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Abstract: Hyperlipidemia is a metabolic disorder, which is
a major risk factor for atherosclerosis, stroke, and coronary
heart disease. Although lipid-lowering treatments have been
extensively studied, safer treatments with fewer adverse
effects are needed. Rhubarb is a traditional Chinese medi-
cine that has lipid-lowering, anti-inflammatory, and antiox-
idant properties. Disturbance in lipid metabolism is the basis
of tissue damage caused by hyperlipidemia and plays a key
role in the development of hyperlipidemia; however, the
molecular mechanisms by which rhubarb regulates lipid
metabolism to lower lipid levels are yet to be elucidated.
We conducted this study to summarize the phytochemical
constituents of Rheum officinale and provide a comprehen-
sive review of the molecular mechanisms underlying the
regulation of lipid metabolism during hyperlipidemia
treatment. It was found that rhubarb extracts, including
emodin, rhubarb acid, and rhubarb phenol, regulate total
cholesterol, triglyceride, TNF-α, and IL-1β levels through sig-
naling pathways such as C/EBP α, 3T3-L1, PPAR α, and AMPK,
thereby improving the hyperlipidemic state. This suggests
that rhubarb is a natural drug with lipid-lowering potential,
and an in-depth exploration of its lipid-lowering mechanism

can provide new ideas for the prevention and treatment of
hyperlipidemia.

Keywords: rhubarb, lipid metabolism, Chinese herbal med-
icine, hyperlipidemia, mechanism, lipid lowering

1 Introduction

Hyperlipidemia is a disease characterized by abnormal
lipid metabolism, manifested by elevated total cholesterol
(TC), triglyceride (TG), and low-density lipoprotein choles-
terol (LDL-C) levels and/or decreased high-density lipopro-
tein cholesterol (HDL-C) levels [1]. A hypercholesterolemic
diet and genetic and environmental factors are important
causes of hyperlipidemia [2,3]. The main pathogenesis is an
increase in lipoprotein synthesis and a decrease in lipid
clearance pathways, leading to abnormally elevated levels
of lipids or lipoproteins in the blood, which are mainly
involved in inflammatory response and oxidative stress
[4,5]. Hyperlipidemia has a wide range of effects on organ-
isms. Abnormalities in lipid metabolism induce oxidative
stress and mitochondrial dysfunction, triggering structural and
functional changes in the heart such as myocardial hyper-
trophy, apoptosis or necrosis of cardiomyocytes, atherosclerosis,
heart failure, and sudden death [6,7]. Cardiovascular disease
(CVD) kills approximately 17.9 million people each year glob-
ally. The risk of CVD in patients with hyperlipidemia is
approximately twice as high as that in patients without
hyperlipidemia [8]. Additionally, hyperlipidemia is asso-
ciated with several chronic diseases, such as hypertension,
fatty liver, cirrhosis, peripheral vascular disease, ischemic
cerebrovascular disease, and pancreatitis [9,10]. The inci-
dence of hyperlipidemia has sharply risen in recent years
as lifestyle and eating habits have changed significantly [11].
Therefore, the prevention and treatment of hyperlipidemia
to reduce the incidence of chronic diseases, such as CVDs,
has become an increasing concern for society.

Currently, fibrates, statins, bile acid sequestrants, nia-
cins, and cholesterol absorption inhibitors are commonly
used to treat hyperlipidemia [12]. Although these drugs
have some therapeutic effects, they cause toxic side effects,
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such as mild-to-moderate elevation of liver transaminases,
nerve damage, myopathy, rhabdomyolysis, and increased
risk of diabetes mellitus, after long-term treatment [13,14].
Therefore, it is essential to explore new therapeutic agents,
and there is a growing tendency to use natural medicines
to treat and prevent diseases [15,16]. A variety of plant-
derived substances have excellent lipid-lowering effects,
and their beneficial properties include inhibition of pan-
creatic lipase, reduction of dietary fat absorption, stimula-
tion of lipolysis, and reduction of lipogenesis [17,18].

Rhubarb is a famous traditional Chinese medicine
belonging to the genus Rhubarb of the Polygonaceae family.
Its application can be traced back to the Shennong’s Classic
of Materia Medica (270 BC) [19]. For more than 2,000 years,
rhubarb has been cultivated worldwide for the treatment of
constipation, diabetic nephropathy, chronic renal failure,
acute pancreatitis, and gastrointestinal bleeding [20]. Recent
studies have shown that rhubarb has hypolipidemic, anti-
bacterial, anti-inflammatory, and antioxidant activities [21],
and it is gradually being applied in the prevention and treat-
ment of hyperlipidemia.

Seven databases, PubMed, SciFinder, Scopus, Web of
Science, CNKI, Wipu, and Wanfang, were searched from
creation of the database to November 25, 2022. We searched
original studies, reviews, and newsletters in English and
Chinese for search terms such as “rhubarb,” “hyperlipi-
demia,” “lipid metabolism,” “pharmacology,” “compounds,”
“pharmacology,” “biological activity,” “clinical application,”
and “toxicity.” If the literature lacked data or the report was
unclear, we corresponded with the authors. If the original
data remained unavailable, the literature was excluded. The
bibliographies of all selected articles were also scanned for
additional relevant articles, and the PubChem database was
used to check the IUPAC names of known rhubarb.

2 Phytochemistry

Research on the chemical composition of rhubarb began in
the early nineteenth century and approximately 200 che-
mical components [20], including anthraquinones, anthrone,
stilbenes, tannins, acyl glucosides, and other bioactive com-
pounds, have been isolated and identified. Among these com-
ponents, anthraquinones, including emodin, rhubarb acid,
rhubarb phenols, and their derivatives, are dominant [22,23],
in addition to stilbenes containing mainly resveratrol and its
derivatives. Table 1 shows the composition of 48 common
compounds in rhubarb.

Anthraquinones are the predominant substances iso-
lated from rhubarb and their most potent active component

is emodin, which consists mainly of a 1,8-dihydroxy-9,10-
anthraquinone skeleton. If different functional groups are
attached to different parts of the backbone structure, they
can display different chemical structures (Figure 1), thereby
exhibiting different chemical properties and pharmacolo-
gical effects [40]. For example, two chemical components,
rhubarb phenols (1,8-dihydroxy-3-methylanthraquinone)
and emodin (1,3,8-trihydroxy-6-methylanthraquinone), have
a basic skeleton of 1,8-hydroxy-methylanthraquinone, but
their functional groups are in different locations, which
leads to differences in their pharmacological effects. Although
both have a lowering effect on plasma lipid levels, emodin
has stronger antitumor and anti-inflammatory effects and is
more influential [41]. Regarding the structure–effect relation-
ship of toxicity, 30 μM emodin induced significant apoptosis
in a time-dependent manner, according to the morphological
changes in L-02 cells. Additionally, rhodopsin may interfere
with the metabolism of glutathione (GSH) and fatty acids in
human hepatocytes [42].

3 Molecular mechanism of lipid
metabolism regulation by
rhubarb

Rhubarb is a classical laxative drug, and its pharmacological
studies have shown that it can regulate lipid metabolism
and has anti-inflammatory effects. Therefore, in addition
to constipation, it is also used to treat disorders of lipid
metabolism and hyperlipidemia. Emodin, rhubarb acid, rhu-
barb phenol, and resveratrol are the main substances that
regulate lipid metabolism and can inhibit pancreatic lipase,
reduce lipogenesis, stimulate lipolysis, and regulate lipid
factor expression to achieve lipid lowering.

3.1 Emodin

Emodin is the predominant anthraquinone in rhubarb,
and it is recognized as a protein complex kinase inhibitor
with activity against a variety of tumor cells, in addition to
its antioxidant, lipid metabolism regulating, and antibac-
terial effects.

Emodin has diverse regulatory mechanisms on lipid
metabolism. It was found that rhodopsin is closely related
to peroxisome proliferator-activated receptor (PPAR) γ
nuclear receptor, and rhodopsin can act as its activator
to regulate lipid metabolism, promoting cholesterol efflux
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from THP1 macrophages, up-regulating scavenger receptor
BI, facilitating reverse cholesterol transport, and inhibiting
cholesteryl ester accumulation by activating the PPAR γ sig-
naling pathway [43–45]. Additionally, emodin acts directly
on transcription factors to regulate lipid metabolism. Li et al.

found that emodin significantly inhibited the mRNA expres-
sion of SREBP-2, a major transcription factor of cholesterol
biosynthesis, and reduced the mRNA levels of cholesterol
metabolism-related genes HMGCR, SS, LSS, and Sc4mol
whereas increased the lipolytic mRNA levels of high-

Table 1: Common chemical constituents of rhubarb

Class S.N. Compounds References

Anthraquinones 1 Emodin Verma et al. [24]
2 Aloe-emodin Agarwal et al. [25]
3 Emodin-O-D-glucoside Ye et al. [26]
4 Emodin-8-O-β-D-glucopyranoside Verma et al. [24]
5 Emodin 8-O-β-D-glucopyranosyl-6-O-sulfate Krenn et al. [27]
6 Emodin 8-O-(6′-O-malonyl)-glucoside Ye et al. [26]
7 Emodin 8-O-(2′,3′,4′,6′-tetra acetyl)-glucoside Krenn et al. [27]
8 Chrysophanol Agarwal et al. [25]
9 Chrysophanol 1-O-glucoside Ye et al. [26]
10 Chrysophanol 8-O-(6′-O-galloyl)-glucoside Ye et al. [26]
11 Chrysophanol-8-O-β-D-glucopyranoside Suresh Babu et al. [28]
12 Physcion Agarwal et al. [25]
13 Physcion-1-O-β-D-glucopyranoside Wang et al. [29]
14 Physcion-8-O-β-D-glucopyranoside Wang et al. [29]
15 6-Methyl-aloe-emodin Singh et al. [30]
16 6-Methyl-aloe-emodin-triacetate Singh et al. [30]
17 6-Methyl-rhein Singh et al. [30]
18 6-Methyl-rhein-diacetate Singh et al. [30]
19 Rhein Singh et al. [25]
20 Rhein 1-O-glucoside Ye et al. [26]
21 Rhein 8-O-glucoside Ye et al. [26]
22 Torachrysone-8-O-β-D-glucopyranoside Suresh Babu et al. [28]
23 8-O-β-D-(6′-O-acetyl) glucopyranosyl-chrysophanol Krenn et al. [31]

Anthrones 24 10-Hydroxycascaroside D Krenn et al. [31]
25 Anthrone C-glucosides Krenn et al. [31]
26 10R-chrysaloin 1-O-β-D-glucopyranoside Krenn et al. [31]
27 10-Hydroxycascaroside C or anthrone C-glucosides Krenn et al. [31]
28 Cascaroside C Krenn et al. [31]
29 Cascaroside D Krenn et al. [31]
30 Cassialoin Krenn et al. [31]

Stilbenes 31 Resveratrol Rokaya et al. [32]
32 Resveratrol 3-O-β-D-glucopyranoside Ngoc et al. [33]
33 Resveratrol-4′-O-β-D-glucopyranoside Chen et al. [34]
34 Resveratrol-4′-O-β-D-(6″-O-galloyl)-glucoside Chen et al. [34]
35 Resveratrol-4′-O-β-D-(2″-O-galloyl)-glucoside Chen et al. [34]
36 Piceatannol Liu et al. [35], Wang et al. [29]
37 Piceatannol-3′-O-β-D-glucopyranoside Wang et al. [29]
38 Piceatannol-4′-O-β-D-(6″-O-galloyl)-glucopyranoside Liu et al. [35]
39 Piceatannol-4′-O–D-glucopyranoside Liu et al. [35], Wang et al. [29]
40 Desoxyrhaponticin Suresh Babu et al. [28]
41 Desoxyrhapontigenin Suresh Babu et al. [28]
42 Rhaponticin Chen et al. [36]
43 Rhapontigenin Zhang et al. [37]

Tannins 44 D-Catechin Krenn et al. [27]
45 Epicatechin Krenn et al. [27]

Phenylbutanone 46 4-(4′-Hydroxyphenyl)-2-butanone-4′-O-β-D-glucopyranoside Kashiwada et al. [38]
47 4-(4′-Hydroxyphenyl)-2-butanone-4′-O-β-D-(2″,6″-O-cinnamoyl)-glucopyranoside Kashiwada et al. [38]
48 Isolindleyin Nonaka et al. [39]
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density lipoprotein receptor (SRBI), hepatic lipase, and
apolipoprotein E (Apo E), showing an overall reduction
in lipid synthesis and enhanced fatty acid oxidation (FAO)
[46]. Xue et al. found that emodin has a regulatory effect
on LPL and FAT/CD36 mRNA expression and helps improve
dyslipidemia. Inflammatory factors can induce lipolysis, and
emodin has a clear modulatory effect on inflammatory fac-
tors [47]. Zhang et al. found that emodin promotes lipid
metabolism by down-regulating TNF-α, thereby inhibiting
TNF-α-induced lipolysis [48].

Cholesterol is a precursor of bile acids, which are ster-
oids synthesized from cholesterol in the liver [49], and the
conversion of cholesterol to bile acids and their secretion
into bile is one of the important ways in which the body
removes cholesterol [50]. Wang et al. [51] found that the
combination of rhodopsin with bile acids could reduce bile
acid levels, thus, promoting the conversion of cholesterol
to bile acids and contributing to the reduction of serum
cholesterol. Notably, among the various mechanisms under-
lying the lipid-lowering effects of emodin, it inhibits both
3T3-L1 adipocytes and induces lipolysis [48]. Furthermore,
emodin has concentration-dependent effects on 3T3-L1
adipocytes, and it promotes the proliferation of 3T3-L1
preadipocytes at low concentrations and inhibits their
proliferation at higher concentrations [52]. Meng et al.
suggested that emodin may inhibit the uptake of NPC1L1
cholesterol by human hepatocytes in an anti-competitive
manner with cholesterol-lowering potential [53].

The above studies have shown that the specificmechanism
of action of rhodopsin in lipid-lowering mainly includes

activation of PPAR γ signaling pathway, regulation of
mRNA expression of lipid metabolism-related factors such
as SREBP-2, SRBI, Sc4mol, etc., as well as inhibition of meta-
bolism in 3T3-L1 adipocytes (Figure 2). Meanwhile, emodin
has a scavenging effect on cholesterol, and lowering blood
cholesterol in hyperlipidemic patients may have a hepato-
protective effect by improving the severity of fatty liver
disease. Therefore, the relationship between emodin level
and liver function requires further investigation.

3.2 Rhubarb acid

Rhubarb acid (4,5-dihydroxyanthraquinone-2-carboxylic
acid), with a molecular weight of 284.22, is the most impor-
tant active component of anthraquinones. It has a variety of
pharmacological activities, such as antitumor, anti-inflam-
matory, anti-fibrotic, and regulation of glucolipid metabo-
lism [54,55]. The hypolipidemic effects of rhubarb acid are of
great interest. It inhibits adipocyte differentiation and sig-
nificantly improves abnormal lipid metabolism in HTG [56].
Fang et al. found that rhubarb anthraquinones inhibit lipid
accumulation before and after 3T3-L1 cell differentiation in
3T3-L1 adipocytes and high-fat diet (HFD)-induced obese
rats, with rhubarb acid showing stronger inhibition and
higher hypolipidemic activity. These effects may be related
to the inhibition of PPAR γ and expression of C/EBP α tran-
scription factors by rhubarb acid to block the production of
fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC)
[57]. Rhubarb acid may also lower the lipid levels by

Figure 1: Chemical structure of the main components of rhubarb.
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enhancing lipolysis in adipocytes. Lipolysis is a catabolic
reaction in which stored TG are hydrolyzed to release gly-
cerol and free fatty acids. The production/metabolism bal-
ance of fat cells is a prerequisite for the regulation of energy
balance in body [58]. Rhubarb acid treatment increases the
expression of lipolytic enzymes ATGL and HSL, which hydro-
lyze TG to glycerol and increase lipolysis by downregulating
key lipogenic transcription factors in adipocytes [57,59]. The
MAPK pathway is closely associated with adipocyte differen-
tiation, and MAPK activation is accompanied by C/EBP β and
C/EBP δ expression, which further activates PPAR γ and C/EBP
α expression to oversee terminal adipocyte differentiation
[60]. Rhubarb acid blocks MAPK signaling in macrophages,
thereby inhibiting the transcription of pro-inflammatory
mediators TNF-α and IL-1β [61,62].

Taken together, the lipid-lowering effects of rhubarbic
acid are mainly mediated by inhibiting 3T3-L1 adipocytes,
PPAR γ and C/EBP α transcription factor expression, and
MAPK signaling, and promoting the expression of lipolytic
enzymes ATGL and HSL (Figure 3). Rhubarbic acid is com-
monly used for lipid-lowering, weight loss, laxatives, detox-
ification, cleansing the internal environment, preventing
gastric cancer, and delaying aging. Compared to traditional
lipid-lowering chemicals, rhubarb acid is less toxic and has
a hepatoprotective effect [63]. Rhubarb acid is the only
anthraquinone that can be absorbed into the blood after
oral administration of rhubarb extract in humans. How-
ever, it is difficult to solubilize rhubarb acid in water, and

increasing its water solubility and improving the rate of
drug dissolution is the breakthrough point for improving
the lipid-lowering effect of rhubarb acid.

3.3 Rhubarb phenol

Rhubarb phenols belong to the anthraquinone group and
have pharmacological effects such as neuroprotective, antic-
ancer, antibacterial, antiviral, antioxidant, and lipid-regu-
lating effects [64]. Studies have shown that rhubarb phenols
can significantly lower blood lipid levels and reduce lipid
accumulation in animals fed with HFD [65,66]. Zhang et al.
found that rhubarb phenol significantly reduced the expres-
sion of FAS and ACC and increased the levels of ACOX1
and CPT1 in obese mice, thus, promoting lipolysis at the
cellular and molecular levels [66]. Kwon et al. [67] found
that rhubarb phenol similarly reduced lipid accumulation
and expression of the lipogenic factors PPAR γ and CCAAT/C/
EBP α in 3T3-L1 adipocytes. Meanwhile, Feldman et al.
showed that rhubarb phenols significantly up-regulated
the r RNA levels of MGLL and HSL, which are key enzymes
in lipolysis, and also the expression of β-oxidation-related
genes in fatty acids [68]. Liu et al. found that rhubarb phenol
increased FAO in 3T3-L1 adipocytes (PPARα, Acadvl, Acadl,
Acadm, L1) by exploring the effect of rhubarb phenol on
lipid metabolism in obese mice. Expression of FAO (PPARα,
Acadvl, Acadl, Acadm, Cpt2), lipolysis (HSL, MGLL), and

Figure 2: Diagram of the lipid-lowering mechanism of emodin.
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thermogenic genes (Ppargc-1α, Prdm16) in L1 adipocytes sug-
gests that rhubarb phenol promotes lipolysis, inhibits lipo-
genesis, and thus, inhibits lipid accumulation [69]. In terms
of signaling pathways, AMPK, an AMP-dependent protein
kinase, is a cellular energy receptor that promotes fatty
acid metabolism and mitochondrial biosynthesis [70]. Liu
et al. indicated that rhubarb phenol promotes lipolysis
and reduces body weight and fat accumulation in HFD-
induced obese mice by activating the AMPK pathway [69].
Li et al. found that the intensity of the hypolipidemic effect
of rhubarb phenol may correlate with its concentration.
Rhubarb phenol dose-dependently inhibits human SRE pro-
moter activity and reduces intracellular cholesterol and TG
levels [71].

The hypolipidemic activity of rhubarb phenol is rela-
tively weaker than that of emodin and rhubarb acid. It
inhibits lipogenesis and promotes lipolysis, which is mainly
realized through the regulation of FAS, ACC, the key enzymes
MGLL and HSL, and oxidative genes (Figure 4). No serious
adverse events were observed in studies on rhubarb phenol,
suggesting its good safety profile.

3.4 Resveratrol

Resveratrol is a large group of astragalus compounds and
an important component of rhubarb with anti-inflamma-
tory, antioxidant, and anticancer properties [72]. Resveratrol

can alter the gene expression profiles related to lipid meta-
bolism [73]. For the first time, Zhang et al. proposed that
resveratrol improves the lipid profile and reduces fat
deposition in vivo in a porcine model, which may be
mediated through fatty acid uptake, initial lipid synthesis,
lipolysis, and FAO [74]. It has also been shown that the
lipid-lowering mechanism of resveratrol mainly includes
up-regulation of the expression of the cholesterol reverse
transporter proteins PPARc and LXR α and some enzymes,
modulation of the SIRT1-PPAR γ pathway and its down-
stream genes FAS and ACC, and increase in the ratio of
apolipoproteins (APOs) A-I/ApoB [75,76]. Sahebkar et al.
noted that in cell culture studies, resveratrol improved
lipoprotein metabolism and reversed cholesterol trans-
port while inhibiting foam cell formation [77]. In experi-
mental models, resveratrol also exhibited antilipidemic
activity by lowering LDL-C and TG levels and increasing
HDL-C concentrations. Yuan et al. found that HFD-fed mice
had dilated hepatocytes with significant lipid droplet accu-
mulation, which was reduced by resveratrol treatment,
further suggesting a lipid-modulating effect [78].

In terms of oxidative stress, Sebai et al. found that
resveratrol reduces the pro-oxidant effects of the LPS-
induced AR42J cell line through a Myd88-dependent sig-
naling pathway [79] and through resveratrol intervention.
TG levels can be reduced in T2DM patients [80], effectively
reducing insulin resistance, lowering fasting blood glucose,
and improving oxidative stress [81]. Its antioxidant effect

Figure 3: Diagram of the lipid-lowering mechanism of rhubarb acid.
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was also demonstrated by the fact that the combination of
resveratrol with antioxidant vitamins was more effective
in protecting cells from oxidative stress than the antioxi-
dants alone [82].

Resveratrol, a common polyphenol found in astragalus,
plays an important role in several chronic diseases, such as
CVDs and obesity [79]. It achieves lipid lowering (Figure 5) and
treatment of hyperlipidemia by modulating the lipid profile,

SIRT1-PPAR γ pathway, lipoprotein metabolism, as well as
promoting cholesterol transport and oxidative stress effects.
However, similar to rhubarb acid, pharmacokinetic studies
have shown that resveratrol has low solubility, rapid metabo-
lism, and a short initial half-life [83]. To date, few studies have
suggested solutions to address the low bioavailability and solu-
bility of resveratrol; however, further definitive studies are
needed to maximize its efficacy and increase its solubility.

Figure 5: Diagram of the lipid-lowering mechanism of resveratrol.

Figure 4: Diagram of the lipid-lowering mechanism of rhubarb phenol.
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3.5 Other components

In addition to rhodopsin, rhubarb acid, and rhubarb phenol,
rhubarb-free anthraquinones, including rhubarb phenol
methyl ether and aloe barbadensis rhubarb phenol, also
exhibit hypolipidemic activity. Wang et al. found that the
dichloromethane part of the ethanolic extract of rhubarb,
which is mainly composed of rhubarb-free anthraquinones,
has significant lipid-regulating effects that may enhance
lipid metabolism, inhibit cholesterol synthesis [84], reduce
peripheral LDLC and TC by inhibiting the PCSK9 gene, and
promote intestinal cholesterol excretion by activating ABCG8
gene expression. Earth rhubarb glycosides and edible rhu-
barb sapogenins belong to the class rhubarb stilbenes. A
study reported [36] that earth rhubarb glycosides significantly
reduced the plasma TG, LDL, cholesterol, non-esterified free
fatty acid, and insulin levels in KK/Ay type 2 diabetic mice. Jo
et al. found that the consumption of rhubarb glycosides
improved the pathological features of degenerative fatty liver
in rats with hyperlipidemia induced by a high-cholesterol diet
and significantly lowered blood lipid levels [85]. Additionally,
rhubarb stem fiber has a hypolipidemic effect, which is
thought to be due to its bile acid-binding capacity of rhubarb
fiber, which in turn regulates cholesterol 7a-hydroxylase
(cyp7a) activity [86].

Squalene cyclooxygenase (SE) (EC 1.14.99.7) is a non-
metallic flavoprotein monooxygenase that catalyzes the
rate-limiting step in cholesterol biosynthesis [87]. There-
fore, SE inhibitors become potential drugs for lowering
cholesterol levels. Gallic acid derivatives of rhubarb are
potent inhibitors of SE, a rate-limiting enzyme in choles-
terol biosynthesis [88]. The other major constituents of
rhubarb, senna A and dianthrone glucoside also showed
favorable SE inhibitory effects [39]. In conclusion, the hypo-
lipidemic effect of rhubarb has been clinically confirmed,
and its chemical components and derivatives have shown
either strong or weak hypolipidemic activity, which has far-
reaching implications for the development of natural plant-
based drugs against hyperlipidemia.

4 Toxic effects of rhubarb

The mechanisms underlying the toxic effects of rhubarb
are not fully understood, and cells and animals in healthy
or diseased states do not react to rhubarb in the same way.
It has been confirmed that rhubarb has different degrees of
toxicity in the liver, kidney, gastrointestinal tract, repro-
ductive system, and blood system [89]. Studies have shown
that the toxic effects of rhubarb are more pronounced in

the liver and kidneys, and rhubarb affects the metabolism
of endogenous substances such as mitochondria and bile
acids through a series of adverse reactions, thus, causing
liver damage [90,91]. Among these, anthraquinones and
siderophores are closely related to the main toxic compo-
nents of rhubarb [92], particularly because of substances
such as emodin, aloe rhodopsin, and rhubarb acid. Animal
experiments and clinical applications have confirmed sig-
nificant bidirectional effects of rhubarb on hepatotoxicity
and hepatoprotection. Dong et al. [93] examined the toxi-
city and target organs of rhubarb in rats using in vivo and
in vitro experiments and found that emodin was the main
toxic component. Based on the morphological changes in
L-02 cells [94], rhodopsin (30 μM) causes significant apop-
tosis in a time-dependent manner. Additionally, emodin
has the potential to interfere with GSH and fatty acid meta-
bolism in human hepatocytes [95]. Wang et al. [96] studied
the effect of total rhubarb extract in normal and patholo-
gical animals and found that rhubarb has hepatotoxicity in
normal animals but has a protective effect against chronic
liver injury caused by CCl4 damage. Particularly, cooked
rhubarb after concoction has a stronger hepatoprotective
effect with lower toxicity. Meanwhile, rhubarb benefits
hepatocytes by scavenging free radicals; lowering the level
of MDA, a key factor in liver inflammation; and increasing
the total antioxidant capacity through oxidative stress,
resulting in improved antioxidant damage, reduced lipid
peroxidation, and stabilized cell membranes [92]. Rhubarb
extract also has significant nephrotoxic and protective
effects. The rhubarb extract emodin and rhubarb acid at
a dose of 4.5 g/kg per day for 13 weeks induced a significant
nephrotoxic effect in Sprague–Dawley rats. Rat renal tub-
ular epithelial cells swell and degenerate [97], with signifi-
cant cytotoxic effects. In a systematic evaluation, rhubarb
showed positive effects in 1,322 patients with chronic kidney
disease by alleviating uremic symptoms, lowering blood
creatinine levels, improving hemoglobin levels, and regu-
lating lipid metabolism disorders [98]. Another 6 months
study showed that the critical dose of rhubarb extract
required to induce nephropathy in rats was 10 g/kg body
weight per day in raw doses, which recovered upon discon-
tinuation of the drug [91]. No nephropathy was observed
in normal rats after repeated administration of rhubarb
extract at doses of 3 and 20 g/kg body weight per day (cal-
culated using the crude amount) for 3 weeks [99].

It seems contradictory that rhubarb exhibits both toxic
and protective effects on the liver and kidneys. Based on
the literature, we found that the toxicity of rhubarb in the
liver and kidneys was dose and time dependent. Therefore,
we speculate that the reason for this contradiction lies in
the dose and duration of administration. High-dose and
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long-term administration are more likely to induce hepa-
torenal toxicity, whereas low-dose and short-term admin-
istration may have protective effects. Additionally, owing
to the bidirectional effect of rhubarb, it has been suggested
that rhubarb may have hepatorenal protective potential in
hyperlipidemia, fatty liver, and chronic renal failure; how-
ever, the specific mechanism requires further study.

5 Discussion

Hyperlipidemia is a serious threat to human health, and
long-term hyperlipidemia can lead to atherosclerosis, cor-
onary heart disease, peripheral vascular disease, ischemic
cerebrovascular disease, pancreatitis, and other chronic
diseases. Disorders in lipid metabolism can significantly
affect the occurrence and development of metabolic dis-
eases. As a traditional Chinese medicine, rhubarb, with its
precise lipid-lowering efficacy, provides a new direction
for the treatment of hyperlipidemia. Based on the large
body of literature on the pharmacological components of
rhubarb, this study summarizes the lipid-lowering mole-
cular mechanisms of some of its chemical components,
providing theoretical support for the clinical application of
rhubarb in the treatment of hyperlipidemia. However, most
studies have focused on chemical mechanism exploration
and preclinical studies, and there is a lack of strong clinical
data to confirm the therapeutic effects of rhubarb on hyper-
lipidemia. Although approximately 200 compounds of rhu-
barb have been identified in phytochemistry, they are
mainly emodin, rhubarb acid, rhubarb phenol, and other
important chemical constituents that exert a hypolipidemic
effect. Therefore, the lipid-lowering effect of rhubarb is clo-
sely related to the contents of these important chemical
components. Additionally, we found that the toxic effects
of rhubarb are influenced by the content of these chemical
components. Particularly, the bidirectional nature of its
toxic and protective effects suggests the dose–effect and
toxicity–effect relationships of rhubarb in the therapeutic
process. The synergistic effect of different substances is a
promising research trend, for example, whether better effi-
cacy can be obtained by combining the main lipid-lowering
components of rhubarb extract with other existing natural
or synthetic drugs.

Despite reviewing the hypolipidemic effects of rhu-
barb in the present study, some limitations remain. First,
the hypolipidemic activity of the chemical constituents of
rhubarb has been described in several studies. However,
cellular and animal model studies of rhubarb in the treat-
ment of hyperlipidemia are limited, and there is a lack of

experimental data from large samples. Second, rhubarb
can be used as a lipid-lowering drug; however, there is a
lack of comparative toxicity data with existing lipid-low-
ering drugs, and it is not known whether it can replace
commonly used clinical hyperlipidemia drugs. Although
rhubarb has a better lipid-lowering effect, there are differ-
ences in the specific composition of rhubarb from different
regions and varieties, and further investigation is needed
to determine whether this affects the lipid-lowering effect
of rhubarb.

As a potential candidate for the treatment of hyperli-
pidemia, we still need to address the following questions
before using rhubarb for clinical use: (1) The use of rhu-
barb as a Chinese herbal medicine will inevitably be dis-
turbed by external factors, such as the boiling method, time,
and container, and whether this will affect the lipid-lowering
activity and solubility of important components, such as rho-
dopsin and rhubarb acid. (2) To clarify the reasonable dose
and administration time of rhubarb for the treatment of
hyperlipidemia, its safety should be improved. (3) The low
bioextractability of the main lipid-lowering components of
rhubarb is also a considerable challenge in improving its
preparation process. Additionally, the combination of rhu-
barb with nanomaterials or novel drug delivery systems
can reduce its toxicity and improve its bioavailability.

6 Conclusion

In this article, we present a complete review of the main
active components and mechanisms of action of rhubarb
in lowering lipid levels. Our results showed that the main
components of rhubarb involved in lipid metabolism were
anthraquinones and stilbene compounds, including emodin,
rhubarb acid, rhubarb phenol, and resveratrol. Its specific
mechanisms of action are mainly related to the reduction of
lipogenesis, stimulation of lipolysis, and inhibition of gene
expression, especially in 3T3-L1 adipocytes, TNF-α inflamma-
tory mediators, PPAR α, C/EBP α, Myd88, and MAPK sig-
naling pathways, as well as the lipid metabolism of enzymes
such as ATGL, HSL, MGLL, and other transcription factors.
Therefore, the multi-component and multi-target lipid-low-
ering effects of rhubarb make it a potential natural drug for
the treatment of hyperlipidemia.
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