistance or impaired glucose tolerance: a systematic review. Eur Rev Aging Phys Act. 2018 Jan;15:1.
- Kirwan JP, Sacks J, Nieuwoudt S. The essential role of exercise in the management of type 2 diabetes. Cleve Clin J Med. 2017 Jul;84(7 Suppl 1):S15-21.
- [102] Hoffmann CM, Petrov ME, Lee RE. Aerobic physical activity to improve memory and executive function in sedentary adults without cognitive impairment: A systematic review and metaanalysis. Prev Med Rep. 2021 Jun;23:101496.
- [103] Zou L, Sasaki JE, Wei GX, Huang T, Yeung AS, Neto OB, et al. Effects of mind(-)body exercises (Tai Chi/Yoga) on heart rate variability parameters and perceived stress: A systematic review with metaanalysis of randomized controlled trials. J Clin Med. 2018 Oct;7(11):404.
- [104] Kivipelto M, Mangialasche F, Ngandu T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat Rev Neurol. 2018 Nov;14(11):653-66.
- [105] Yeh YK, Yen FS, Hwu CM. Diet and exercise are a fundamental part of comprehensive care for type 2 diabetes. J Diabetes Investig. 2023 Aug;14(8):936-9.
- [106] Russ TC, Morling JR. Cholinesterase inhibitors for mild cognitive impairment. Cochrane Database Syst Rev. 2012 Sep;2012(9):CD009132.
- [107] Chen Q, Mo R, Wu N, Zou X, Shi C, Gong J, et al. Repurposing of anti-diabetic agents as a new opportunity to alleviate cognitive impairment in neurodegenerative and neuropsychiatric disorders. Front Pharmacol. 2021 Apr;12:667874.
- [108] Dama A, Stabile E, Di Stefano R, Carnevale R, Cammisotto V, Chimenti I, et al. Targeting metabolic diseases: the role of nutraceuticals in modulating oxidative stress and inflammation. Nutrients. 2024 Feb;16(4):671.

- [109] Ebert O, Freckmann G, Hinzmann R, Kronsbein P, Kulzer B, Lange K, et al. Diabetes and road traffic. Exp Clin Endocrinol Diabetes. 2024 Sep;132(9):481–96.
- [110] Sugandh F, Ullah S, Azeem S, Azeem A, Ahsan A, Qureshi IA, et al. Advances in the management of diabetes mellitus: a focus on personalized medicine. Cureus. 2023 Aug;15(8):e43697.
- [111] Son JW, Nam SH. Basic management strategies by life cycle for treatment of the persons with autism spectrum disorder. Soa Chongsonyon Chongsin Uihak. 2024 Jan;35(1):22–8.
- [112] Zhang LX, Acevedo-Rodríguez A, Wang H, Gong Z, Jiang M, Li Y, et al. Resveratrol (RV): A pharmacological review and call for further research. Biomed Pharmacother. 2021 Nov;143:112164.
- [113] Nair PG, Nair P, Dixit AK. The importance and scope of medicinal plants suggested in traditional medicine in the holistic care of occupational lifestyle disorders with special mention to insulin resistance associated clinical syndromes. In: Dhara AK, Mandal SC, editors. Role of herbal medicines: Management of lifestyle diseases. Singapore: Springer Nature Singapore; 2023. p. 13–32.
- [114] Sedzikowska A, Szablewski L. Insulin and insulin resistance in Alzheimer's disease. Int | Mol Sci. 2021 Sep;22(18):10005.
- [115] Cholerton B, Baker LD, Craft S. Type 2 diabetes, cognition, and dementia in older adults: Toward a precision health approach. Diabetes Spectr. 2016 Nov;29(4):210–9.
- [116] Gaddam M, Samra T, Venkatesh K, Samanta S, Pokhriyal P, Yadav S. A comprehensive review of intranasal insulin and its effect on the cognitive function of diabetics. Cureus. 2021 Aug;13(8):e17219.
- [117] Tian A, Xing L, Luo J, Zhang Z, Xia Y, Wang X, et al. Krill oil attenuates diabetes-associated cognitive dysfunction by inhibiting microglial polarization-induced neuron injury. J Funct Foods. 2024 Mar;114:106064.
- [118] Jomova K, Hudecova L, Lauro P, Simunkova M, Alwasel SH, Alhazza IM, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol. 2023 Oct;97(10):2499–574.
- [119] Mazzanti G, Di Giacomo S. Curcumin and resveratrol in the management of cognitive disorders: what is the clinical evidence? Molecules. 2016 Sep;21(9):1243.
- [120] Papagiouvannis G, Xanthos T, Chalimourdas A, Iacovidou N, Rekka EA. Multi-target directed compounds with antioxidant and/

- or anti-inflammatory properties as potent agents for Alzheimer's disease. Med Chem. 2021;17(10):1086–103.
- [121] Grezenko H, Calheiros BM, Fernandes DK, Noriega RJ. Epigenetics in neurological and psychiatric disorders: a comprehensive review of current understanding and future perspectives. Cureus. 2023 Aug;15(8):e43960.
- [122] Singh R, Lakhanpal D, Kumar S, Sharma S, Kataria H, Kaur M, et al. Epigenetic modification and therapeutic targets of diabetes mellitus. Biosci Rep. 2020 Sep;40(9):BSR20202160.
- [123] Bagheri-Mohammadi S. Protective effects of mesenchymal stem cells on ischemic brain injury: therapeutic perspectives of regenerative medicine. Cell Tissue Bank. 2021 Jun;22(2):249–62.
- [124] Sivandzade F, Cucullo L. Regenerative stem cell therapy for neurodegenerative diseases: an overview. Int J Mol Sci. 2021 Feb;22(4):2044.
- [125] Akter S, Kim YS, Suresh P, Gyawali P, Park JH, Chung HJ, et al. Stem cell therapy in diabetic polyneuropathy: recent advancements and future directions. Brain Sci. 2023 Jan;13(2):260.
- [126] Jastrzębski MK, Kocyk M, Kaźmierska P, Bujko K, Kujawski S, Szulc-Dąbrowska L, et al. Effects of small molecules on neurogenesis: Neuronal proliferation and differentiation. Acta Pharm Sin B. 2024 Jan;14(1):20–37.
- [127] Sasikumar P, Aswathy M, Prem PT, Radhakrishnan KV, Chakrapani PS. Plant derived bioactive compounds and their potential to enhance adult neurogenesis. Phytomed Plus. 2022 Feb;2(1):100191.
- [128] Goonoo N, Bhaw-Luximon A. Mimicking growth factors: role of small molecule scaffold additives in promoting tissue regeneration and repair. RSC Adv. 2019 Jun;9(32):18124–46.
- [129] Key MN, Szabo-Reed AN. Impact of diet and exercise interventions on cognition and brain health in older adults: a narrative review. Nutrients. 2023 May;15(11):2603.
- [130] Stoeckel LE, Arvanitakis Z, Gandy S, Small D, Kahn CR, Pascual-Leone A, et al. Complex mechanisms linking neurocognitive dysfunction to insulin resistance and other metabolic dysfunction. F1000Research. 2016 Mar;5:353.
- [131] Moheet A, Mangia S, Seaquist ER. Impact of diabetes on cognitive function and brain structure. Ann N Y Acad Sci. 2015 Sep;1353:60–71.
- [132] Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol. 2018 Oct;14(10):591–604.