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Abstract: Studies have suggested that the progress of most
kidney diseases from occurrence to course and subsequent
related complications are closely related to inflammatory
reaction. Increased common leukocytes count in the family
(neutrophils, eosinophils, basophils, lymphocytes, etc.) are
also involved in the tissue damage of kidney diseases.
However, these studies are only traditional observational
studies, which cannot prove whether there is a causal rela-
tionship between these four kinds of leukocytes count and
kidney diseases. We aim to explore the causal relationship
between these four kinds of leukocytes count and kidney
diseases by Mendelian randomization (MR). Large sample
size of the genome-wide association database of four cell
traits (neutrophil, basophil, lymphocyte, and eosinophil
cell counts) in the leukocyte family were used as exposure
variables. The outcome variables were various renal dis-
eases (including chronic renal failure, acute renal failure,
hypertensive heart or/and kidney disease, hypertensive
renal disease, disorders resulting from impaired renal tub-
ular function, and type 1 diabetes with renal complica-
tions). The covariates used in multivariable MR are also
four cell traits related to blood cells (neutrophil, basophil,

lymphocyte, and eosinophil cell counts). Instrumental vari-
ables and single nucleotide polymorphic loci were identi-
fied (P < 5 × 10−8. Linkage disequilibrium R2 < 0.001). The
causal relationships were studied by inverse variance
weighted (IVW), weighted median, and MR-Egger regres-
sion. Sensitivity analysis was also performed. In our study,
IVW analysis results showed that increased neutrophil cell
count was a risk factor for chronic renal failure (OR =

2.0245861, 95% CI = 1.1231207–3.649606, P = 0.01896524),
increased basophil cell count was a risk factor for chronic
renal failure (OR = 3.975935, 95% CI = 1.4871198–10.62998,
P = 0.005942755). Basophil cell count was not a risk factor
for acute renal failure (OR = 1.160434, 95% CI = 0.9455132–1.424207,
P = 0.15448828). Increased basophil cell count was a protective
factor for hypertensive heart and/or renal disease (OR = 0.7716065,
95% CI = 0.6484979–0.9180856, P = 0.003458707). Increased
basophil cell count was a risk factor for disorders resulting
from impaired renal tubular function (OR = 1.648131, 95%
CI = 1.010116–2.689133, P = 0.04546835). Increased lympho-
cyte cell count was a risk factor for hypertensive renal disease
(OR = 1.372961, 95% CI = 1.0189772–1.849915, P = 0.03719874).
Increased eosinophil cell count was a risk factor for type 1
diabetes with renal complications (OR = 1.516454, 95% CI =
1.1826453–1.944482, P = 0.001028964). Macrophage inflamma-
tory protein 1b levels was a protective factor for renal failure
(OR = 0.9381862, 95% CI = 0.8860402–0.9934013, P = 0.02874872).
After multivariable MR was used to correct covariates (neutro-
phil, basophil, and lymphocyte cell counts), the correlation
effect between increased eosinophil cell counts and type 1
diabetes with renal complications was still statistically signifi-
cant (P = 0.02201152). After adjusting covariates (neutrophil,
basophil, and eosinophil cell counts) with multivariable
MR, the correlation effect between increased lymphocyte
cell counts and hypertensive renal disease was still statisti-
cally significant (P = 0.02050226). This study shows that
increased basophils can increase the relative risk of chronic
renal failure and renal tubular dysfunction, and reduce the
risk of hypertensive heart disease and/or hypertensive nephro-
pathy, while increased basophil cell count will not increase the
relative risk of acute renal failure, increased neutrophil cell
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count can increase the risk of chronic renal failure, increased
lymphocyte cell count can increase the relative risk of hyper-
tensive nephropathy, and increased eosinophil cell count can
increase the relative risk of type 1 diabetes with renal compli-
cations. Macrophage inflammatory protein 1b levels was a
protective factor for renal failure.

Keywords: neutrophil, basophil, lymphocyte, eosinophil,
macrophages, kidney disease, Mendelian randomization

1 Introduction

According to the data from the American Society of
Nephrology, the European Renal Society-European Dialysis
and Transplantation Society, and the International Society
of Nephrology, at least 850 million people worldwide are
suffering from kidney diseases. In recent years, kidney dis-
eases have gradually separated from the impression of the
so-called “geriatrics,” and the trend of youth is becoming
increasingly obvious [1]. There are many clinical classifica-
tions of kidney diseases, including acute renal failure,
chronic renal failure, hypertensive renal disease, diabetes
with renal complications, and kidney disease caused by
renal tubular dysfunction. All of the above diseases can
lead to renal failure. Renal failure is a slow decline in renal
function based on various chronic kidney diseases. With the
progress of the disease, end-stage renal disease (ESRD) is
gradually formed [2]. Tracing back to the origin of the basic
disease of renal failure, chronic glomerulonephritis is the
most common primary disease, and the pathogenesis of
chronic glomerulonephritis is mainly immune-mediated
inflammatory damage, that is, immune complexes stimu-
late monocytes to produce interleukin (IL)-1, IL-6, TNF- α
and other inflammatory cytokines, causing inflammatory
pathological damage to the kidney [3]. Secondary kidney
disease is common in hypertensive nephropathy and dia-
betic nephropathy. Clinical observation has confirmed the
inflammatory indicators C-reactive protein (CRP) and TNF-
α. The level is significantly increased in patients with hyper-
tensive nephropathy and diabetes nephropathy, so in
essence, hypertensive nephropathy and diabetes nephro-
pathy are inflammatory diseases caused by metabolic dis-
order [4]. With the progression of chronic renal failure, the
level of CRP, and TNF-α in patients’ serum are showing an
up ward trend. The content of inflammatory biomarkers
such as IL-6 will increase significantly, so even if an exo-
genous infection is not combined, chronic renal failure dis-
ease itself can cause the inflammatory reaction in the body
[5]. These findings suggest that the progress of most kidney
diseases from the occurrence to the course of the disease

and the subsequent occurrence of related complications are
closely related to the inflammatory reaction.

The common cells in immune cells include neutro-
phils, eosinophils, basophils, lymphocytes, macrophages,
etc. The role of immune cells in the body’s resistance to
infection and removal of foreign bodies has long been
recognized. However, in recent years, studies have found
that the increase in the number of immune cells is also
involved in the tissue damage in kidney diseases [6], but
these studies are only traditional observational studies, it
cannot be proven whether there is a causal relationship
between different immune cells and kidney disease. We
have conducted research on this issue.

In traditional observational studies, potential con-
founding and reverse causality will affect their causal infer-
ence ability [7]. Mendelian randomization (MR) is a type of
instrumental variable (IV) analysis, which uses genetic var-
iation as IV to detect and quantify causality [8]. In recent
years, the MR research method has been more and more
widely used in observational research because it can over-
come the influence of potential confounding and reverse
causality [9]. Early MR method research is usually con-
ducted in a small sample population, and only a small
amount of genetic variation is used [10], which makes the
effectiveness of MR research low. However, with the dis-
covery of a large number of genetic variations closely
related to specific traits in the biological community, and
the public release of hundreds of thousands of data on the
relationship between exposure and disease and genetic var-
iation [11] by many large samples of genome-wide associa-
tion studies (GWAS) [12], a revolution has taken place in this
field. These aggregated data enable researchers to estimate
the genetic association in large sample data, thus promoting
the development of MR research. In recent years, the meth-
odology in this field has also been rapidly updated. The new
method overcomes some specific limitations of the tradi-
tional MRmethod [13]. This study uses univariate and multi-
variate MR methods to analyze the summary data of the
GWAS, and explores the causal relationship between dif-
ferent immune cells and different kidney diseases.

1.1 IV analysis and MR hypothesis

MR is essentially consistent with the basic assumption of
IVs, but because MR regards genetic variation as IV, it has
some particularity in terms. Hypothesis 1: The generic vari-
ables are related to the exposure factors of interest. This
hypothesis is expressed in MR as a genetic variation asso-
ciated with (non-genetic) exposure of interest. In this
hypothesis, the correlation between genetic variants and

2  Lei Pang et al.



exposure factors is not necessarily a causal relationship. It
should be noted that when IV analysis is used in actual
research, genetic variants need to have a strong correlation
with exposure factors. When this correlation is weak, generic
variants are called “weak instruments.” These weak instru-
ments will cause great limitations to MR research. Hypothesis
2: Genetic variants are independent of confounders between
exposure factors and outcome factors. Genotypes in MR
should not be associated with confounding factors in the
exposure–outcome relationship. Although this assumption
is often difficult to prove directly, it can sometimes be falsified
by comparing the variation of the exposure–outcome rela-
tionship with the relationship between known confounding
factors [14]. Hypothesis 3: Generic variables have no direct
impact on outcome factors, but only affect the results by
exposing generic variables [15]. This hypothesis is also called
the exclusion limit criterion and the null hypothesis in MR. In
the past, it was difficult to prove this hypothesis in research,
but some methods developed in recent years can detect its
existence and unbiasedly estimate the causal effect of expo-
sure and outcome in violation of this hypothesis [16].

2 Data and methods

2.1 Data source and research design

This study used five cell traits among immune cells (neutro-
phils, basophils, lymphocytes, eosinophils, and macrophages)

as exposure variables Figure 1. The outcome variables were
various renal diseases (including chronic renal failure, acute
renal failure, hypertensive heart or/and kidney disease, hyper-
tensive renal disease, disorders resulting from impaired renal
tubular function, type 1 diabetes with renal complications, and
renal failure). The covariates used inmultivariableMR are also
four cell traits related to blood cells (neutrophil, basophil,
lymphocyte, and eosinophil cell counts). All the above data
are from the website (https://gwas.mrcieu.ac.uk/datasets). The
above GWAS data are from the European population, and their
brief information is shown in Tables 1 and 2.

2.2 Data sorting

To avoid bias caused by strong linkage disequilibrium (LD)
between single nucleotide polymorphisms (SNPs) in MR
analysis, SNPs that are independent of each other and
have genome-wide significance in association with four
different cell types are selected from the database as IVs.
The screening criteria are: (1) With the whole gene informa-
tion of the European 1000 Genome Project as a reference, four
cell traits have genome-wide significance (P < 5 × 10−8); (2)
Physical distance between two genes >10,000 kb; (3) The R2

threshold of LD between genes was <0.01 [17]. Table 3 shows
the basic information about some SNPs associated with baso-
phil cell count. From Figure 2, we can see the chr sites in SNPs
of different phenotypes).

Figure 1: Study design and workflow of MR study.
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2.3 Statistical treatment

2.3.1 Principal analysis method

2.3.1.1 Inverse variance weighted (IVW)
The inverse variance weighting method is the standard
method for MR data aggregation [18]. It does not require

individual-level data, and can directly use summary data to
calculate the causal effect value. In the data using multiple
genetic variations as IVs, for the jth IV, if the relevant
assumptions of IVs are met, the relevant assumptions of
IVs are satisfied, the estimated value βˆj of the causal effect
of exposure on the results is the ratio of the estimated value
Γˆj of the correlation between the jth genetic variation and

Table 1: Brief description of the GWAS used in this study (exposure)

GWAS ID Year Trait Consortium Sample size Number of SNPs

ieu-b-29 2020 Basophil cell count Blood cell consortium 563,946 —

ieu-b-34 2020 Neutrophil cell count Blood cell consortium 563,946 —

ieu-b-32 2020 Lymphocyte cell count Blood cell consortium 563,946 —

ieu-b-33 2020 Eosinophil cell count Blood cell consortium 563,946 —

ebi-a-GCST004433 2016 Macrophage inflammatory protein 1b levels NA 8,243 9,802,973

Table 2: Brief description of the GWAS data used in this study (outcome)

GWAS ID Year Trait Consortium Sample size Number of SNPs

ukb-e-N18_AFR 2020 Chronic renal failure NA 6,636 15,240,712
finn-b-N14_ACUTERENFAIL 2021 Acute renal failure NA — 16,380,456
finn-b-I9_HYPTENSHR 2021 Hypertensive heart and/or renal disease NA — 16,380,199
finn-b-I9_HYPTENSRD 2021 Hypertensive renal disease NA — 16,380,163
finn-b-N14_DISIMPAIRRENTUB 2021 Disorders resulting from impaired renal tubular

function
NA — 16,380,463

finn-b-E4_DM1REN 2021 Type 1 diabetes with renal complications NA — 16,380,334
finn-b-N14_RENFAIL 2021 Renal failure NA — 16,380,466

Table 3: Basic information on some SNPs associated with basophil cell count

SNP EA OA Beta eaf chr pos se p val

rs10006833 C T −0.01561 0.209061 4 9,953,097 0.002521 6.22 × 10−10

rs10734121 A G −0.02543 0.845295 11 89,656,239 0.002837 3.28 × 10−19

rs10746147 G A −0.0224 0.926163 12 80,316,758 0.003927 1.20 × 10−8

rs10835333 G A 0.014555 0.349229 11 3,957,766 0.002161 1.68 × 10−11

rs10844657 T C 0.012373 0.339731 12 9,893,213 0.002168 1.18 × 10−8

rs1086893 C T 0.029865 0.343174 1 2.13 × 108 0.002162 2.41 × 10−43

rs10883359 G A −0.01313 0.284616 10 1.01 × 108 0.002268 7.30 × 10−9

rs10906375 G A −0.01249 0.300993 10 13,498,371 0.002234 2.29 × 10−8

rs10927074 C T 0.079216 0.892265 1 2.36 × 108 0.0033 3.00 × 10−127

rs11097787 T C −0.0145 0.402632 4 1.03 × 108 0.002087 3.83 × 10−12

rs7819602 G C 0.016196 0.612901 8 10,726,842 0.002115 1.98 × 10−14

rs7832357 G A −0.01543 0.342269 8 1.27 × 108 0.002158 8.90 × 10−13

rs79140637 A G −0.02748 0.054158 2 65,084,123 0.004583 2.09 × 10−9

rs8113682 G T −0.02161 0.747423 19 19,743,730 0.002364 6.41 × 10−20

rs875740 A C −0.01794 0.665329 16 16,123,048 0.002172 1.52 × 10−16

rs905670 A G −0.01431 0.350304 6 90,958,502 0.002142 2.49 × 10−11

rs915125 T C −0.02925 0.281093 6 82,463,376 0.002288 2.18 × 10−37

rs9274351 A T 0.019736 0.196595 6 32,632,425 0.002822 2.79 × 10−12

rs9376098 A T 0.023167 0.349186 6 1.35 × 108 0.002147 4.15 × 10−27

rs9928015 T G −0.01499 0.302009 16 57,570,561 0.002233 2.01 × 10−11
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Figure 2: Manhattan map of chromosome locus in SNPs with different phenotypes. (a) Eosinophil cell count on type 1 diabetes with renal
complications, (b) basophil cell count on chronic renal failure, (c) neutrophil cell count on chronic renal failure, (d) basophil cell count on acute renal
failure, (e) basophils cell count on hypertensive heart and/or renal disease, (f) lymphocyte cell count on hypertensive renal disease, and (g) basophils
cell count on disorders resulting from impaired renal tubular function.
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the results and its estimated value γ̂j of the correlation with
exposure [19], namely,
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If the genetic variation is uncorrelated (non-LD), the esti-
mated values corresponding to each genetic variation can be
summed into a weighted estimate of the whole, namely,
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association of the jth IV. If there is no correlation between
genetic variables, the estimated value of IVW is equal to
the estimated value of two-stage least square method for indi-
vidual-level data [20]. However, like all IV methods, IVW
methods are also vulnerable to weak instrumental bias. A
simulation study shows that the weak instrumental bias level
of IVW method is the same as that of two-stage least square
method, and its size can be quantified by F statistics [21].

2.3.2 MR-Egger regression

MR-Egger regression is a method proposed in recent years
to detect and adjust the pleiotropy of MR analysis. In this
method, given a group of genetic variations, first, the corre-
lation Γˆj between each genetic variation and the results and
the correlation γ̂j between genetic variation and exposure
are estimated, and then the linear function is fitted [22].
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of the causal effect of exposure
on the results can be calculated using the following formula:
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The intercept estimate βˆ
0E

of MR-Egger regression is
the average of the estimates of the multiple effects of each
genetic variation. MR-Egger method relaxed the require-
ment that there are no multiple validities between genetic
variations in IVWmethod. It assumes that the instrumental
exposure and instrumental outcome associations are inde-
pendent. This is called the instrument strength dependent
on direct effect (InSIDE) hypothesis [23], which is relatively
weak compared with the strict exclusion limit standard.
However, both IVW and MR-Egger regression methods the-
oretically need to assume that the gene variation exposure
association is a measurement error (NOME) [24]. The cost of

MR-Egger’s relaxation of the multiple validity hypothesis is
that it violates the NOME hypothesis, resulting in greater
bias than the IVW estimate, and is particularly vulnerable
to the impact of weak instrumental bias [25]. In addition, MR
Egger regression can detect pleiotropy only when gene
pleiotropy has directionality (that is, pleiotropy has a non-
zero mean value) [26]. Because only in this case can β

0E

be a
non-zero value. For example, when all genetic variations
show pleiotropy but their directions are different, and
they offset each other at the average level (this situation is
called balanced pleiotropy [27]), MR-Egger regression cannot
detect pleiotropy.

2.3.3 Median estimation

Median estimation includes simple median estimation,
weighted median estimation, and penalty-weighted median
estimation. Simple median estimation methods are very
easy to understand. Let βˆj represent the estimated value
of the exposure–outcome effect corresponding to the jth
genetic variation (from the smallest to the largest). If the
total number of genetic variations is an odd number
( )= +J k2 1 , the simplemedian estimate will take its median
value +βˆk 1

. If it is an even number ( )=J k2 , its estimated

value is ( )+ +β βˆ ˆ

k k

1

2
1

. We can understand a simple median
estimation as a weighted median estimation with the same
weight. However, this method is inefficient when the esti-
mation accuracy corresponding to different genetic varia-
tions varies greatly [28]. The weighted median estimation
considers the problem of the large difference in estimation
accuracy. In this method, let wj be the weight of the jth

genetic variation estimate, and let = ∑ =s wj k
J

k
1

be the sum
of the weights of j estimates (arranged from the smallest to
the largest). If normalized, sj equals 1, the weighted median
estimate is the estimate that pj equals 50%, here =pj

⎛
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j . Similar to the IVW method, the weight wj of

this method generally uses the inverse weight of variance
of each genetic variation [29]:
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It is worth noting that the simple median estimation
requires that at least 50% of the genetic variation is an
effective IV, while the weighted median estimation only
requires that at least 50% of the weight contributed by the
genetic variation is effective. Although the existence of an
invalid IV does not affect the asymptotic unbiasedness of the
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median estimate, it may cause bias in a limited sample.
When the estimation of invalid IV is unbalanced on both
sides of the real causal effect (for example, there are mul-
tiple invalid IVs in a study, and the estimated values of these
IVs are all greater or less than the real estimated values),
bias may occur. In this case, a penalty-weighted median
estimation can be used for correction to reduce the weight
of genetic variation with heterogeneous estimates. When
using this method, first the heterogeneity between estimates
is quantified with Cochran’s Q value [30]:

( )∑ ∑= = −Q Q w β βˆ ˆ

,

j
j

j

j j
2

where βˆ is the estimated value obtained by the IVW
method. Under the null hypothesis that all genetic variations
are valid IV and all variables can identify the same causal
relationship, Qj follows the chi-square distribution with a
degree of freedom of 1. Through this distribution, the P value
(expressed in qj) corresponding to theQj value of each genetic
variation is determined. Then, the weight is multiplied by the
P value and then by 20 (if the P value is greater than 0.05,
multiply by 1) to punish. Finally, the weight ( )wj

⁎ after collec-
tion and punishment are obtained [31]:

( )= ×w w qmin 1, 20 .j j j
⁎

2.3.4 Multivariate MR analysis

A multivariate MR method was used to correct covariates:
neutrophil, basophil, lymphocyte, and eosinophil cell counts,
and test whether they have an impact on the association
between exposure and different kidney diseases. SNPs used
as IVs in multivariate MR should meet the following condi-
tions: (1) SNPs are associated with all exposure factors in the
model; (2) the outcome variables will not be affected by other
ways; and (3) the number of SNPs is greater than the number
of exposure factors [32].

The above analysis was completed with R4.1.2 software.
MR-IVW, MR-WME, and MR-Egger are completed with R soft-
ware package TwoSampleMR, and MR-PRESSO and multi-
variate MR are completed with R software packages MR-
PRESSO and MR, respectively. The evaluation indexes were
odds ratio (OR) and 95% confidence interval (95% CI). P＜ 0.05
means the difference is statistically significant (bilateral) [33].

2.3.5 Cross-traits LD score regression

LD refers to the phenomenon in a population where the
frequency of simultaneous inheritance of two genes at

different loci is significantly higher than the expected
random frequency. The LD score reflects whether the bio-
logically related variant genes of two phenotypes are in a
high linkage imbalance state. LD score regression (LDSC) is
essentially a linear regression, with input data being GWAS
aggregated data. The Z-statistic of the genetic association
between each variant and phenotype 1 is multiplied by
the Z-statistic of the genetic association with phenotype 2,
and the product of this statistic is then regressed with the LD
score. The slope (coefficient) represents the genetic correla-
tion. This study evaluated the genetic correlation between
each phenotype using the recommended settings in the soft-
ware package LDSC (v1.0.1). This software package has been
widely used in most studies to identify genetic correlations
between complex phenotypes and diseases. This study used
European lineage information from the 1000 Genome Project
as a reference for linkage imbalance analysis, consistent with
the European ethnic origin of the GWAS sample.

3 Results

3.1 Two samples Mendelian randomized
study results

3.1.1 Determination of MR IVs

2391 SNPs that can effectively predict four different types of
leukocyte cells in the leukocyte family at the genome level
can be used as potential IVs. Considering that some SNPs
are in LD, MRBase is further used (https://mrcieu.github.io/
TwoSampleMR/) to estimate the LD between SNPs (LD R2 <
0.05). After the “LD lumped” step, 163 independent SNPs
that are not in linkage imbalance are excluded. Finally,
2,187 SNPs were selected as IVs for subsequent MR analysis.
The F-value is used to define “weak IV”, so the bias of IV is
minimized.

3.1.2 MR analysis results

3.1.2.1 Increased neutrophil cell count on chronic renal
failure

IVW analysis results showed that increased neutrophil cell
count was a risk factor for chronic renal failure (OR =

2.0245861, 95% CI = 1.1231207–3.649606, P = 0.01896524), and
similar results were obtained in weighted median (OR =

2.7653808, 95% CI = 1.0357616–7.383293, P = 0.04234353). MR-
Egger regression results showed that the intercept was

The causal relationship between immune cells and different kidney diseases  7

https://mrcieu.github.io/TwoSampleMR/
https://mrcieu.github.io/TwoSampleMR/


0.019347238 (close to 0), P = 0.19151, indicating that genetic
pleiotropy would not bias the results of this study.

3.1.2.2 Increased basophil cell count on chronic renal
failure

Mendelian randomized study of two samples showed that
increased basophil cell count was a risk factor for chronic
renal failure (OR = 3.975935, 95% CI = 1.4871198–10.62998,
P = 0.005942755). MR-Egger regression results showed that
the intercept was 0.028891206 (close to 0), P = 0.247636,
indicating that genetic multiplicity would not bias the
results of this study.

3.1.2.3 Increased basophil cell count on acute renal
failure

An MR study showed that increased basophil cell count
was not a risk factor for acute renal failure. IVW results
showed that (OR = 1.160434, 95% CI = 0.9455132–1.424207,
P = 0.15448828), while similar results were obtained in
weighted median (OR = 1.413948, 95% CI = 0.9786767–2.04288,
P = 0.06501094), and MR-Egger (OR = 1.423131, 95% CI =

0.977184–2.072588, P = 0.06738522). MR-Egger regression
results showed that the intercept was –0.00608 (close to 0),
P = 0.206087, indicating that genetic pleiotropy would not
bias the results of this study.

3.1.2.4 Increased basophil cell count on hypertensive
heart and/or renal disease

IVW analysis results showed that increased basophil cell
count was a protective factor for hypertensive heart and/or
renal disease (OR = 0.7716065, 95% CI = 0.6484979–0.9180856,
P = 0.003458707). MR-Egger regression results showed that the
intercept was –0.00248 (close to 0), P = 0.543814, indicating that
genetic pleiotropy would not bias the results of this study.

3.1.2.5 Increased basophil cell count on disorders
resulting from impaired renal tubular function

IVW analysis results showed that increased basophil cell
count was a risk factor for disorders resulting from
impaired renal tubular function (OR = 1.648131, 95% CI =
1.010116–2.689133, P = 0.04546835), and similar results
were obtained in weighted median (OR = 2.648595, 95%
CI = 1.144769–6.127922, P = 0.02285107). MR-Egger regres-
sion results showed that the intercept was –0.01197 (close
to 0), P = 0.296908, indicating that genetic pleiotropy
would not bias the results of this study.

3.1.2.6 Increased lymphocyte cell count on hypertensive
renal disease

IVW analysis results showed that increased lymphocyte
cell count was a risk factor for hypertensive renal disease
(OR = 1.372961, 95% CI = 1.0189772–1.849915, P = 0.03719874).
MR-Egger regression results showed that the intercept was
–0.00548 (close to 0), P = 0.469176, indicating that genetic
pleiotropy would not bias the results of this study.

3.1.2.7 Increased eosinophil cell count on type 1 diabetes
with renal complications

IVW analysis results showed that increased eosinophil cell
count was a risk factor for type 1 diabetes with renal com-
plications (OR = 1.516454, 95% CI = 1.1826453–1.944482, P =

0.001028964). MR-Egger regression results showed that the
intercept was −0.00148 (close to 0), P = 0.827094, indicating
that genetic pleiotropy would not bias the results of this
study, Figure 3.

3.1.2.8 Macrophage inflammatory protein 1b levels on
Renal failure

IVW analysis results showed that Macrophage inflamma-
tory protein 1b levels was a protective factor for renal
failure (OR = 0.9381862, 95% CI = 0.8860402–0.9934013,
P = 0.02874872), while the MR-Egger regression results
showed the intercept was −0.007370909 (close to 0), P =

0.7695226, indicating that genetic pleiotropy would not
bias the results of this study.

3.1.3 Sensitivity analysis

Cochran Q test of IVW and MR-Egger regression of eight
groups of two samples showed that there was no hetero-
geneity in SNPs. There was no significant statistical differ-
ence between Egger-intercept and 0 (P > 0.05), so we can
think that there is no level pleiotropy of SNPs. Funnel dia-
gram shows that when a single SNP is used as IVs, the
points representing the causal correlation effect are sym-
metrically distributed, indicating that the causal correla-
tion is less likely to be affected by potential bias, Figure 4.
The results of the “Leave one out” sensitivity analysis show
that the IVW analysis results of the remaining SNPs are
similar to those of all SNPs after the SNPs are eliminated
in turn. No SNP that has a greater impact on the causal
association estimate is found [34].
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Figure 3: (a) The IVW method was used to detect the effects of different immune cell counts on different kidney diseases; (b) MR analysis tested the
effects of different immune cell counts on seven types of kidney disease. The results obtained using five MR methods (IVW, MR-Egger, weighted
median, simple mode, and weighted mode) are presented in the form of heatmap, representing causal estimation.
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Figure 4: MR analysis tested the influence of four kinds of cell counts in the leukocyte family on nephropathy. The results of IVW and MR-Egger are
presented in the form of a funnel plot. (a) Basophil cell count on chronic renal failure, (b) neutrophil cell count on chronic renal failure, (c) basophil cell
count on acute renal failure, (d) basophil cell count on hypertensive heart and/or renal disease, (e) lymphocyte cell count on hypertensive renal
disease, (f) basophils cell count on disorders resulting from impaired renal tubular function, and (g) eosinophil cell count on type 1 diabetes with renal
complications.
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3.2 Multivariate MR study results

3.2.1 Increased eosinophil cell count on type 1 diabetes
with renal complications

After multivariable MR was used to correct covariates
(increased neutrophil, basophil, and lymphocyte cell counts),
the correlation effect between eosinophil cell count and type 1
diabetes with renal complications was still statistically signif-
icant (P = 0.02201152).

3.2.2 Increased lymphocyte cell count on hypertensive
renal disease

After adjusting covariates (neutrophil, basophil, and eosi-
nophil cell counts) with multivariable MR (MVMR), the corre-
lation effect between lymphocyte cell count and hypertensive
renal disease was still statistically significant (P = 0.02050226).
It is worth noting that in the process of MVMR, the correlation

effect between increased basophil cell count and hyperten-
sive renal disease was also statistically significant (P =

0.02506460), Figure 5.

3.3 Genetic correlation test between
immune cells and different kidney
diseases

Regression analysis of LD score (LDSC) between exposure
and outcome revealed that kidney diseases with negative
genetic correlation with basophil cell count were chronic
renal failure (rg = NA, P = NA), acute renal failure (rg = NA,
P = NA), and disorders resulting from impaired renal tub-
ular function (rg = NA, P = NA). The kidney disease with
negative genetic correlation with neutrophil cell count is
chronic renal failure (rg = NA, P = NA). Macrophage inflam-
matory protein 1b levels have no genetic correlation with
renal failure (rg = −0.123461, P = 0.814559). There is no

Figure 5:MVMR results. (a) The effect of lymphocyte cell count on hypertensive renal disease after correcting basophil, eosinophil, and neutrophil cell
counts and (b) the effect of eosinophil cell count on type 1 diabetes with renal complications after correcting basophil, lymphocyte, and neutrophil cell
counts.

The causal relationship between immune cells and different kidney diseases  11



genetic correlation between basophil cell count and hyper-
tensive heart and/or renal disease (rg = −0.001703, P =

0.973137). There is a genetic correlation between lymphocyte
cell count and hypertensive renal disease, but the correla-
tion is extremely low (rg = 0.199335, P = 0.031153). There is a
genetic correlation between eosinophil cell count and Type 1
diabetes with renal complications, but the correlation is
extremely low (rg = 0.175011, P = 0.048723).

4 Discussion

For the first time, Mendelian randomized analysis was
used in our study to explore the potential causal relation-
ship between four types of cells count (basophils, eosino-
phils, neutrophils, and lymphocytes) in the white blood cell
family and different kidney diseases (chronic renal failure,
acute renal failure, hypertensive heart and/or renal dis-
ease, disorders resulting from impaired renal tubular func-
tion, hypertensive renal disease, and type 1 diabetes with
renal complications). We found that increased basophil cell
count will increase the relative risk of chronic renal failure
and disorders resulting from impaired renal tubular func-
tion, and reduce the risk of hypertensive heart and/or
renal disease, while increased basophil cell count will not
increase the relative risk of acute renal failure, so we spec-
ulate that increased basophil cell count affecting renal failure
is a relatively long process. In addition, increased neutrophil
cell count can increase the risk of chronic renal failure,
increased lymphocyte cell count can increase the relative
risk of hypertensive renal disease, increased eosinophil cell
count can increase the relative risk of type 1 diabetes with
renal complications, and macrophage inflammatory protein
1b levels are protective factors for renal failure. The above
relationships have been confirmed in the weighted median
method, MR-Egger regression, WME, and MR-presso. Second,
MR-Egger intercept detection and test showed that the genetic
variables included above did not have any pleiotropy. These
results indicate that an increase in the four cell counts in the
cell family may serve as a risk factor to promote the occur-
rence of a certain type of kidney disease, and macrophage
inflammatory protein 1b levels can serve as protective factors
to reduce the occurrence of renal failure. It is worth men-
tioning that this study also carried out MVMR for increased
lymphocyte cell count on the occurrence of hypertensive
renal disease and increased eosinophil cell count in type 1
diabetes with renal complications. The results show that after
correcting the covariates, the results of increased lymphocyte
cell count on hypertensive renal disease and increased eosi-
nophil cell count on type 1 diabetes with renal complications
are still significant.

The exact mechanism by which different immune cell
counts increase and lead to different kidney diseases is
currently unclear, but some studies speculate that this
may be the result of multiple factors working together.
Therefore, we will elaborate on each one, Figure 6.

4.1 Causal relationship between increased
basophil count and renal diseases

Renal fibrosis is often referred to as unresolved inflamma-
tion [35]. Studies have shown that basophils play an active
role in renal fibrosis. There is also increasing evidence that
proximal tubular (PT) cells play an important role in the
development of renal diseases and renal fibrosis [36]. Genetic
studies have shown that PT cells are rich in genes that can
lead to renal dysfunction [37]. “Fibrosis PT” cells interact with
resident fibroblasts through intermittent hypercapnic
hypoxia and platelet-derived growth factor B, with mye-
loid cells through IL-34, and with lymphocytes through
C-X-C motif chemokine 16 (CXCL16). Previous studies [38]
established the key role of IL-34 and CXCL16 in renal fibrosis.
Fibrogenic PT cells expressing CXCL1 may be responsible for
basophil recruitment, although the role of other pathways
remains to be determined. A previous paper pointed out
the role of CXCL1 in the recruitment of granulocytes, including
basophils [39]. CXCL1 expression was also enriched in tub-
ular cells with weak expression of proximal tubular marker
HNF4A and expression of Henle down loop marker, indi-
cating that similar altered cell populations may extend to
the margin of PT.

Some studies have emphasized the increase in the
number of basophils in renal fibrosis. It is suggested that
the increased matrix expression of IL-18 and IL-33 may play
a role in activating basophils and stimulating the secretion
of IL-6. Previous studies have shown that blocking IL-18 and
IL-33 can improve renal fibrosis [40]. IL-6 has a pleiotropic
effect on inflammation and immune response, and it may
have related proinflammatory or anti-inflammatory proper-
ties [41]. In animal studies, mice treated with IL-6R antibo-
dies were partially immune to renal fibrosis. Previous studies
also showed that IL-6 promotes fibrosis in myocardial [42],
pulmonary [43], and peritoneal [44] fibrosis, suggesting that
IL-6 may be a common mediator of fibrosis. However, pre-
vious studies have failed to determine the source of IL-6 in
fibrosis. Coppock and other scholars clarified that basophils
are the main source of IL-6 in renal fibrosis. TH17 cells that
respond to IL-6may be downstreammediators of basophils in
renal fibrosis. The research team has previously clarified the
contribution of TH17 cells to renal fibrosis [45], and their role
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in pulmonary fibrosis has also been confirmed. TH17 cells can
interact with fibroblasts to coordinate fiber inflammation
[46]. In our study, we concluded that basophils have a positive
causal relationship with nephropathy caused by chronic
renal failure and renal tubular function damage.

4.2 Effect of increased eosinophils count on
diabetes nephropathy

Some cytokines (such as IL-3, IL-5, GM-CSF, etc.) act on
eosinophil cell lines, accelerating the proliferation and dif-
ferentiation of bone marrow eosinophil hematopoietic

progenitor cells. Activation increases eosinophil function
andmobilize eosinophils to migrate locally [47]. It can involve
pancreatic islet function, heart, skin, nerve, respiration, diges-
tion, and other systems. The mechanism may be that eosino-
phils increase, infiltrate tissues extensively, and release a
large number of cytotoxics and a variety of factors that cause
inflammation and fibrosis, thus causing tissue damage [48]. It
may be related to the infiltration of eosinophils and the
release of inflammatory mediators. Eosinophils aggregate in
renal tissue and release granular proteins after activation,
including eosinophil cationic proteins, major basic proteins,
peroxidase, oxygen free radicals, and other cytotoxic factors
[49], thus causing renal damage. In our study, we concluded
that eosinophils are a risk factor for diabetic nephropathy.

Figure 6: Abstract figure, the pathological mechanism of immune cells and kidney disease.
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4.3 Effect of increased neutrophils count on
chronic renal failure

The imbalance of the immune state characterized by a
systemic inflammatory reaction and immune deficiency
exists universally in patients with chronic renal failure.
Inflammatory reaction related to ESRD is related to the
activation of the natural immune system, mainly including
the activation of neutrophils, macrophages, and mono-
cytes, the expression of Toll-like receptors, the production
and release of cytokines, and reactive oxygen-free radicals.
At the same time, systemic inflammation will bring ather-
osclerosis, anemia, cachexia, and other complications [50].
Immune deficiency will lead to an increase in the incidence
rate, severity, andmortality of various microbial infections,
and become the second leading cause of death in patients with
ESRD [51]. This is due to the weakened functions of neutro-
phils, monocytes, and macrophages in uremic patients with
immune deficiency, the insufficient role of antigen-presenting
cells in presenting defensive antigens, the reduced number of
B lymphocytes producing antibodies, and the reduced func-
tion of the overall cellular immune function [52–54]. The study
found that neutrophils in patients with chronic renal failure
were significantly higher than those in healthy people, and
were associated with IL-6 and TNF-α. The level was positively
correlated. Turkmen et al. [55] found that neutrophils and
TNF-α in patients with ESRD (including hemodialysis and
peritoneal dialysis) present positive correlation. Domestic
retrospective studies on patients with chronic kidney dis-
ease suggest that neutrophils in hemodialysis patients are
positively correlated with hsCRP [56].

In most chronic kidney diseases, especially in patients
with chronic renal failure, proteinuria is one of the common
symptoms. On the one hand, the appearance of proteinuria
indicates the damage to the glomerular filtration barrier, and
on the other hand, the protein in urine will have an endo-
genous toxic effect on the kidney, which is closely related to
the degree of renal fibrosis and glomerulosclerosis [57]. Bin-
netoğlu et al. [58] observed 1,000 patients with chronic kidney
disease and found that neutrophils were strongly positively
correlated with the occurrence and severity of 24h protei-
nuria. Studies have shown that the degree of albuminuria
is related to the infiltration of inflammatory cells in the renal
interstitium. Early inflammation damages the glomerular
capillary filtration barrier, which will lead to the emergence
of albuminuria. Persistent inflammation and albuminuria
cause CD40+T lymphocyte receptors to migrate from the
basement membrane to the renal tubule wall. These recep-
tors release inflammatory factors after binding with T lym-
phocytes, causing inflammation in the tubulointerstitium and
subsequent renal function damage [59]. In this study, we

concluded that neutrophils are a risk factor for chronic renal
failure.

4.4 Relationship between lymphocyte ratio
and renal diseases

In the pathogenesis of some kidney diseases, cellular immune
disorder plays a major role, and cellular immunity is played
by T cells through the release of cytokines. According to dif-
ferent immune effects, T cells can be roughly divided into
three subsets: CD4+helper T cells (Th cells), CD8+cytotoxic T
cells (Ts cells), and CD4+CD25+regulatory T cells (Treg cells).
Most previous studies believed that the occurrence of T lym-
phocyte and kidney diseases was mainly manifested in the
abnormal number and function of T lymphocyte subsets,
which promoted the dysfunction of T cells and produced
some pathogenic factors, thus leading to the occurrence of
diseases. It has been reported in the literature [60] that high
levels of cytokines released by T lymphocyte subsets are asso-
ciated with persistent proteinuria in some patients with
kidney diseases. The helper T cells carry CD4+surface antigen
and can differentiate into helper T lymphocyte 1 (Th1), Th2,
Th17, T follicular helper cells (TFH), and other cell subsets.
The proportion of Th1, Th2, and Th17 cells is crucial for the
monitoring of immunity [61]. TFH is a newly discovered cell
subpopulation related to the pathogenesis of kidney disease
in recent years. The combination of CD40 ligand (CD40L) on
TFH with CD40 on the surface of B cells is the main
mechanism for B cells to produce plasma cells, antibodies,
and immunoglobulin class conversion. Some studies [62]
found that CD40L in patients with kidney disease was sig-
nificantly lower than that in normal people by measuring
CD40L on TFH cells, indicating that the decrease in blood IgG
level in patients with kidney disease was related to the
weakening of CD40/CD40L response. The main effect of
Th1 cells is to induce cellular immunity by releasing cyto-
kines. The main effect of Th2 cells is to help B cells activate
and produce antibodies. Th1 and Th2 maintain the balance
of cellular immunity and humoral immunity of the body,
respectively, which is in dynamic balance under normal
conditions. It has been reported in foreign studies [63] that
the imbalance of Th1/Th2/Th17 leads to an increase in the
secretion of granulocyte-macrophage colony-stimulating
factor (TNF) related activation-induced cytokine (TRANCE)
of Th1 and Th17 cells, which further leads to foot cell damage
and proteinuria. It indicates that the pathogenesis of kidney
disease is related to the disorder of T cell immune function
caused by Th1/Th2/Th17. Th17 is a newly discovered CD4+T
cell subpopulation that mainly secretes the cytokine IL-17.
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Many kinds of literature reported that Th17 is involved in
inflammatory reactions and autoimmune diseases. It has
been pointed out in foreign literature [64] that Th17 and
IL-17 may participate in the pathogenesis of kidney disease
by reducing the expression of Podophysin protein in podo-
cytes and inducing podocyte apoptosis. Some studies [65]
show that IL-17 is highly expressed in the kidney. Nuclear
factor kappa-B (NF-kB) induces podocyte apoptosis in a
dependent manner, aggravates kidney damage, and thus
leads to kidney disease. When some foreign scholars [66]
studied the role of regulatory T cells (Treg cells) in the patho-
genesis of renal diseases, they found that the number of Treg
cells decreased in the onset period and increased in the
remission period, which proved that Treg cells were involved
in the induction and remission process of nephrotic syn-
drome.When some scholars studied the relationship between
Treg cells and CD80 expression in renal biopsy tissues of PNS
children, they found that the number of Treg cells in renal
tissues with positive CD80 expression decreased, indicating
that the decrease in the anti-inflammatory environment may
be the reason for the increase in CD80 expression [67]. Both
Th17 and Treg cells belong to CD4+T lymphocyte subsets, but
they are antagonistic to each other in the process of exerting
immune effects and jointly maintaining the balance of
immune function. If the balance is broken, a series of immu-
nopathological reactions will occur [68]. Th17/Treg balance is
necessary in autoimmune diseases as Th17 cells promote
autoimmune and inflammatory reactions, while Treg cells
inhibit these phenomena and maintain immune homeostasis
[69]. A study [70] found that the proportion of Th17 cells in
patients with kidney disease before treatment was signifi-
cantly higher than that in the healthy control group, while
the proportion of Treg cells was significantly lower than that
in the healthy control group, indicating that both types of cells
were involved in the pathogenesis of kidney disease. The ratio
of Th17/Treg cells significantly decreased after hormone treat-
ment, which was reversed compared with that before treat-
ment, indicating that Th17/Treg immune imbalance may be
involved in the pathogenesis of kidney disease. In this study,
we concluded that lymphocytes are a risk factor for hyper-
tensive nephropathy.

4.5 Relationship between neutrophil/
lymphocyte ratio and renal diseases

Cardiovascular events are the most common complication
of patients with chronic renal failure and the most common
cause of death, accounting for about 50% of all causes of death
[71]. The concept of malnutrition inflammation atherosclerosis syn-
drome has been put forward by the academic community [72]. On

this basis, foreign scholars selected 225 patients with stage 3–5
chronic kidney disease for a clinical cohort study. The results
showed that there was a strong correlation between the neu-
trophil/lymphocyte ratio and the blood flow regulation and
relaxation function of the blood vessels, suggesting that the
neutrophil/lymphocyte ratio can more sensitively reflect the
functional status of the vascular endothelium [73]. In another
study, 56 patients with ESRD were observed. After comparing
the ratio of neutrophils/lymphocytes with the degree of calci-
fication of carotid and coronary arteries by ultrasound and CT,
it was found that there was a linear positive correlation
between the ratio of neutrophils/lymphocytes and the degree
of calcification of coronary and carotid arteries. Neutrophils
play an important role in early endothelial dysfunction and
the initial stage of atherosclerotic plaque formation. After acti-
vation, neutrophils can adhere to and penetrate vascular
endothelial cells, release certain reactive oxygen free radicals,
cytokines, and hydrolases, increase the damage of vascular
endothelium, and promote the initiating factors of athero-
sclerotic plaque formation. In vivo experiments have found
that there is a correlation between the number of neutrophils
in the circulatory system and atherosclerotic injury. Reducing
the content of neutrophils can significantly alleviate the
damage to vascular endothelium. The number of lymphocytes
can also reflect the progression of atherosclerotic disease,
because there is apoptosis of lymphocytes on the vascular
endothelium damaged by atherosclerosis, and the number of
lymphocytes can simply reflect the stress response caused by
adrenocortical hormone, and then indirectly reflect the stress
damage of vascular endothelium. Neutrophils and lympho-
cytes can reflect the oxidative stress state and cytokine release
caused by sympathetic nerve activation, and then can sensi-
tively reflect the inflammation and oxidative stress in the body,
thus becoming an independent predictor of vascular endothe-
lial function damage in patients with chronic renal failure, and
can well predict the prognosis of patients after cardiovascular
events [74]. In addition, the abnormal metabolism of trace
elements and the deposition of calcium salt in the inner wall
of blood vessels are the main causes of atherosclerosis. For
patients with chronic kidney disease, especially end-stage
kidney disease, atherosclerosis, inflammation, and vascular
calcification are themain risk factors for cardiovascular events
and even life-threatening emergencies, and the assessment of
their aortic calcification is an important indicator for pre-
dicting future risk events. In a cross-sectional observation of
56 patientswith ESRD, it was found that the ratio of neutrophils
and lymphocytes was positively correlated with the degree of
arterial calcification, so calculating the ratio of neutrophils and
lymphocytes could better predict the degree of vascular calci-
fication in ESRD patients, thus providing a basis for assessing
their risk of cardiovascular events [75].
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4.6 Effect of macrophages on renal function

Acute renal failure is a clinical critical disease character-
ized by a sharp decline in renal function, which is an
important factor leading to an increase in the incidence
rate of chronic kidney disease and ESRD worldwide. In
renal failure caused by various diseases, the rapid recruit-
ment and coordination of large numbers of monocytes and
tissue resident macrophages is a key starting point for the
occurrence and development of this disease. Macrophages
play an important role in the human natural immune
system, playing a role in immune defense, tissue remo-
deling, and maintaining dynamic balance of the body [76].
The mechanism of renal failure is complex and involves
numerous pathways. Under the stimulation of infection or
internal environment disorder, macrophages can be acti-
vated into a series of continuously controllable functional
states, participating in processes such as improving the
inflammatory microenvironment, inhibiting steatosis, pro-
moting tissue repair, and anti-tumor immunity, namely,
macrophage polarization [77–79]. After polarization, macro-
phages form M1/M2 phenotypes with mutually antagonistic
functions. The former is activated by interferon and lipopo-
lysaccharide and secretes a large amount of pro-inflamma-
tory cytokines, which can promote pathogen clearance and
inhibit tumor progression. The latter is activated by IL-4 and
IL-13 and plays an anti-inflammatory and tissue repair pro-
moting role. Macrophage polarization is crucial in the patho-
genesis of renal failure. Based on our research results, we
speculate that Macrophage inflammatory protein 1b is a
negative regulatory transmembrane protein for macro-
phage inflammation, but there is currently no corre-
sponding research to confirm this.

Unlike observational research, this study has unique
advantages. This study mainly uses a large sample of
genome-wide association research, which can better con-
duct a comprehensive analysis of different kidney disease
events. However, this study has some limitations. The
research object is limited to people of European origin.
Although it can reduce the bias caused by population stra-
tification, it cannot be proved that it applies to people of
other races. As with all MR studies, this study cannot
resolve the observed pleiotropy, so the results may be
biased.

To sum up, this study shows that increased basophils
count can increase the relative risk of chronic renal failure
and renal tubular dysfunction, and reduce the risk of
hypertensive heart disease and/or hypertensive nephro-
pathy, while increased basophils count will not increase
the relative risk of acute renal failure, increased neutro-
phils count can increase the risk of chronic renal failure,

increased lymphocytes count can increase the relative risk
of hypertensive nephropathy, and increased eosinophils
count can increase the relative risk of type 1 diabetes
with renal complications.
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