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Abstract: Small-cell lung cancer (SCLC) has a poor prog-
nosis and can be diagnosed with systemic metastases.
Nevertheless, the molecular mechanisms underlying the
development of SCLC are unclear, requiring further inves-
tigation. The current research aims to identify relevant
biomarkers and available drugs to treat SCLC. The bioinfor-
matics analysis comprised three Gene Expression Omnibus
datasets (including GSE2149507, GSE6044, and GSE30219).
Using the limma R package, we discovered differentially
expressed genes (DEGs) in the current work. Gene Ontology
and Kyoto Encyclopedia of Genes and Genomes analyses
were made by adopting the DAVID website. The DEG pro-
tein–protein interaction network was built based on the
Search Tool for the Retrieval of Interacting Genes/Proteins
website and visualized using the CytoHubba plugin in
Cytoscape, aiming to screen the top ten hub genes.
Quantitative real-time polymerase chain reaction was
adopted for verifying the level of the top ten hub genes.
Finally, the potential drugs were screened and identified
using the QuartataWeb database. Totally 195 upregu-
lated and 167 downregulated DEGs were determined.
The ten hub genes were NCAPG, BUB1B, TOP2A, CCNA2,
NUSAP1, UBE2C, AURKB, RRM2, CDK1, and KIF11. Ten
FDA-approved drugs were screened. Finally, two genes
and related drugs screened could be the prospective
drug targets for SCLC treatment.
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1 Introduction

Lung cancer refers to one of the most commonly seen
cancers globally, showing high morbidity and mortality
rates. Each year, around 2.2 million new cases of lung
cancer as well as over 1.8 million lung cancer deaths are
reported across the world [1]. Small-cell lung cancer (SCLC)
is considered a type of lung cancer. It occupies 15% of all
lung cancer-related deaths. Most SCLC patients exhibit sys-
temic metastases at the time of diagnosis. As a result, its
5 year survival rate is around 5% [2,3]. Chemotherapy for
SCLC frequently fails because SCLC is drug-resistant, which
further deteriorates therapeutic outcomes [4]. On the other
hand, for the immune surveillance mechanism of SCLC,
although the recent immune insertion point blockers for
SCLC patients have brought hope for the treatment of SCLC,
it only benefits a small number of SCLC patients, not for
most of SCLC patients [5]. Therefore, it is essential to
develop efficient diagnostic techniques and treatment stra-
tegies for SCLC patients.

High-throughput genome sequencing has enabled sig-
nificant advancements in the diagnosis and therapy of
cancer [6]. Following the analysis of clinical and molecular
sequencing data, bioinformatic methods can provide new
ideas for understanding cancer development. To date, with
the development of bioinformatics, there are many studies
on SCLC, not only on target genes [7–9] but also on non-
coding RNA (ncRNA) [10], and genome-wide studies on
SCLC [11]. Although the current research results have
enabled us to further understand the molecular level of
SCLC, it is still not effective for studying the biological
process of SCLC. The molecular mechanisms of SCLC have
not been completely illustrated.

The term “drug repositioning” refers to the process of
using an FDA-approved drug to treat a disease or condition
that is beyond its current indication [12]. The development
of new antineoplastic drugs has stalled because of the high
cost and time to market, as well as drug toxicity and ther-
apeutic effects [13]. “Drug repositioning” has inspired the
use of novel approaches to cancer treatment [14]. For
example, disulfide, a drug used for treating alcoholism,
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has been discovered to exhibit antitumor activity against
non-small cell lung cancer (NSCLC), liver cancer, breast
cancer, prostate cancer, pancreatic cancer, glioblastoma,
as well as melanoma [15]. Another example is chlorproma-
zine, a high-dose antipsychotic drug approved by FDA as
an antineoplastic drug [16]. Therefore, we hypothesized
that FDA-approved drugs could be tested using bioinfor-
matic techniques to develop novel antineoplastic drugs
for SCLC.

As the molecular regulation is still unknown, the ther-
apeutic effects of drugs are limited. Therefore, it is neces-
sary to detect biomarkers and drugs to treat SCLC. In the
current work, bioinformatics analysis was adopted for dis-
covering promising biomarkers and available drugs for
SCLC. We selected three microarray datasets from the
Gene Expression Omnibus (GEO) database for analysis
and also identified differentially expressed genes (DEGs)
between the SCLC groups and normal groups. We further
performed Gene Ontology (GO) annotation, Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway annotation, as well as
protein–protein interaction (PPI) analysis. Finally, the possible
biomarkers were identified, and potential drugs related to the
treatment of SCLC were screened. Figure 1 presents the work-
flow of the current study.

2 Materials and methods

2.1 SCLC dataset

A large amount of gene expression data, such as micro-
array and high-throughput data, are stored in the GEO
database [17]. GSE149507, GSE6044, and GSE30219 were
downloaded from the GEO database. In addition, the plat-
form adopted for the microarray dataset was GPL23270 (Affy-
metrix Human Genome U133 Plus 2.0 Array). GSE149507
includes 36 samples, among which 18 are tumor tissue sam-
ples, with 18 being normal tissue samples. GSE6044 includes
nine SCLC tissue samples and five normal lung tissue sam-
ples. There are 21 lung SCLC samples and 14 non-tumoral lung
samples in the GSE30219 dataset.

2.2 Identification of DEGs

For the purpose of identifying DEGs, we adopted the limma
R package. Genes with |logFC| > 2, and p-value < 0.05 were
regarded to be DEGs. Genes with downregulated expres-
sion in DEGs were assigned logFC < −2, and genes with
upregulated expression were assigned logFC > 2. Venn soft-
ware was used to filter the overlapping DEGs in the three
sets of data.

2.3 Biological function analysis and pathway
enrichment analysis

As an online data analysis website, DAVID (https://david.
ncifcrf.gov/) was adopted for performing the GO and KEGG
pathway enrichment analysis [18]. Statistical significance
was detected at P < 0.05.

2.4 PPI network construction and selection
of hub genes

The STRING database (http://string-db.org) integrates var-
ious proteins to construct their interaction networks [19].
In the current work, we created a network of interacting
DEGs using STRING software. The interaction network cre-
ated by DEGs was visualized based on Cytoscape software
(http://www.cytoscape.org/) [20]. In addition, the top ten
hub genes (scores > 2) were screened with the Hubba
plugin in Cytoscape [21].Figure 1: Workflow chart of integrative bioinformatics in this study.
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2.5 Screening of existing drugs

In this study, the QuartataWeb (http://quartata.csb.pitt.edu/)
integrates, organizes, and displays drug-gene interactions
and gene-pharmaceutical information from the stick and
drug bank [22]. Through the database and support from
previous literature, the top ten hub genes were screened
for similarities to existing or failed FDA-approved drugs.

2.6 Cell culture

Normal human lung cell line (HLF-a) and human typical
SCLC cell line (NCI-H1688) were purchased from Procell
(Wuhan, China). Procell offered all cells and their special
culture medium. In addition, all the cells were cultivated at
37°C in a humid environment with the concentration of 5%
CO2 and were exposed to STR profiling.

2.7 RNA extraction and quantitative real-
time polymerase chain reaction
(qRT-PCR)

Using TRIzol reagent, total RNAwas isolated from HLF-a and
H1688 cells (Invitrogen, CA, USA). By adopting a PrimeScript
Reverse Transcriptase Reagent Kit, we performed reverse
transcription (RT) of complementary DNA (cDNA) (TakaRa,
Tokyo, Japan). In addition, cDNA aliquots were amplified
with SYBR Green PCR Master Mix (TaKaRa, Tokyo, Japan).
GAPDH acted as an endogenous control. Table 1 presents the
sequence of positive and antisense primers involved.

3 Results

3.1 Identification of DEGs

The R limma package identified DEGs from the three data-
sets based on the filtering conditions. There were 22,189
DEGs in GSE30219, 8,563 of which were upregulated and
13,626 of which were downregulated. GSE149507 had 672
DEGs, of which 378 showed upregulation and 294 pre-
sented downregulation. GSE6044 has 8,537 DEGs, with
3,874 upregulated and 4,657 downregulated (Figure 2). By
intersecting these DEGs using the Venn diagram, 362 over-
lapping DEGs were acquired, including 195 upregulated
genes and 167 downregulated genes (Figure 3, Table 2).

Normalization has been performed before obtaining over-
lapping DEGs.

3.2 Biological function analysis and pathway
enrichment analysis

GO analysis focused on “positive regulation of gene expres-
sion,” “positive regulation of transcription from RNA poly-
merase II promoter,” “cell division,” and “negative regula-
tion of transcription from RNA polymerase II promoter” for
biological process (BP) annotation. Moreover, it was abundant
in the “extracellular space,” “extracellular region,” “plasma
membrane,” “cytoplasm,” “nucleus,” and “nucleoplasm,”
according to the cellular component (CC) annotation. In mole-
cular function (MF) annotation, “protein binding,” “identical
protein binding,” and “DNA binding” were clustered (Table 3).
DEGs are primarily enriched in “Cell cycle,” “Complement and
coagulation cascades,” and “Human T-cell leukemia virus 1
infection” in the KEGG pathway (Table 4).

3.3 Construction of protein network and
selection of hub gene

Blue nodes represent downregulated genes, whereas orange
nodes stand for upregulated genes (Figure 4a and b). A total

Table 1: Primers used for qRT-PCR

Gene Primer Sequence 5′–3′

NCAPG Forward CTCAGGGGTGTAAAAGCAACCCAAG
Reverse ATCACTTTCAGAGTCGGCTTCAGCA

BUB1B Forward ATCCTGGCTAACTGTTCTTCTCCCT
Reverse TGGCTAAGTTTCCAGAAGGACCCAT

TOP2A Forward AATGCTCAGCTCTTTGGCTCGATTG
Reverse AATGTACCATTCAGGCTCAACACGC

CCNA2 Forward ACCAAGAAACAAGTTCTGAGAATGGAGC
Reverse AGGCTGCTGATGCAGAAAGTATTGG

NUSAP1 Forward AGCAAAGGTTTTGGGAATGCGAAGG
Reverse TCGTGACTAAAGTGGGGATGACAGC

UBE2C Forward GTTCCTGTCTCTCTGCCAACGC
Reverse TCATCAGCTCCTGCTGTAGCCTTTT

AURKB Forward CGAACAGCCACGATCATGGAGGAG
Reverse CTCCCTTGAGCCCTAAGAGCAGATT

RRM2 Forward TAGGCGAGTATCAGAGGATGGGAGT
Reverse CAGCCAAGTAAGGGCACATCTTCAG

CDK1 Forward TCCTACAGGGGATTGTGTTTTGTCA
Reverse AGGTATTCCAAAAGCTCTGGCAAGG

KIF11 Forward GCGGGGTTCCATTTTTCCAGCATA
Reverse GTTGATCTGGGCTCGCAGAGGTAAT
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of 156 genes or nodes and 1,420 edges were enriched in the
network. NCAPG, BUB1B, TOP2A, CCNA2, NUSAP1, UBE2C,
AURKB, RRM2, CDK1, and KIF11 were the top ten hub genes
(Figure 4b). Besides, all the parameters were set by default
in the CytoHubba.

3.4 Screening for existing drugs that target
the ten genes

Ten hub genes were matched with existing drugs using the
drug–gene interaction module in the QuartataWeb database.
Only two genes, TOP2A and RRM2, were found and matched
to ten estimated medicinal drugs (Teniposide, Etoposide,
Daunorubicin, Doxorubicin, Amrubicin, Dactinomycin,

Epirubicin, Idarubicin, Cladribine, and Gallium nitrate)
(Table 5). Screening criteria were: drug–gene interaction cut-
off p < 0.05 and support from previous literature (Table 6).

3.5 Validation of gene expression in SCLC

With the aim of verifying the expression levels of NCAPG,
BUB1B, TOP2A, CCNA2, NUSAP1, UBE2C, AURKB, RRM2,
CDK1, and KIF11, normal lung cell lines and SCLC cell lines
were selected. Additionally, the qRT-PCR assays were used
with the purpose of quantifying the relative mRNA expres-
sion of the above genes in normal lung and SCLC cell lines.
Based on the obtained findings, the mRNA expressions of
the above genes in SCLC cell lines were greater in relative
to those in normal lung cell lines (P < 0.05, Figure 5).

4 Discussion

Oncologists still face significant difficulties in treating SCLC
owing to their high mutation rates and other clinical limita-
tions. Patients with SCLC have low survival rates. However,
during the past few decades, research on novel therapeutic
strategies for treating SCLC has been limited [40]. Hence,
there is an urgent need to identify target genes that can
specifically and effectively target SCLC and thus correctly
treat it. The development of high-throughput techniques
and sophisticated computational tools has enabled the iden-
tification of relatively few genes that are characteristically
deregulated in a given cancer cell among the thousands of
normally expressed genes [41]. These methods offer novel

Figure 2: Volcano plot of differentially expressed genes between SCLC tissues and normal lung tissues in datasets GSE6044, GSE30219, and
GSE149507. Red denotes genes with high expression in tumor tissues, and blue stands for low expression in tumor tissues. (a) GSE6044; (b) GSE30219;
and (c) GSE149507.

Figure 3: A total of 363 DEGs were found in the three databases
(GSE149507, GSE6044, and GSE30219).
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approaches to diagnosis and treatment. Our study is the first
to use bioinformatics to identify ten previously approved
drugs that are related to RRM2 and TOP2A. Our findings
might provide patients with SCLC new therapy options.

The current study analyzed GSE149507, GSE6044, and
GSE30219 using the limma package and screened 195

upregulated and 167 downregulated genes. In the BP anno-
tation in GO analysis, these genes were mostly enriched in
“positive regulation of gene expression” and “cell division,”
which are closely related to gene expression.” The DEGs in
the CC category weremainly related to “extracellular space,”
“extracellular region,” “plasma membrane,” “nucleus,” and

Table 2: Identified DEGs

DEGs* Gene name

Upregulated RAB33A, SMC2, TYMS, GNAZ, HMGB3, CDC7, CHEK1, PRAME, TPH1, HRASLS, GMNN, CA9, MB, KIF20A, COL10A1, CTNNA2, ESRRG,
HOXB2, CXCL9,DLK1, CDC45, HOXD10, CHRNA5, PAX9, PAX6, RFC4, TFF3, CBFA2T2, ORC1, KCNB2, CAMK2B, PFN2, TROAP, FZD3,
ONECUT2, HIST1H2BH, CDK5R1, MYBL2, OLE2, RAD54L, ELOVL4, AMPH, PCSK1N, PTH2R, PROX1, AURKB, AURKA, FEN1, EPHA7,
ADGRB2, DSP, CALCA, GREM1, SNAP25, PRDM13, MCM2, CDKN2A, HIST1H2AE, PROM1, ELAVL4, KCNK12,CALB1, LMNB1, ENO2,
PCSK2, ELAVL2, FBXO5, UCHL1, CST1, WASF1, KCNA1, BIK, PMAIP1, CDK1, ACTL6B, RNASEH2A, AP3B2, HOXD11, KCNJ6, EYA2,
CENPF, ORC6, CRMP1, TRIP13, NPTX1, PSAT1, SCN2A, BIRC5, NRCAM, RACGAP1, ADCYAP1, MNX1, KCNC1, RGS7, DDX25, COCH,
ACYP1, CD24, ELAVL3, EEF1A2, SLCO5A1, SALL1, CENPE, KCNMB2, MKI67, STIL, DNAJC12, CDC6, CRYBA2, HMP19, CCNA2, RBFOX1,
RPRM, POU3F2, CELSR3, NKX2, HOXA10, GAD1, RAB3B, SCG5, RAD51AP1,HMMR, DLX6, EXO1, GPR19, PTTG1, MAD2L1, PTTG3P,
DDC, NEUROD1, KIF5C, NEK2, NDC80, CEL, PCDH8, ADAMDEC1, GHRH, SPOCK1, FOXG1, NCAPG, MAGEA12, SH3GL2, KIF4A,
CDKN3, ZWINT, KIF2C, KIF23, UGT8, KIF15, TOP2A, RRM2, COL11A1, SCG2, CALCB, EZH2, DCX, RGS17, CHGB, NUSAP1, SYT1,
CDH2,KIF11, BUB1B, PRC1, CCNE2, ESPL1, DLX5, CDC20, UBE2C, GRP, STMN2, CXCL13, TPX2, LHX2, POU4F1, TTK, SOX11, PBK,
PCP4, NMU, INA, TAGLN3, CLGN, GNG4, MAGEA6, SCGN, ASCL1, RIPPLY3, ISL1, PCSK1, MMP12, SCG3, NOL4, INSM1, CHGA

Downregulated WIF1, PPBP, CLDN18, SCGB1A1, CPB2, PLA2G1B, SFTPC, AGER, SFTPD, TNNC1, PGC, AQP4, CYP4B1, CPA3, HPGD, CA3, SLC6A4,
FCGR3B, CLIC3, FOLR1, SDPR, SCN7A, ANXA3, C4BPA, CA4, OLR1, TYRP1, CEACAM6, FABP4, SFTPB, PTGS2, ACADL, BMP5, SLPI,
FOSB, SCEL, AGTR1, CH25H, GPX3, TCF21, GPRC5A, ZBTB16, HCAR3, GDF10, LYVE1, ADH1B, SELENBP1, CAV1, ADIRF, MMRN1,
AOC3, MSLN, FXYD1, GHR, FLRT3, HSD17B6, EMCN, SLC34A2, MRC1, NR3C2, EDNRB, SLC6A14, CFD, FOXF2, HPGDS, RNASE4,
SLC19A3, ADAMTS1, ICAM4, SRPX, GNG11, VGLL3, PPARG, MAOA, LAMP3, CA2, C7, FBLN5, BCHE, AQP1, MS4A2, S1PR1, TRHDE,
CNTN6, CD52, CDH5, SLC16A4, CAV2, CLDN5, S100A4, HYAL1, FCN3, HLF, KCNJ15, JAM2, CPM, WISP2, SLC1A1, PTGDS, HIGD1B, F3,
S100A14, CD93, FMO3, CACNA2D2, ZFPM2, STX11, CFP, CD36, RETN, RASSF9, RGN, S100P, DPP4, SPARCL1, SGCG, BMP2, SOCS2,
S100A10, ALOX5AP, ITGAM, WFDC1, FHL1, CCDC68, SELE, IL33, TFPI, ANKRD1, LPL, TRPC6, MARCO, CD55, CXCL3, ADRB2, PIGR,
ROS1, FOXF1, CST6, PROS1, PDK4, GSTA1, CDO1, ATP1A2, FAM107A, S100A12, FBP1, YAP1, IL6, ANG, SLCO2A1, TGFBR3, TREM1,
VSIG4, PLSCR4, CFH, EMP1, P2RY1, ALDH2, PCOLCE2, FCN1, CTSH, TFPI2, MUC1, ABCG2

*DEGs, differentially expressed genes.

Table 3: GO analysis

Category Term Counts Ratio P value

BP* 0010628∼positive regulation of gene expression 20 5.62 0.003
0045944∼positive regulation of transcription from RNA polymerase II promoter 43 12.08 4.08 × 10−5

0051301∼cell division 25 7.02 1.67 × 10−7

0000122∼negative regulation of transcription from RNA polymerase II promoter 33 9.02 8.90 × 10−4

CC1 0005615∼extracellular space 83 23.31 8.24 × 10−15

0005576∼extracellular region 81 22.75 9.85 × 10−12

0005886∼plasma membrane 123 34.55 1.70 × 10−5

0005737∼cytoplasm 124 34.83 7.86 × 10−4

0005634∼nucleus 127 35.67 0.004
0005654∼nucleoplasm 87 24.44 0.010

MF2 0005515∼protein binding 272 76.40 1.95 × 10−6

0042802∼identical protein binding 52 14.61 4.39 × 10−4

0003677∼DNA binding 40 11.24 0.003

*BP, Biology Process; CC1, Cellular Component; MF2, Molecular Function. Term: Term is the basic unit of GO, and each term corresponds to a GO class
name, which is an attribute. Counts: The total number of genes enriched in this Go term. Ratio: Ratio represents the proportion of genes enriched in
the Go term to the total genes. P value: P value represents significance, and P value < 0.05 is considered to be statistically significant for genes
enriched in this term.
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“nucleoplasm,” and they showed close relationship to the
extracellular and nuclear microenvironment. Additionally,
the DEGs in the MF class were enriched for “protein binding”
and “identical protein binding” terms and showed tight

association with protein synthesis. The findings of GO ana-
lysis demonstrated that SCLC may play a pathogenic role
through gene expression and translation in cells. DEGs
were primarily enriched in cell cycle-related pathways
including “Cell cycle” and “Complement and coagulation
cascades” in the KEGG pathway. According to recent
research, the cell cycle pathway makes a vital impact on
developing SCLC [42]. Our results are in consistence with
those of earlier research.

In the PPI network, 156 genes or nodes and 1,420 edges
were enriched. We chose the top ten hub genes with the
CytoHubba plugin in the Cytoscape software. This suggests
that overexpression of NCAPG, BUB1B, TOP2A, CCNA2,
NUSAP1, UBE2C, AURKB, RRM2, CDK1, and KIF11 may pro-
mote SCLC progression.

Additionally, to assess the level of ten hub genes in
SCLC cells and healthy human lung cells, the validation
of the qRT-PCR assay was performed. Moreover, the obtained
findings demonstrated that similar gene expression trends of

Table 4: KEGG pathway enrichment analysis

Category Term Counts Ratio P value

KEGG 04110: Cell cycle 17 4.78 6.62
× 10−8

04610: Complement and
coagulation cascades

11 3.09 4.10
× 10−5

_ 05166: Human T-cell
leukemia virus 1 infection

10 2.81 0.097

Term: Category of the pathway in KEGG pathway enrichment analysis.
Counts: The total number of genes enriched in the pathway. Ratio: The
proportion of genes enriched in the pathway to the total genes. P value:
Significance enriched to pathways. P value < 0.05 was considered to be
statistically significant for genes enriched in the pathway. From large to
small, the degree of enrichment becomes more and more significant.

Figure 4: The construction of PPI network and significant gene modules analysis. (a) The PPI networks of differentially expressed genes and (b) the
top ten genes in the PPI networks. The orange nodes represented upregulated genes, while the blue ones represented downregulated genes.

Table 5: Significant drugs targeting hub genes

Gene Drug ID Drug name Drug type Drug group P value

TOP2A DB00445 Epirubicin Small molecule drug Approved 5.74 × 10−3

DB01177 Idarubicin Small molecule drug Approved 6.46 × 10−3

DB00997 Doxorubicin Small molecule drug Approved 5.17 × 10−3

DB00970 Dactinomycin Small molecule drug Approved; investigational 5.44 × 10−3

DB00773 Etoposide Small molecule drug Approved 4.49 × 10−3

DB00444 Teniposide Small molecule drug Approved 3.45 × 10−3

DB00694 Daunorubicin Small molecule drug Approved 4.92 × 10−3

DB06263 Amrubicin Small molecule drug Approved; investigational 5.17 × 10−3

RRM2 DB00242 Cladribine Small molecule drug Approved; investigational 1.65 × 10−2

DB05260 Gallium nitrate Small molecule drug Approved; investigational 7.64 × 10−3
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10 hub genes in SCLC cells and normal human lung cells were
demonstrated by qPCR, verifying the accuracy of ourfindings.

TOP2A produces polyisomerase II (TOPII), a crucial
enzyme that alters the DNA topology by joining two double-
stranded DNAmolecules. TOPII is essential for gene transcrip-
tion and replication. The aberrant expression of TOP2A can be
related to poor prognosis in the lung, esophageal, breast,
ovarian, and oral cancers [43]. A previous study showed that
TOP2A is engaged in the occurrence and development of SCLC
through inhibiting ectopic expression of miR-27a-5p and miR-
34b-3p [44]. Therefore, TOP2A may show close relationship to
the occurrence and prognosis of SCLC through comprehensive
analysis.

AURKB, a serine/threonine protein kinase, is a crucial
mitotic regulator. The oncogenic properties of AURKB have

been studied in various tumors [45]. According to a recent
study, SCLCs lacking the RB1 tumor suppressor gene are
overly relied on Aurora B kinase for survival. Patients with
SCLC typically have RB1 gene mutations. Furthermore, the
study found that Aurora B kinase exerts a role in suppres-
sing tumor cell growth in multiple SCLC models [46].

BUB1B, a member of the spindle assembly checkpoint
protein family, is necessary for the anaphase of mitosis.
Multiple research works have confirmed that abnormal
BUB1B expression is related to tumor prognosis [47]. A
large-scale analysis of the transcriptional profile of NSCLC
suggested that BUB1B is a hub gene in adenocarcinoma
(ADC, lung adenocarcinomas) [48]. Thus, BUB1B is a pro-
mising candidate gene.

The cell cycle regulator Cyclin-A2 (CCNA2) regulates
mitotic G1/S and G2/M phases [49]. The occurrence and
development of tumors may be caused by impaired regula-
tion of this process [50]. In addition, CCNA2 is abnormally
expressed in other tumors [51].

RRM2, the ribonucleoside-diphosphate reductase sub-
unit M2B, has been identified as a gene with poor survival
prognosis through network analysis and multivariate prog-
nostic analysis in patients with LUAD [52]. Bioinformatics
analysis by Chen et al. [53] identified RRM2 as the hub gene
for SCLC.

UBE2C, a cell cycle-regulated ubiquitin ligase, regulates
mitosis. Some researchers have reported that UBE2C shows
close relationship to tumor occurrence, proliferation, and
other behaviors [54]. Additionally, Wang et al. [55] discov-
ered that UBE2C is tightly correlated with angiogenesis in
NSCLC, confirming the speculation of previous studies.

Cyclin-dependent kinase 1 (CDK1) binds to cyclin B1
(CCNB1) or cyclin B2 (CCNB2) to form a complex that reg-
ulates the mitotic initiation process. Its dysregulation has
been indicated to correlate with tumor cell proliferation
[56]. A bioinformatics study revealed that CDK1 stimulates
the stemness of lung cancer cells by the interaction with
SOX2 and that increased CDK1 expression shows relation-
ship to lower overall survival in patients suffering from
lung cancer. Therefore, CDK1 may play the role of a poten-
tial biomarker [57].

Similarly, NUSAP1 and NCAPG stimulate the progres-
sion of NSCLC by controlling the BTG2/PI3K/Akt signaling
pathway and upregulating LGALS1 expression [58,59]. They
are also highly expressed in various tumors [60,61].

The current work used bioinformatics methods to
screen FDA-approved drugs and reposition them as new
anticancer drugs. Our study showed that TOP2A and RRM2
matched predicted FDA-approved drugs.

The TOP2A gene matched with eight drugs, and they are
adopted for cancer therapy, among the matches between

Table 6: Publications related to the effective drugs targeted hub genes

Gene
names

Drug name Publications

Molecular or
cellular level

Human body
level

TOP2A Epirubicin [23] [24]
Idarubicin [25]
Doxorubicin [26] [27]

[28]
Dactinomycin [29]
Etoposide [30] [31]

[32]
Teniposide [33]
Daunorubicin [34,35]
Amrubicin [36]

RRM2 Cladribine [37]
Gallium nitrate [38,39]

Figure 5: qPCR validation of hub genes in the normal human cell lines
(HLF-a) and tumor cell lines (NCI-H1688). *P < 0.05. **P < 0.01.
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the input hub genes and the selected drugs. Etoposide, a
semisynthetic derivative of podophyllotoxin with antitumor
activity, was chosen as the first-line chemotherapy for SCLC
among these drugs [31,32,62]. Teniposide refers to a cytotoxic
drug used to treat refractory childhood acute lymphoblastic
leukemia [63]. Epirubicin is an anthracycline antineoplastic
drug used as adjuvant therapy after primary breast cancer
resection [64]. Idarubicin is also an anthracycline antineo-
plastic drug, and its indications are adult acute myeloid
leukemia [65]. Doxorubicin is an anthracycline antibiotic
that is cytotoxic. It has a wide range of indications and
can be used to treat various cancers [66]. Valrubicin is a
chemotherapeutic drug which can be adopted for treating
bladder cancer [67]. Daunorubicin is an anthracycline ami-
noglycoside antitumor drug used to induce remission in
adults with acute non-lymphocytic leukemia and children
and adults with acute lymphoblastic leukemia [68]. Amru-
bicin, an anthracycline, is currently being studied for SCLC
treatment [36].

RRM2matches only the two FDA-approveddrugs. Cladribine
is a purine analog and antineoplastic agent used to treat adults
with highly active relapsing multiple sclerosis [69]. Gallium
nitrate is used to treat cancer-related hypercalcemia and non-
Hodgkin lymphoma [70].

In conclusion, NCAPG, BUB1B, TOP2A, CCNA2, NUSAP1,
UBE2C, AURKB, RRM2, CDK1, and KIF11 are potential mar-
kers for diagnosing and treating SCLC. Additionally, we
selected and constructed two genes, TOP2A and RRM2, as
well as their potential related drugs to offer novel ideas for
treating SCLC. Moreover, our experiments were subject to
significant bias. Our shortcoming was that we did not
validate this through relevant experiments. Therefore,
these drugs require validation using relevant experi-
mental models.
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