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Abstract: Considering the connection between the Fanconi
anemia (FA) signaling pathway and tumor development,
we aim to investigate the links between the FA gene
expression and the survival prognosis of acute myeloid
leukemia (AML) patients. Our study begins by identifying
two distinct clusters of pediatric AML patients. Following the
batch matching of the TARGET-AML, TCGA-LAML GSE71014,
GSE12417, and GSE37642 cohorts, the samples were divided
into a training set and an internal validation set. A Lasso
regression modeling analysis was performed to identify five
signatures: BRIP1, FANCC, FANCL, MAD2L2, and RFWD3. The
AML samples were stratified into high- and low-risk groups by
evaluating the risk scores. The AML high-risk patients showed
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a poorer overall survival prognosis. To predict the survival
rates, we developed an FA Nomogram incorporating risk
score, gender, age, and French—American-British classifica-
tion. We further utilized the BEAT-AML cohort for the external
validation of FA-associated prognostic models and observed
good clinical validity. Additionally, we found a correlation
between DNA repair, cell cycle, and peroxide-related meta-
bolic events and FA-related high/low risk or cluster 1/2. In
summary, our novel FA-associated prognostic models promise
to enhance the prediction of pediatric AML prognosis.

Keywords: Fanconi anemia, acute myeloid leukemia, prog-
nosis, children, expression

1 Introduction

During myeloid differentiation, hematopoietic progenitor
cells get blocked, resulting in acute myeloid leukemia
(AML) [1-3]. AML is characterized by its high heteroge-
neity, associated with several factors, including cytogenetic
abnormalities, genetic mutations, and changes in gene
expression [1-3]. Pediatric AML constitutes approximately
15-20% of all cases of childhood leukemia [4,5]. Advance-
ments in hematopoietic stem cell transplantation, molecular
targeted therapy, immunotherapy, and genomic technology
have improved prognosis and overall survival (OS) rates for
pediatric AML. However, the mortality rate remains high
[4,5]. Pediatric AML exhibits distinct genetic characteristics
compared to adult AML [6]. Evaluating prognostic risk factors
in AML is crucial for the management strategies or thera-
peutic advances in AML patients [1-3]. Several models have
been reported for predicting the prognosis of AML patients,
focusing on specific biological events [7-9]. For instance, a
survival model based on 85 genes was reported to assess
the AML prognosis [7]. Another study identified a 29-gene
signature that could be a helpful predictor for therapy resis-
tance in intensively treated adult AML patients [9]. However,
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fewer specific gene expression-based models or clusters were
reported for predicting the prognosis of pediatric AML.

Fanconi anemia (FA) is characterized by autosomal or
X-linked-recessive and autosomal-dominant genetic inheri-
tance [10-14]. The pathogenesis of FA is associated with the FA
signaling pathway, which contributes to genomic stability
[10-14]. So far, 23 FA-related genes have been identified,
such as FANCA/B/C and FANCD2 [10-15]. Extensive research
has established strong connections between the FA signaling
pathway and cancers [16-19]. FA patients are more susceptible
to AML and other solid tumors [16-21]. For example, the FA
pathway has shown potential as a treatment target for color-
ectal cancer [16]. Therefore, developing effective and reliable
prognostic risk score models for AML is crucial by considering
the expression pattern of FA signaling pathway genes.

Herein, we carried out a cluster analysis of pediatric AML
cases based on the FA signaling pathway. We then identified
five FA hub genes (including BRIP1, FANCC, FANCL, MAD2L2,
and RFWD3). These genes were used to establish a novel FA-
related prognostic model for pediatric AML patients.

2 Methods

2.1 Gene expression and clinical information

Gene expression matrix of the TPM (transcripts per mil-
lion) type and a set of clinical traits were obtained from
The Cancer Genome Atlas (TCGA)-LAML cohort using the
“TCGAbiolinks” R package. We analyzed the expression
pattern of each FA gene by combining datasets within a
genotype-tissue expression (GTEx) and TCGA-LAML cohort.
The data of TARGET-AML were obtained from the official
website (https://ocg.cancer.gov/). We performed a statis-
tical analysis using the wilcox.test or kruskal.test. The
“GEOquery” R package was utilized to obtain the datasets
of the GSE71014, GSE37642, and GSE12417 cohorts within
the gene expression omnibus (GEO) database. Then, the
expression matrix of TARGET-AML (n = 257), TCGA-LAML
(n = 137), GSE71014 (n = 104), GSE37642 (n = 136), and
GSE12417 (n = 78) was processed using the R language,
and the batch correction was performed using the “sva”
package. We then used the prcomp() function for the prin-
cipal component analysis (PCA). The BEAT-AML cohort (n =
399) [22-26] was utilized as an external validation set.

2.2 Tumor clustering

We used the “ConsensusClusterPlus” R package [27] to
cluster TARGET-AML samples according to the expression
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characteristics of FA signatures. Then, PCA was conducted.
Additionally, we utilized the “survival” R package to per-
form the cluster-related prognostic analysis.

2.3 Lasso regression modeling construction

We performed Lasso regression modeling analysis using the
datasets of TARGET-AML, TCGA-LAML GSE71014, GSE12417,
and GSE37642 cohorts. The cases were divided into a training
set (75%) and an internal validation set (25%). We used the
“glmnet” R package to conduct a Lasso regression modeling
analysis of the training set. The resulting model provided
gene coefficients and risk score values. Risk scores were
grouped according to their median values to determine
high- and low-risk groups. The OS risk values for the internal
validation set were also obtained. We plotted the risk pro-
file, survival curves, and the survival status map. The hub
gene expression profile was visualized as a heat map.
Furthermore, we used the BEAT-AML cohort to externally
validate the above FA-associated prognostic model.

2.4 Gene enrichment

Differentially expressed genes in two tumor clusters or risk
groups were identified using a “limma” R package with a
false discovery rate of 0.05 and a log2 fold change (10g2FC)
of 1. A “ggplot2” R package was used to generate an MA
plot. Also, a heat map of FA genes and the clinical traits of
age, gender, French—-American-British (FAB), and clus-
tering status were created. Gene enrichment analysis was
performed, and the results were visualized using the “GOplot”
R package [28]. Furthermore, gene set enrichment analysis
(GSEA) was conducted by a “clusterProfiler” R package
[29,30], and the results were visualized using the “gsea-
plot()” function of the enrichplot R package. Common
members of differential genes between the risk and clus-
tering groups were obtained, and the related gene ontology
(GO)-Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses were performed.

2.5 Cox regression

To assess the OS prognosis, the univariate/multivariate Cox
regression analyses were conducted using a “survival” R
package, considering the factors of prognostic risk score,
FAB, gender, and age. Additionally, we performed external
validation of the BEAT-AML cohort based on the multi-
variate Cox regression model associated with FA, using
the predict() function. The forest plots were generated
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using the plot() R function. To evaluate the receiver oper-
ating characteristic (ROC) results for different survival
times, we utilized the “survivalROC” R package and pro-
vided the value of area under the curve (AUC).

2.6 Nomogram prediction model

A cph () modeling analysis was performed using the “regplot”
R package, and a Nomogram was obtained. The calibration
curves of AML cases were plotted using the calibrate() func-
tion of the “ggstatsplot” R package. The C index value was
obtained using the “rms” R package. In addition, the external
validation dataset (BEAT-AML) was used to perform calibra-
tion curve analysis based on the FA Nomogram. The net
reclassification improvement (NRI) and integrated discrimi-
nation improvement (IDI) analyses were conducted using the
“survIDINRI” R package. Finally, the decision curve analysis
(DCA) was performed using the “stdca.R” package from
www.decisioncurveanalysis.org.

3 Results

3.1 Analytic strategy

The schematic diagram of our analytic strategy is pre-
sented in Figure 1. We initially analyzed the expression
profile of 23 FA genes and the clinical traits. Next, using
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these FA signatures, we identified two tumor subtypes
(cluster 1/2) in AML samples by utilizing the clustering
function of the “ConsensusClusterPlus” R package. Addi-
tionally, we extracted and performed batch correction on the
expression matrix of TARGET-AML, TCGA-LAML GSE71014,
GSE12417, and GSE37642 cohorts. This was done with FA-related
genes, the FA expression matrix, and corresponding clinical
traits. An internal validation and training set were randomly
selected from the samples. The training set-based Lasso regres-
sion modeling analysis was then conducted. We conducted
multivariate Cox regression analyses. Nomograms and related
calibrate curves were plotted as well. We assessed the clinical
effectiveness of FA models by DCA. Additionally, survival, dif-
ferential, and enrichment analyses of GO, KEGG, and GSEA
were performed after risk or cluster grouping. FA-related
models were validated in both the internal and external vali-
dation cohorts.

3.2 Expression profile

We analyzed the expression features of FA genes based on
the combined datasets from the GTEx and TCGA-LAML
cohorts.

As shown in Figure S1, we observed increased expres-
sion levels in the tumor group for FANCA, BRCA2, FANCG,
FANCM, SLX4, ERCC4, and FAAP100 (all p < 0.05), while a
decreased level was observed for FANCB, FANCC, FANCD?2,
FANCE, FANCI, FANCL, RAD51C, RAD51, BRCA1, UBE2T,
XRCC2, MAD2L2, and RFWD3 (all p < 0.05) compared with
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Figure 1: A schematic diagram of the study design.
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the normal group. Additionally, there were expression dif-
ferences for all FA genes, except FANCG, among different
FAB types (Figure 2, all p < 0.05). We found a slightly higher
expression of RADS51 (Figure S2, p < 0.05) and UBE2T (p <
0.05) in the male group. Furthermore, as shown in Figure S3,
we observed positive correlations between the age factor
and expression levels of FANCC and FANCE (p < 0.001).

3.3 Tumor clustering analysis

Next, we conducted a tumor clustering analysis based on
the expression profile of FA genes within TCGA-LAML
(Figure 3a) and TARGET-AML (Figure 3b) datasets. We
separated these AML clusters using a PCA approach for
both cohorts. However, we found a statistical difference in
0S survival between the two clusters only for the TARGET-
AML (Figure 3b, p = 1153 x 107%) but not for the TCGA-LAML
(Figure 3a). Specifically, the pediatric AML patients of TARGET
in cluster 2 showed a worse OS prognosis compared to those
in cluster 1 (Figure 3b). We provided heat map data in Figure
3c, showing the association between FA gene expression and
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clinical information. Furthermore, a significant difference was
observed in all FA gene expressions between clusters 1 and 2
(Figure S4, all p < 0.05).

The differential genes of the two clusters were obtained,
and a volcano plot is shown in Figure 3d. The GO/KEGG
enrichment analysis data (Figure 3e) revealed that these
genes were associated with the events related to the “cell
cycle,” “DNA replication,” and peroxide-related events such
as “hydrogen peroxide metabolic process,” and “peroxidase
activity.” The GSEA result further showed a series of genes
linked to DNA repair events, such as “nucleotide excision
repair” and “homology-directed repair,” as well as cell cycle
events, such as “M_phase” and “cell cycle checkpoints”
(Figure 3f). These findings suggest a connection between
the pediatric AML FA subtypes and DNA repair, cell cycle,
and peroxide-related metabolic events.

3.4 Lasso regression model

We initially conducted batch matching on the TARGET-
AML, TCGA-LAML GSE71014, GSE12417, and GSE37642
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Figure 2: Correlation between FA gene expression and FAB. Box plots display each FA gene’s expression difference among different FAB types for the
TARGET-AML cohort. A kruskal.test() was performed. *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 3: Tumor clustering analysis of FA genes. (a) AML patients from the
FA-related genes. A PCA was performed to evaluate the classification effect

Rank in ordered dataset

Rank in ordered dataset

TCGA-LAML were clustered according to the expression characteristics of
on tumor clusters. The FA-specific prognostic curve of OS is also provided.

(b) Similar analyses were conducted for the TARGET-AML cohort. (c) The correlation between FA gene expression and various clinical traits, including
age, gender, FAB, and clusters, was analyzed. A heat map is provided. (d and e) The differential gene identification of the two clusters was completed,
and a volcano plot is provided (d). The GO/KEGG (e) and GSEA (f) gene enrichment analyses were then conducted.

cohorts (Figure 4a). Subsequently, we used 75% of the sam-
ples as a training set. Using the expression feature of FA
genes, we performed a Lasso regression modeling analysis
(Figure 4b). Our model identified five hub genes with cor-
relation coefficients: BRIP1 (0.284), FANCC (-0.031), FANCL
(0.022), MAD2L2 (0.270), and RFWD3 (-0.068). The results,
including the expression/risk profile, survival curve, and
survival status of the training and internal validation sets,
are presented in Figure 4c—-d. We observed an increased
mortality status in AML cases as the risk value increased.
Furthermore, the high-risk group exhibited a worse OS
prognosis than the low-risk group (Figure 4c, p = 7.358 x
1075; Figure 4d, p = 7.249 x 107%).

3.5 Prognostic analysis

In the Cox regression analyses of TCGA-LAML, the age
factor was found to be correlated with worse clinical OS
prognosis in adult AML patients (Figure 5a, HR > 1, p <
0.001). For the pediatric AML cases in the TARGET-AML
cohort, we observed a relationship between higher risk
scores and worse clinical OS prognosis (Figure 5b, all HR
> 10, p < 0.001). The relationship between hub gene expres-
sion and clinical traits was visualized as a heatmap in
Figure 5c. Furthermore, we performed ROC analysis to
assess the OS predictive value of our model. Figure 5d
shows that the AUC values were greater than 0.62 for
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Figure 4: Lasso regression modeling analysis of FA. (a) We performed the Lasso regression modeling analysis based on the expression matrix of FA-
related genes in TARGET-AML, TCGA-LAML GSE71014, GSE12417, and GSE37642 cohorts. A PCA plot shows the batch correction of the expression
matrix. (b) Based on the training set, the Lasso regression modeling analysis was performed. (c and d) The data of the hub gene expression profile,

risk profile, survival status map, and survival curve are provided in the trai

1-, 3-, 5-year survival time. These suggested that our FA
model exhibits good predictive value for OS in pediatric
AML patients.

3.6 Nomogram

We conducted the Nomogram and related assessments.
Among the hub genes, there were higher expression levels
of BRIP1 (Figure 6a, p < 0.001), FANCL (p < 0.05), and
MAD2L2 (p < 0.001) in the high-risk group, compared
with the low-risk group. By combining the risk score,
gender, age, and FAB, we established a Nomogram to pre-
dict the OS rates of a pediatric AML case. The Nomogram,
shown in Figure 6b, predicted the 1-, 3-, and 5-year survival
rates at 0.34, 0.292, and 0.0881, respectively. The calibration
plot curve in Figure 6c showed a high overlap between the
predicted and observed value lines. The C index value of
0.66 was obtained (Figure 6c). Furthermore, NRI and IDI
results suggested that the predictive function of the model
improved after incorporating the risk score factor (Figure

ning set (c) and internal validation set (d).

6d, all IDI > 0, NRI > 0, p < 0.05). The DCA results (Figure 6e)
further showed a better clinical validity of the “age +
gender + FAB + risk score” group than other groups.

3.7 External validation analysis

Based on the FA-associated prognostic models mentioned
above, we conducted external validation using the BEAT-
AML cohort. As shown in Figure 7a, it can be observed that
AML cases with a high FA-associated risk score showed
a poorer prognosis (p = 3.612 x 107%). Furthermore, an
external validation of the multivariate Cox regression model
associated with FA was conducted, revealing a favorable pre-
dictive value for AML patients, particularly for the 1-year
survival time (AUC = 0.71), as depicted in Figure 7h. A calibra-
tion plot curve was also generated using the external valida-
tion set, illustrating a substantial concurrence between the
predicted and observed value lines (Figure 7c). These results
serve to substantiate the good predictive capability of our FA-
associated prognostic models.
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Figure 5: Prognostic analyses of TCGA-LAML and TARGET-AML. Targeting the factors (prognostic risk score, FAB, gender, and age), we performed the
univariate/multivariate Cox regression analyses to evaluate the prognosis of OS for the TCGA-LAML (a) and TARGET-AML (b). We created a heatmap
that combines the expression of hub genes with related clinical traits (c). Based on the risk score, we conducted the ROC analyses to assess the OS

prognosis of TARGET-AML for different survival time points (d).

3.8 Prognostic risk-related differential gene
analysis

We identified a series of differential genes (n = 65) based on
the high- and low-risk grouping. The results were visua-
lized via an MA plot (Figure 8a) and a heat map (Figure 8b).
Further analysis of these differential genes was conducted
using GO and KEGG enrichment approaches (Figure 8c).
Our findings revealed the biological metabolic processes,
such as the “antibiotic metabolic process” and “cellular
oxidant detoxification.” Additionally, GSEA results showed
the enrichment of events, including “DNA repair,” “G2M
checkpoint,” and “oxidative phosphorylation” (Figure 8d).
We also obtained 24 common members of differential

genes between the risk and clustering groups (Figure 8e)
and performed the gene enrichment analyses of GO-KEGG
(Figure 8f). This analysis highlighted peroxide-related
events, including the “hydrogen peroxide catabolic pro-
cess” and “peroxidase activity.”

4 Discussion

We developed a prospective predictive model for AML by
focusing on the FA signaling pathway. The consensus clustering
of AML patients from the TCGA-LAML and TARGET-AML data-
sets was conducted using bioinformatics strategies. We
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Figure 6: Nomogram and related assessment analyses. (a) The expression difference of FA hub genes between high- and low-risk groups is
presented. (b) A Nomogram is constructed to forecast the 1-, 3-, and 5-year survival rates of a given AML case. Furthermore, the outcomes of the
calibration plot curve (c), NRI/IDI assessment (d), and DCA (e) are provided.

identified two distinct clusters based on the expression patterns
of FA signatures. Interestingly, we found a positive correlation
between tumor clustering and OS prognosis only in pediatric
AML cases but not in adult AML. Our novel FA-based tumor
clustering approach may be helpful for the diagnosis and
therapy of pediatric AML.

The close correlation between AML and mutations has
led to the primary focus on correlation analysis of gene muta-
tions in AML patients. This analysis aims to guide clinical
treatment and evaluate prognosis [1-3,7-9,31]. For instance,
in a previous study, we conducted a stratified prognostic
analysis of different clinical subgroups in 132 children with
AML-based data on gene mutations and related clinical traits
[31]. Herein, we explore the potential correlation between FA-
related models and the prognosis of AML patients, explicitly

focusing on expression features of FA pathway genes. We
developed a novel FA model for AML using the Lasso
approach. Our multivariate Cox regression analysis also
showed that a higher risk score is linked to a worse clinical
0S prognosis, specifically in the TARGET-AML cohort rather
than the TCGA-LAML cohort. These findings suggest a poten-
tial solid link between the FA signaling pathway and pedia-
tric AML. Notably, the pediatric AML patients in cluster 2 or
high-risk groups showed a worse survival prognosis.

In addition to conducting internal validation of models,
we sought external validation of FA-related models by
including independent external data. Due to the absence
of high-throughput gene expression data for AML patients
at our center, we utilized the BEAT AML data. It is worth
noting that the BEAT-AML dataset had limited information
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Figure 7: External validation of FA-associated prognostic models. (a) Based on the Lasso regression modeling of FA genes, we performed the survival
curve analysis using the external validation cohorts (BEAT-AML). (b) The ROC results of the external validation set for 1-, 2-, and 3-year survival times
were obtained based on the FA-associated multivariate Cox regression model. (c) Based on the FA Nomogram, we also performed the calibration

curve analysis of the external validation set.

on children’s AML. Thus, we refrained from filtering the
BETA-AML data. The BEAT AML cohort was stratified into
high- and low-risk groups based on our FA Lasso model, and
the high-risk group exhibited a worse OS prognosis. Using
FA-associated multivariate Cox regression analysis, we dis-
covered that OS demonstrated favorable predictive cap-
ability for AML patients in the external validation cohort,
particularly for the 1-year survival timeframe. However, we
did not observe a statistically significant predictive effect for
the 5-year survival period, potentially due to our analysis’s
limited data on pediatric AML.

To enhance the predictive accuracy and clinical com-
petence of survival prediction, we build an FA-associated
Nomogram by combining the risk score, gender, age, and
FAB. The calibration curve of both the training and external
validation sets showed a significant overlap between the
predicted and observed value lines, indicating strong pre-
dictive competence and accurate survival prediction. The
findings of the FA model indicate that, along with mutation
analysis of specific genes, it is crucial to measure the expres-
sion pattern of FA pathway genes in pediatric AML data.

Standardization of FA expression detection procedures
and continuous optimization of FA-related models will con-
tribute to prognostic assessment and treatment decisions for
children with AML. In addition, some patients with FA dis-
ease are known to develop tumors [21,32]. Previous studies
have shown that Azacitidine effectively treats pediatric
patients with FA and AML [20]. It is worth investigating
the molecular mechanism underlying the transformation
from FA to tumor and conducting specific chemosensitivity
analysis. Once sufficient sample information is obtained,
this can be achieved by studying the expression and muta-
tion profile of FA-related genes.

The involvement of FA genes in DNA repair is closely
linked to genomic maintenance within cells under stress
conditions [10,33]. Despite being a rare chromosomal
instability disorder [32], the functional loss of the FA sig-
naling pathway during the DNA repair process is crucial
for the occurrence and development of certain tumors
[17,18,34]. Two components of the FA signaling pathway,
namely BRCA1 and BRCA2, function as susceptibility genes
for breast cancer [21]. Our study identified five hub
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Figure 8: Prognostic risk-related differential gene analysis. (a and b) The differential gene identification between the high- and low-risk groups was
performed, and the MA plot (a) and heat map (b) are provided to visualize the data. Gene enrichment analyses of GO-KEGG (c) and GSEA (d) were
conducted to gain further insights. (e and f) Common members of differential genes between the risk and clustering groups were obtained, and gene

enrichment analyses of GO-KEGG were performed to explore the functional significance.

“G2M checkpoint.” These findings suggest that the failure of
timely and effective repair of damaged DNA during cell
division is a critical factor in carcinogenesis when exposed
to harmful external stimuli. Interestingly, we have seen the
enrichment of peroxide-related biological metabolic issues,
such as the “hydrogen peroxide catabolic process” and

prognostic genes in our model: BRIP1, FANCC, FANCL, MAD2L2,
and RFWD3. As expected, clustering and risk-related gene
enrichment analyses revealed a set of DNA repair-related
events, including “nucleotide excision repair” and “homology-
directed repair.” Besides, we observed enrichment of the cell
cycle events, such as “M_phase,” “cell cycle checkpoints,” and
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“peroxidase activity.” It has been observed that cells of indi-
viduals with FA are particularly vulnerable to oxidative
stress, which is associated with the FANCG protein in mito-
chondria and peroxidase activity [35]. These findings suggest
that the disruption in the peroxidase metabolic process con-
tributes to the accumulation of oxidative DNA damage
during tumorigenesis.

5 Conclusion

Overall, this study employed the expression data of FA-
related genes to conduct a tumor clustering analysis. Also,
a novel clinical predictive model was established, incorpor-
ating five FA-related signatures (BRIP1, FANCC, FANCL,
MAD2L2, and RFWD3) for patients diagnosed with AML.
Furthermore, a novel FA Nomogram was developed, demon-
strating improved validity in predicting clinical survival out-
comes. The FA-related prognostic model and tumor clus-
tering have the potential to serve as prognostic predictors,
aiding clinicians in evaluating the prognosis of pediatric
AML patients.
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