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Abstract: Lower-grade glioma (LGG), a prevalent malignant
tumor in the central nervous system, requires accurate pre-
diction and treatment to prevent aggressive progression. We
aimed to explore the role of disulfidptosis-related genes
(DRGs) in LGG, a recently discovered form of programmed
cell death characterized by abnormal disulfide accumula-
tion. Leveraging public databases, we analyzed 532 LGG
tumor tissues (The Cancer Genome Atlas), 1,157 normal sam-
ples (Genotype-Tissue Expression), and 21 LGG tumor samples
with 8 paired normal samples (GSE16011). Our research uncov-
ered intricate relationships between DRGs and crucial aspects
of LGG, including gene expression, immune response, mutation,
drug sensitivity, and functional enrichment. Notably, we identi-
fied significant heterogeneity among disulfidptosis sub-clusters
and elucidated specific differential gene expression in LGG,
with myeloid cell leukemia-1 (MCL1) as a key candidate.
Machine learning techniques validated the relevance of
MCL1, considering its expression patterns, prognostic value,
diagnostic potential, and impact on immune infiltration. Our
study offers opportunities and challenges to unravel poten-
tial mechanisms underlying LGG prognosis, paving the way
for personalized cancer care and innovative immunothera-
peutic strategies. By shedding light on DRGs, particularly
MCL1, we enhance understanding and management of LGG.

Keywords: disulfidptosis, lower-grade glioma, immune infil-
tration, machine learning, MCL1

1 Introduction

Gliomas are the most common primary intracranial malig-
nant tumors of the central system, with approximately
50% of patients exhibiting aggressiveness [1]. Gliomas are
mainly classified as lower-grade glioma (LGG) and glioblas-
toma multiforme (GBM). LGG is considered a worldwide
health problem, accounting for approximately 20% of gliomas
diagnosed in the United States [2]. Although LGG is less
aggressive than GBM, there is a higher incidence in young
people and a tendency to progress to high grade in later
stages [3]. Therefore, efficient and sensitive diagnostic
novel markers are needed to predict prognosis and stop
progression.

Research is now proposing a novel mode of cell death,
disulfidptosis, independent of the currently existing pro-
grammed cell death such as apoptosis, ferroptosis, necrop-
tosis, and cuproptosis. It is a rapid form of death caused by
disulfide stress resulting from the accumulation of excess
intracellular cystine [4]. Earlier studies found that under
glucose starvation conditions, NADPH was heavily depleted
in SLC7A11 overexpressing cells and disulfides such as
cystine accumulated abnormally, inducing disulfide stress
and rapid cell death [5]. The endoplasmic reticulum of
eukaryotic cells and the periplasmic space of prokaryotic
cells are capable of forming and transferring protein disul-
fide bonds. The formation of structural disulfide bonds is a
catalytic process involving many proteins and small mole-
cules [6]. The formation of disulfide bonds has now been
identified in cancer-related proteins and it is time to con-
sider how this allosteric bond can be used as a target for
new therapies [7]. In addition, a variety of disulfide iso-
merases have been shown to be associated with tumorigeni-
city in a variety of tumors [8,9]. Notably, protein disulfide
isomerase may play a role in the malignant progression of
gliomas and predict the clinical prognostic value of gliomas
[10]. Furthermore, RAC1, a component of the WAVE regula-
tory complex, plays a significant role in actin polymerization
and the formation of thin-walled cells, processes that are
implicated in disulfidptosis. The RAC1 signaling pathway
has been linked to epileptogenic mechanisms in glioma-
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associated epilepsy [11]. However, the precise impact of dis-
ulfidptosis on the prognosis and immune infiltration of LGG
is still unclear and requires further investigation.

To explore possible pathogenic mechanisms, we ana-
lyzed genes differentially expressed between LGG samples
and normal tissue using Cancer Genome Atlas (TCGA) and
Gene Expression Omnibus (GEO) databases. Disulfidptosis-
related gene (DRGs) were interrogated and explored for
expression, immunity, mutation, and drug sensitivity in
LGG. Sub-clusters of DRGs were then constructed based
on clinical features and gene expression and the associated
mechanisms explored. Differential genes and DRGs were
then extracted for crossover to find the differentially
expressed DRGs. In addition, machine learning algorithms
were applied to find key differential genes. Finally, the
strongest trait gene was identified and the relationship
with prognosis and immune infiltration was further consid-
ered in LGG. This provides a new perspective to better
understand the underlying molecular mechanisms of LGG
pathogenesis.

2 Materials and methods

2.1 Identification of DRGs

We identified nine DRGs from the previous literature [12].
This study identified and selected DRG genes based on their
consistent and notable association with disulfidptosis, a
cellular process of interest. Each gene encodes specific pro-
teins that play crucial roles in biochemical pathways and
cellular structures involved in disulfidptosis. Among these
genes, SLC7A11 was emphasized due to its central role as a
cystine transporter in this process. Additionally, the selec-
tion criteria included genes that interact with the WAVE
regulatory complex (NCKAP1, WASF2, CYFIP1, ABI2, BRK1,
and RAC1), which is known to be involved in actin polymer-
ization and the formation of lamellipodia, both relevant to
disulfidptosis. Moreover, BAK1 and ACSL4 were chosen for
their significant roles in regulating programmed cell death
and their close association with disulfidptosis. GeneMANIA
Prediction Server is a biological network integration for
gene prioritization and prediction of gene function [13].
We used the GeneMANIA website (http://www.genemania.
org) to identify functionally similar genes and create 29 DRGs.

2.2 LGG datasets

LGGs are a group of primary brain tumors that originate
from glial cells. Currently, LGGs include WHO grade II and
III gliomas, and their classification is based on molecular
features rather than histopathological characteristics [14].
The RNA-sequencing (RNA-seq) data and relevant clinical
data of 532 LGG tumor tissues were downloaded from
TCGA (http://cancergenome.nih.gov) and Genotype-Tissue
Expression (GTEx) database (https://www.gtexportal.org/
home/-index.html) of LGG normal was extracted (n = 1,157).
The above datasets were selected to meet the criteria at the
time of the last data freeze in spring 2023. In addition, the
GSE16011 dataset [15] was derived from GEO (https://www.
ncbi.nlm.nih.gov/geo/.), which contains 21 LGG cancer sam-
ples and 8 paired normal samples. Two datasets are used
to explore DRGs’ expression levels, differential gene ana-
lysis, machine learning, prognosis, and immune infiltration,
among others. Data were extracted in TPM format and
further log2(x + 1) transformations were performed for
each expression value. All data analyses was carried out
using R (version 4.2.1) and the relevant bioinformatics ana-
lysis website.

2.3 Gene set and differentially expressed
gene (DEG) functional enrichment
analysis

For gene set functional enrichment, we used the kyoto
encyclopedia of genes and genomes (KEGG) rest API
(https://www.kegg.jp/kegg/rest/keggapi.html) to obtain the
latest KEGG pathway gene annotations as background,
mapped the genes to the background set, and used the R
package ClusterProfiler (version 3.14.3) [16] to perform the
enrichment analysis to obtain the results of gene set
enrichment. Similarly, we used the Gene Ontology (GO)
annotations of genes from the R package org.Hs.eg.db (ver-
sion 3.1.0) as a background, mapped the genes to the back-
ground set, and used the R package ClusterProfiler (version
3.14.3) to perform enrichment analysis to obtain the gene
set enrichment results. p values < 0.05 and false discovery
rate (FDR) < 0.1 were considered statistically significant.

For DEGs’ functional enrichment, KEGG enrichment
analysis is practical for analyzing gene function and asso-
ciated high-level genomic functional information. GO is a
widely used tool for the annotation of genes with functions,
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in particular molecular function, biological pathway, and
cellular component. To better understand the oncogenic
and immune infiltration of target genes, we obtained
enrichment results for differentially up/down-regulated
genes KEGG pathway and enrichment results for differen-
tially up/down-regulated genes GO term. The functional
enrichment results were obtained from the R package
ClusterProfiler (version:3.18.0). p values <0.05 were consid-
ered statistically significant.

2.4 Gene set cancer analysis (GSCA)

GSCA is an integrated platform for genomic, pharmacoge-
nomic, and immunogenomic cancer analysis [17]. Within
this enhanced GSCA, a range of services are provided to per-
form gene set genomic including expression, single-nucleotide
variation (SNV), copy number variation (CNV), methylation,
and immunogenomic (24 immune cells) analysis. In addition,
the combination of clinical information and small molecule
drugs allows the mining of candidate biomarkers and valuable
small drugs to inform further clinical trials.

2.5 Subgroup analysis

Consistency analysis was performedusing the ConsensusClusterPlus
R package (v1.54 4.0) [18] with a maximum number of clusters of 6
and 80% of the total sample drawn 100 times, clusterAlg = “hc,”
innerLinkage = “ward.D2.” Cluster heatmaps were
performed using the R package pheatmap (v1.0.12). Gene
expression heatmaps retained genes with an SD of >0.1.

2.6 Differential genetic screening

Limma (linear models for microarray data) is a differential
expression screening method that utilizes a generalized linear
model [19]. In the TCGA database, DEGs were screened in sub-
group C1 and C2 data sets. Differentially expressed mRNA was
studied using the limma package (version 3.40.6). Threshold for
differential mRNA expression between two clusters was set at
“Adjusted p < 0.05 and |log2 FC| > 1.” In GSE16011, p < 0.05 and
|log2 FC| > 1.5 was selected as the cut-off standard.

2.7 Machine learning

To identify trait genes, two machine learnings were used to
screen for DRGs. The least absolute shrinkage and selection
operator (LASSO) is a regressionmethod used for regularization

to improve prediction accuracy and model comprehensibility
by select variables [20]. Random Forest is a learning method
that constructs a large number of decision trees and outputs
classes of individual trees. This method has a high degree of
accuracy, sensitivity, and specificity [21]. Log rank was used to
test survival analysis comparing survival differences between
two groups, and timeROC analysis was performed to discrimi-
nate the accuracy of the predictive model.

2.8 Statistical analysis

All statistical tests were performed using the R package
(version 4.2.1) and visualizations were performed using
the ggplot2 package (version 3.3.6). Expression correlation
network of the DRGs analysis and visualization using
igraph package (version 1.3.4) and ggraph package (version
2.1.0). With the xCell package (version 1.1.0), the integrated
level of 64 cell types was estimated, including 14 stromal
cell types. LASSO regression and Random Forest analyses
were carried out using the R packages “glmnet” [22] and
“randomForest” [23]. Kaplan–Meier survival analyses were
performed with the “survival R” and “survminer R” packages
(version 3.3.1). ROC analysis was performed with the qROC
package (version 1.18.0). Construction and visualization of
Nomogram models were carried out using the rms package
(version 6.4.0). Spearman correlation analysis was used to
understand the relationship between myeloid cell leukemia-
1 (MCL1) expression levels and immune infiltration. The
immune infiltration algorithm (ssGSVA) in the GSVA package
(version 1.46.0) was used to calculate immune scores [24].
Wilcoxon rank-sum test was used to compare differences
between groups. p < 0.05 was considered to indicate statistical
significance (ns, p ≥ 0.05; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001).

3 Results

3.1 Assessing differential expression of DRGs
in LGG

As previously described, nine genes (BAK1, NCKAP1, ACSL4,
SLC7A11, CYFIP1, WASF2, ABI2, BRK1, and RAC1) were
shown to be associated with disulfidptosis [12]. To confirm
the expression of these related genes in LGG, we down-
loaded expression data from the TCGA and GTEx databases
for cancer and normal tissues, which showed differences
in the expression of DRGs. All relevant genes were upre-
gulated and significant in tumor expression. Consistent
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results were also obtained in the GEO database (Figure 1(a)
and (b)). We used GeneMANIA on predicting functionally
similar genes in hub genes. We obtained 20 similar gene hub
genes, comprisingWASF1, CYFIP2, MFN1, NCKAP1L, SLC25A25,

MCL1, DPYSL2, BAAT, SLC3A2, ABI1, POTEI, TRIO, PLCB2, BID,
TRIM32, RAP1GDS1, MFN2, BCL2L1, BOK, and PREX1. The hub
genewas located in the inner circle, while the predicted genes
were in the outer circle. The relationships between genes

Figure 1: Expression distributions, Spearman correlation, and enrichment analysis of DRGs in LGG. Expression distributions of nine DRGs between
cancer and normal tissues in the (a) TCGA and (b) GEO datasets. (c) GeneMANIA website for identifying functionally similar genes and establishing 29
DRGs. Twenty similar genes are located in the outer circle, while nine hub genes are located in the inner circle. Five colors of the lines represent the
type of gene interactions. (d) Expression correlation network of the DRGs. Positive correlations are shown by the red line and negative correlations are
shown by the blue line. The thickness of the line indicates the strength of the correlation. (e) KEGG and (f) GO concentrated circle diagram. *p < 0.05,
**p < 0.01, ***p < 0.001 and ****p < 0.0001.
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were specifically based on five types, including Predicted,
Physical Interactions, Pathway Co-expression, and Genetic
Interactions (Figure 1(c)). Combined with the network dia-
gram of correlation analysis, most of the related gene expres-
sions were positively correlated with each other (Figure 1(d)).
Enrichment analysis of DRGs in the KEGG dataset identified
some apoptosis and disease-related pathways such as patho-
genic Escherichia coli infection, regulation of actin cyto-
skeleton, apoptosis-multiple species, ferroptosis, amyotrophic
lateral sclerosis, apoptosis, and so on (Figure 1(e)). Further
enrichment analysis of these genes on the GO dataset indi-
cated that certain related actin nucleation items, such as
organelle outer membrane, outer membrane, positive regula-
tion of Arp2/3 complex-mediated actin nucleation, vascular
endothelial growth factor (VEGF) receptor signaling pathway,
actin polymerization or depolymerization, regulation of Arp2/
3 complex-mediated actin nucleation, positive regulation of
actin nucleation, actin cytoskeleton organization, and so on
(Figure 1(f)). The above analysis shows that DRGs are con-
firmed with some reliability in LGG.

3.2 Exploring the expression, immunity,
mutations, and drug sensitivity of 29
DRGs in LGG

To gain a comprehensive understanding of the role and
relevance of DRGs in cancer diagnosis, we used GSCA to
further correlate the analysis of four modules, including
expression, immunity, mutations, and drug sensitivity. In
the expression module, summarize the percentage of LGG
for which specific gene mRNA expression has a potential
impact on pathway activity (Figure 2(a)). Specific pathways
include: Apoptosis, Cellcycle, DNA damage, EMT, Hormone
AR, Hormone ER, PI3KAKT, RASMAPK, RTK, and TSCmTOR.
Specifically, gene sets were most meaningfully and
positively correlated with Hormone ER (p < 0.05, #FDR
< 0.05) and most negatively correlated with DNA Damage
pathways (p < 0.05, #FDR < 0.05) (Figure 2(b)). Moreover,
the gene set has an impact on patient survival outcomes,

with overall survival (OS) and disease-specific survival
close but less significant (p > 0.05) (Figure 2(c)). In the
immunity module, gene sets were most meaningfully
and positively correlated with macrophage (p < 0.05,
#FDR < 0.05) and most negatively correlated with Gamma
delta (p < 0.05, #FDR < 0.05) (Figure 2(d)). Interestingly,
Figure 2(e) summarizes the difference of immune infiltration
between gene set CNV groups. CD8 native, Gamma delta, and
Tr1 are meaningfully highly expressed in CNV, as opposed to
Exhausted, Macrophage, and InfiltrationScore. In themutation
module, we can see that the waterfall plot is dominated by
Missense mutation, with PREX1 and TRIO reaching the highest
29.1% (Figure 2(f)). NCKAP1L and ACSL4 were the most fre-
quent mutants (Figure 2(g)). CNV induced the extensive upre-
gulation of its mRNA expression (Figure 2(i)) and survival
(Figure 2(k)). Methylation, however, affected extensive down-
regulation of theirmRNA expression (Figure 2(h)) and survival
(Figure 2(j)). Furthermore, the correlation of gene expression
with the genomics of drug sensitivity in cancer (GDSC) drug
sensitivity (top 30) (Figure 2(l)) and Cancer Therapeutics
Response Portal (CTRP) drug sensitivity (top 30) (Figure 2(m))
in pan-cancer demonstrates consistency and reliability of
results. In conclusion, analysis of the multiple modules
described above showed strong associations in terms of
expression, immune infiltration, mutations, and drug sen-
sitivity of DRGs in LGG.

3.3 Two disulfidptosis sub-clusters and
analysis of associated differential genes

We performed consensus unsupervised clustering on a
sample of 512 patients in LGG from TCGA databases, with
2 clusters (Cluster 1 [n = 317], Cluster 2 [n = 195]) selected for
relative stability under the distribution (Figure 3(a) and (b)).
In contrast to the C1 subgroup, DRGs were highly expressed
in the C2 subgroup (Figure 3(c)) and had a poorer prognosis
on the survival curve (Figure 3(d)). To further explore the
differences between the two subgroups, Limma analysis of
the volcano map (Figure 3(e)) and heat map (Figure 3(f)) was
used to demonstrate the differential genes between the two

Figure 2: Expression, immunity, mutations, and drug sensitivity of 29 DRGs in LGG. (a) Percentage of LGG in which mRNA expression of specific genes
has a potential effect on pathway activity. (b) The association between GSVA score and activity of cancer-related pathways in LGG. (c) The results of
survival difference between GSVA score groups in LGG. (d) The association between GSVA score and activity of cancer-related pathways in LGG. (e) the
difference of immune infiltration between gene set CNV groups. (f) Waterfall plot showing the mutational landscape of DRGs in LGG. (g) The profile of
SNV of the DRGs set in LGG. (h) The profile of correlations between methylation and mRNA expression of DRGs in LGG. (i) The correlations between
CNV and mRNA expression in LGG. (j) The OS difference between higher and lower methylation groups in LGG. (k) The difference of survival between
CNV and wide type in LGG. Correlation of gene expression with (l) GDSC drug sensitivity (top 30) and (m) CTRP drug sensitivity (top 30) in pan-cancer.
DFI: disease-free interval; DSS: disease-specific survival; OS: overall survival; PFS: progression-free survival; GSVA score: gene set expression score;
CNV: copy number variation; SNV: single-nucleotide variation; Amp: amplification; Dele: deletion; WT: wild type; CTRP: The Cancer Therapeutics
Response Portal. *p < 0.05, #FDR <0.05.
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Figure 3: Two disulfidptosis sub-clusters were shown. (a) Cumulative distribution function (CDF) curve of K (2–6). The relative change in area under
the CDF curve of K (2–6). (b) Appropriate unsupervised clustering analysis (k = 2). (c) Heat map showing the relationship between DRGs’ expression in
subgroups. (d) Survival curve analysis revealed differences in OS between 2 subgroups. Two groups were tested by log rank, with 95% CL representing
the HR confidence interval; median time represents the time in years corresponding to survival in the different groups at 50%. (e) Differential analysis
of subgroups. (f) Heatmap showing DEGs. (g–j) KEGG pathway and GO air bubble diagram. In the enrichment result, p values <0.05 are considered to
be a meaningful pathway (enrichment score with −log10 (P) of more than 1.3).
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subgroups. 115 upregulated genes such as SNCB, CHGA,
LICAM, CPLX2, TRIM67 and 473 downregulated genes were
identified in DRGs-high group such as CYBB, SCIN, C3, FPR1,
ALOX5AP were identified in the DRGs-low group (C1) com-
pared to DRGs-high group (C2) (Figure 3(e)). Enrichment
analysis of the upregulated genes in the KEGG dataset is shown
in the neuroactive ligand−receptor interaction pathway (Figure
3(g)), compared to the downregulated genes in the tuberculosis,
Staphylococcus aureus infection, and phagosome pathways
(Figure 3(i)). The further enrichment analysis of the upregulated
genes in the GO dataset is shown in the regulation of trans-
synaptic signaling, modulation of chemical synaptic transmis-
sion, and vesicle-mediated transport in synapse (Figure 3(h)),
compared to the downregulated genes in T-cell activation, neu-
trophil activation involved in immune response, and neutrophil
degranulation, which were involved in immune response
(Figure 3(j)). In addition, the xCell algorithms were used to
analyze the immunological characteristics of subgroups
(Figure 4(a)). Compared to C1 subgroup, C2 subgroup
showed a meaningful positive correlation with immune
cells. The proportions of all immune cell types are shown
in Figure 4(b). To predict the effect of immune checkpoint
blockade therapy, we also explored the expression of key
immune checkpoint genes in the groups (Figure 4(c)). The
results showed that the expressions of CD274, CTLA4,
HAVCR2, LAG3, PDCD1, PDCD1LG2, and SIGLEC15 were
elevated in C2 subgroup (Figure 4(c)), which suggested
an immunosuppressive status.

3.4 Construction of prognosis risk model
based on DRGs in TCGA dataset

To identify new prognostic markers for LGG, we per-
formed a LASSO regression analysis of LGG patients in
the TCGA database based on 29 DRGs. The LASSO regres-
sion algorithm used 10-fold cross-validation for feature
selection, and all genes except POTEI showed consistency
(Figure 5(a)). Finally, 14 genes were identified with disulfidp-
tosis-signature, including BAK1, SLC7A11, CYFIP1, WASF2,
ABI2, BCL2L1, BID, TRIO, ABI1, SLC3A2, DPYSL2, MCL1,
SLC25A25, and CYFIP2 (Figure 4(b) and (c)). We also con-
firmed that OS was significantly longer in the low-risk group
than in the high-risk group (hazard ratio [HR] = 4.266, 95%
confidence interval [CI] = 1.78–2.89, P < 0.001), comparing
median times of 11.3–4.3 years, respectively (Figure 5(d)).
Meanwhile, ROC time-dependent curves demonstrated that
the accuracy of 14 gene signatures was greater than 0.70 for
1-, 3-, and 5-year survival rates (area under curve > 0.7
indicates a high degree of accuracy) (Figure 5(e)).

3.5 Application of machine learning to the
identification of trait genes via the GEO
dataset

To verify the reliability of the above analysis based on TCGA
data, we also performed further machine learning analysis
of LGG patients based on the GEO database. First, we used
Limma analysis of heat map (showed top 50 up/downregu-
lated genes respectively) (Figure 6(a)) and volcano map
(Figure 6(b)) to demonstrate differential genes in LGG patients
in GSE16011. A total of 1,533 upregulated genes and 1,818
downregulated genes were identified, 7 of which were asso-
ciated with DRGs (Figure 6(c)). Second, LASSO regression
was used to select the most relevant trait genes. When λ =

0.17, MCL1 and RAP1GDS1 were selected (Figure 6(d) and (e)).
Meanwhile, we used RandomForest algorithm to screen
DRGs and construct potential genes based on the GSE16011
dataset. We show the top 10 genes in order, including MCL1,
RAP1GDS1, MFN2, SLC3A2, WASF1, CYFIP2, CYFIP1, DPYSL2,
WASF2, and BOK (Figure 6(f)). Ultimately, MCL1 was selected
as the only candidate gene (Figure 6(g)).

3.6 Clinical diagnosis and prognostic value
analysis of MCL1-related gene marker

In the present study, we found that MCL1 expression was
upregulated in LGG patients compared to normal tissue by
analyzing data from the TCGA andGTEx databases (Figure 7(b)).
This finding was validated on the GEO database (Figure 7(c)).
Kaplan–Meier survival analysis of LGG patients suggests the
reliability of MCL1 as a bad prognostic factor (HR = 1.66, 95%
CI= 1.15–2.41, P< 0.01).MCL1 combinedwith four othermarkers
to construct a new nomogram to predict the probability of
survival at 1, 3, and 5 years of clinical diagnosis in patients
with LGG based on patient’s WHO grade, gender, age and his-
tological type (Figure 7(d)). Nomogram calibration curves vali-
date the agreement between predicted and actual survival
probabilities for LGG at 1, 3, and 5 years (Figure 7(e)).

3.7 Immune infiltration analysis of MCL1
in LGG

By performing the ssGSEA algorithm on 24 immune cells,
we analyzed the results of the correlation between MCL1
and immune infiltration and presented them in the form of
a lollipop plot (Figure 8(a)). Specifically, MCL1 was posi-
tively correlated with most immune cells such as T helper
cells, neutrophils, and eosinophils and negatively corre-
lated with NK CD56bright, TReg, and Mast cells. Among

8  Xiao-min Li et al.



Figure 4: Immune cells’ infiltration between subgroups. (a) Immune cells’ infiltration between different groups by xCell algorithms. (b) The proportion
structure of all Immune cell types. (c) The expression of eight key immune checkpoint genes in two subgroups. *p < 0.05, **p < 0.01 and ***p < 0.001.
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these immune cells, we specifically show a statistically signifi-
cant correlation between T helper cells and NK CD56bright
cells’ infiltration in the MCL1 differential expression analysis
(Figure 8(b)). MCL1 expression levels were significantly posi-
tively and negatively correlated with the enrichment scores of
T helper cells (Figure 8(c)) and NK CD56bright cells (Figure
8(d)), respectively. At the overall level of infiltration, we explore
three immune infiltration scores that correlate with MCL1,
including ESTIMATEScore (r = 0.37), ImnuneScore (r = 0.37),

and StromaScore (r = 0.34). Results showed a meaningful posi-
tive correlation (all p < 0.001) (Figure 8(e)–(g)).

4 Discussion

The identification and characterization of cell death mechan-
isms not only promotes a fundamental understanding of

Figure 5: Evaluation of disulfidptosis signature by the performance of the 14-gene signature in the TCGA dataset. (a) Construction of disulfidptosis
signatures using LASSO regression. (b) Determining the appropriate number of genes by confidence intervals of lambda. (c) Risk score, survival time,
and expression of the 14-gene signature in LGG. (d) Kaplan–Meier survival analysis of OS was compared between low- and high-risk score groups in
LGG. (e) ROC curves over time at 1, 3, and 5 years, respectively.

10  Xiao-min Li et al.



cellular homeostasis but also provides important ideas for the
treatment of many diseases such as cancer. Recent studies
have identified a new form of disulfide-induced cell death in

human cells, called disulfidptosis. This study suggests that
GLUT inhibitor-induced disulfidptosis may be an effective
strategy for treating tumors [12].

Figure 6: Machine learning to identify trait genes in the GEO dataset. Differential genes in GSE16011 showing (a) heat map and (b) volcano map. (c)
Trait genes shared by DRGs and differential genes of GSE16011. (d and e) Selection of the most relevant trait genes using LASSO regression. (f)
Selection of the most relevant DRGs based on GSE16011 using RandomForest (top 10). (g) The Venn diagram shows the overlap of candidate genes
between the two databases.
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There has long been a search for better treatments for
gliomas, particularly LGG, which has a relatively low stage
and malignancy, can be stopped with aggressive treatment
in some young people with the disease, and is the more
promising of the glioma tumors to be cured [3,25]. How-
ever, traditional surgical resection combined with che-
motherapy and radiotherapy is difficult to avoid tumor
resistance and progression. Therefore, it becomes crucial
to evaluate LGG prediagnosis and to investigate new drugs
targeting specific functional pathways. Our study links dis-
ulfidptosis to the pathogenesis of LGG, identifies possible
key genes through bioinformatics analysis, and explores
potential therapeutic approaches.

In this study, we compared the expression of related
genes in LGG tumors and normal tissues from the TCGA
and GEO databases, and the data showed significant upre-
gulation in tumor expression. We used GeneMANIA to

predict functionally similar genes in hub genes to obtain
29 similar DRGs, most of which were positively correlated
with each other. This defined gene set has scientific validity
and reliability. The gene set KEGG enrichment analysis
revealed enrichment of some apoptosis and disease-related
pathways such as pathogenic E. coli infection, regulation of
actin cytoskeleton, apoptosis-multiple species, ferroptosis,
apoptosis, and so on.

This confirms the intrinsic pathway correlation between
disulfidptosis and various cell deaths such as ferroptosis and
apoptosis. Ferroptosis is a unique form of cell death that is
driven by iron-dependent lipid peroxidation. Ferroptosis is
closely associated with a variety of biological scenarios,
including development, aging, immunity, and cancer [26]. In
GO terms studies, we found that DRGs are involved not only
in organelle outer membrane components and actin cytoske-
leton organization but also in the VEGF receptor signaling

Figure 7: Construction of nomogram for OS prediction based on TCGA. (a) Kaplan–Meier survival analysis of LGG patients in the high-risk and low-risk
groups. Expression distributions of MLC1 between cancer and normal tissues in the (b) TCGA and (c) GEO datasets. (d) A nomogram combining MLC1
and clinicopathological features from TCGA LGG data. (e) Nomogram calibration curve for predicting OS in TCGA LGG data.
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pathway. The proven role of VEGF in promoting tumor angio-
genesis and human cancer pathogenesis has led to the
rational design and development of drugs that selectively
target this pathway [27]. This partly explains the oncogenic
role of disulfidptosis in LGG cells.

At the overall level, we perform a preliminary exploration
of DRGs, which are strongly correlatedwith expression, immune
infiltration, mutation, and drug sensitivity in LGG. Taking MCL1
for example, it ranked high in the list of methylation difference
and was a significant prognostic risk factor for LGG.

Figure 8: MLC1 expression is linked with immune infiltration in LGG based on TCGA. (a) Correlation between MLC1 and multiple immune cells. (b)
MLC1 was associated with T helper cells and NK CD56bright cells. Correlation between enrichment scores and (c) MLC1 in T helper cells and (d) NK
CD56bright cells. (e–g) Correlation between the expression level of MCL1 and three infiltration score. **p < 0.01, ***p < 0.001.
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MCL1 is a member of the BCL2 family and its high
expression is closely associated with drug resistance in
tumor [28]. MCL1 of expression also links to the pathway
of Apoptosis, Cellcycle, DNA Damage, and other pathways,
which is consistent with previous article studies [29]. For
example, DNA damage induces apoptosis, which occurs in
part through p53-responsive genes encoding pro-apoptotic
BCL2 family proteins that bind to and inhibit anti-apoptotic
Bcl-2 family members such as MCL1.

Based on consensus clustering, we identified two LGG
subtypes (C1 and C2) by DRGs’ expression and found that
the C2 subtype was associated with poor prognosis. On
further analysis, C2 subgroup was more significant in rela-
tion to immune scores and immune checkpoints. The sub-
groups were then further explored for differential genes
and finally found that enrichment analysis of the down-
regulated genes in the GO dataset is shown in T-cell activa-
tion, neutrophil activation involved in immune response,
and neutrophil degranulation. This is further evidence of
the importance of immunity and disulfidptosis in the
development of LGG.

To identify new prognostic markers for LGG, we per-
formed the LASSO regression analysis based on 29 DRGs for
LGG patients in the TCGA database. We identified 14 genes
with a disulfidptosis signature, including BAK1, SLC7A11,
CYFIP1, WASF2, ABI2, BCL2L1, BID, TRIO, ABI1, SLC3A2,
DPYSL2, MCL1, SLC25A25, and CYFIP2. We also confirmed
that OS was significantly longer in the low-risk group than
in the high-risk group. Meanwhile, the ROC time-dependent
curves showed an accuracy of >0.70 for 1-, 3-, and 5-year
survival rates. To verify the reliability of the above analysis
based on TCGA data, further machine learning analysis was
performed on LGG patients based on the GEO database.
First, we used Limma analysis to identify a total of 1,533
upregulated genes and 1,818 downregulated genes, of which
7 were associated with DRGs, including MCL1, RAP1GDS1,
WASF1, MFN2, CYFIP2, SLC3A2, and BOK. LASSO regression
was then used to screen out the most relevant trait genes,
MCL1 and RAP1GDS1. Meanwhile, we screened DRGs using
RandomForest algorithm, showing the top 10 genes,
including MCL1, RAP1GDS1, MFN2, SLC3A2, WASF1, CYFIP2,
CYFIP1, DPYSL2, WASF2, and BOK. MCL1 was finally selected
as the only candidate gene, a result that further demon-
strates the role of MCL1 in LGG carcinogenesis. Previous
studies have confirmed that MCL1 can promote cell migra-
tion and invasion in some types of cancers, including renal
cell carcinoma [30], acute myeloid leukemia [31], and pan-
creatic ductal adenocarcinoma [32]. We further found that
MCL1 expression was upregulated in LGG patients by ana-
lyzing data from TCGA and GTEx databases. This finding was
validated on the GEO database. The reliability of MCL1 as a

poor prognostic factor ultimately establishes nomogram as an
aid to clinicians in the early clinical diagnosis of LGG.

Accelerated progression of tumors is not only asso-
ciated with malignant cells but is also influenced by tumor
microenvironment [33]. As researchers continue to learn
more about the tumor microenvironment, there is great
potential for further understanding of the relevant immune
cell components and roles in the tumor microenvironment
to guide immunotherapy [34]. We analyzed the results of the
correlation between MCL1 and immune infiltration. MCL1
showed the most positive correlation with T helper cells and
the most negative correlation with NK CD56 bright cells.
T helper cells (CD4+ T cells) are essential for host defense
but are also a major driver of immune-mediated disease
[35]. For instance, multiple sclerosis is confirmed to be an
autoimmune inflammatory disease caused by the recruit-
ment of self-reactive lymphocytes (mainly CD4+ T cells) in
the central nervous system [36,37]. Previous studies have
revealed that immunity based on T helper cell characteris-
tics of tumor subtypes affects prognosis and treatment
response in breast cancer [38]. In addition, compared to
the NK CD56 dim cells, NK CD56 bright cells are capable of
producing large amounts of cytokines when monocytes are
activated but have a lower natural cytotoxicity [39]. There-
fore, studies focusing on one or more unique immune cells
may help to identify potential mechanisms of action of MCL1
and demonstrate that MCL1 is a promising diagnostic LGG
biomarker involved in immune regulation. Ultimately, MCL1-
related studies and new targeted immunotherapies may help
to improve the poor prognosis of patients and give physicians
one more possibility to treat LGG.

Understanding the mechanisms and consequences of
disulfidptosis may provide insights into novel therapeutic
targets and strategies for cancer treatment. Currently, dis-
ulfidptosis has been shown to correlate with bladder cancer
[40], hepatocellular carcinoma [12], and renal cell carcinoma
[41], but an association with LGG has not yet been reported.
MCL1 plays an important role in cancer development and
has been associated with drug resistance in a variety of
cancers. MCL1-selective inhibitors may represent a new
class of anticancer agents that could provide clinical benefit
to patients with a variety of hematological malignancies and
solid tumors [42]. Furthermore, the literature suggests that
exploring ubiquitination and deubiquitination of MCL1 is
advancing therapeutic approaches and future directions
[43]. This groundbreaking study provides novel insights
and innovative findings by proposing, for the first time in
the existing literature, a potential link between disulfidop-
tosis and LGG. The study further explores the significance of
MCL1 expression of DRGs as a crucial prognostic factor
in LGG.
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This study has some limitations. We first explored
DRGs using public databases such as GEO, TCGA, and
GTEx but lacked clinical data of our own. This article lacks
human tissue validation and further precise validation
through biological experiments is needed. To address the
heterogeneity of tumor samples, further techniques such
as single-cell analysis or spatial transcriptomics allow for a
more detailed characterization of the heterogeneity of cells
within a tumor and their impact on gene expression pat-
terns and immune infiltration

5 Conclusion

Our study reveals significant associations between DRGs
and expression, immune response, mutations, and drug
sensitivity in patients with LGG. We observed substantial
heterogeneity among LGG patients, particularly within dis-
tinct disulfidptosis subclusters and DEGs. Importantly, we
found that MCL1 may serve as a prognostic biomarker in
LGG, predicting poor prognosis and correlating with levels
of immune infiltration. These findings provide valuable
insights into the potential use of MCL1 as a novel prognostic
indicator and highlight its relevance for the development of
new immunotherapeutic strategies. Our study represents a
scientific and bold endeavor.Moving forward, further research
should aim to explore and investigate the mechanistic aspects
of MCL1’s role in LGG and explore potential therapeutic inter-
ventions based on these findings.
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