
Research Article

Yun Liu#, Lu Yang#, Mengsi Yu, Fen Huang, Jiangzheng Zeng, Yanda Lu, Changcheng Yang*

Construction of a ceRNA network to reveal
a vascular invasion associated prognostic
model in hepatocellular carcinoma

https://doi.org/10.1515/med-2023-0795
received April 23, 2023; accepted August 11, 2023

Abstract: The aim of this study is to explore the prognostic
value of vascular invasion (VI) in hepatocellular carcinoma
(HCC) by searching for competing endogenous RNAs (ceRNA)
network and constructing a new prognostic model for HCC.
The differentially expressed genes (DEGs) between HCC
and normal tissues were identified from GEO and TCGA.
StarBase and miRanda prediction tools were applied to
construct a circRNA-miRNA-mRNA network. The DEGs
between HCC with and without VI were also identified.
Then, the hub genes were screened to build a prognostic
risk score model through the method of least absolute
shrinkage and selection operator. The prognostic ability
of the model was assessed using the Kaplan−Meier method
and Cox regression analysis. In result, there were 221 up-
regulated and 47 down-regulated differentially expressed
circRNAs (DEcircRNAs) in HCC compared with normal
tissue. A circRNA-related ceRNA network was established,
containing 11 DEcircRNAs, 12 DEmiRNAs, and 161 DEmRNAs.
Meanwhile, another DEG analysis revealed 625 up-regulated
and 123 down-regulated DEGs between HCC with and
without VI, and then a protein–protein interaction (PPI)
network was built based on 122 VI-related DEGs. From
the intersection of DEGs within the PPI and ceRNA net-
works, we obtained seven hub genes to build a novel

prognostic risk score model. HCC patients with high-risk
scores had shorter survival time and presented more
advanced T/N/M stages as well as VI occurrence. In conclu-
sion a novel prognostic model based on seven VI-associated
DEGs within a circRNA-related ceRNA network was con-
structed in this study, with great ability to predict the out-
come of HCC patients.

Keywords: HCC, vascular invasion, circRNA, ceRNA net-
work, prognosis

1 Introduction

Hepatocellular carcinoma (HCC) is one of the most common
malignant tumors and the fourth leading cause of cancer-
related deaths worldwide. The highest incidence rates of
HCC in the world are reported in Asia and Africa. Although
Mongolia has the highest incidence (93.7 per 100,000), China
has the largest number of HCC patients, due to both a rela-
tively high incidence (18.3 per 100,000) and the world’s largest
population (1.4 billion persons). Though the great advances in
diagnosis and therapy, the prognosis of HCC patients remains
poor, with mortalities approximating incidence rates world-
wide [1–3]. The average 5 year survival rate of HCC patients in
the US was 19.6%, but it was only 2.5% for advanced HCC
patients, and the poor prognosis was closely related to tumor
metastasis [4]. Vessel is an important pathway for cancer cells
to invade other organs, and angiogenesis is essential for
tumor growth andmetastasis. After the cancer cells penetrate
the microvessels, they mainly contact the basement mem-
brane and bind tomatrix proteins through special membrane
receptors, such as certain integrin receptors on the surface of
cancer cells binding to laminin in the matrix, thus entering
the metastatic tissues. Vascular invasion (VI) includes macro-
vascular invasion or microvascular invasion, and represents
the aggressive nature of the spread of the tumor cells. Inva-
sion of the hepatic venous tributaries can cause systemic
metastasis, while invasion of portal venous may result in
intrahepatic spread of the tumor cells [5]. Evidence showed
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that VI was an independent prognostic indicator for HCC [6].
The presence of VI was an unfavorable prognostic factor
of HCC recurrence and overall survival (OS) [7]. Currently,
the specific mechanism of VI and metastasis of HCC is still
not well understood. Thus, to better understand the mole-
cular mechanism underlying VI of HCC is vital for assessing
the risk of HCC metastasis and patients’ survival [8]. In addi-
tion, by studying the mechanism of VI, molecularly targeted
therapies can be used to achieve anticancer effects, such as
accurate and targeted attack on tumor cells, inhibition of
angiogenesis and metastasis of cancer cells, and reversal of
multidrug resistance.

circRNAs are a class of non-coding RNAs that are widely
expressed in mammalian cells. circRNAs were reported to
regulate many cellular processes including tumor initiation
and progression [9]. Recently, a large number of circRNAs
have been demonstrated to play important roles in HCC
development via involvement in the competing endogenous
RNA (ceRNA) network. For example, circ_0067835 was found
to be elevated in HCC and could promote cell proliferation
and metastasis via miR-1236-3p/Twist2 axis [10]. circRASSF5
was reported as a tumor suppressor in HCC, which could
competitively sponge miR-331-3p and thus enhance the
tumor inhibitory effect of PH domain and leucine rich
repeat protein phosphatase [11]. circ0003998 was shown
to act as a ceRNA of miR-143-3p to relieve the repressive
effect on FOSL2, an EMT-related stimulator, thus pro-
moting HCC metastasis [12].

Currently, TCGA and GEO databases were widely used
to screen differentially expressed genes (DEGs) to build
prognostic signatures for assessing the survival of HCC
patients. One of the important screening strategies is to
select biological hub genes within the ceRNA network.
For instance, Chen et al. [13] constructed a lncRNA-related
ceRNA regulatory network for HCC using DEGs from TCGA
database, and then 11 lncRNAs within the ceRNA network
were selected to build a prognostic signature. The multi-
variate Cox regression analysis showed that the prognostic
signature could be an independent indicator for HCC
patients’ survival. Zhang et al. [14] reported a differential
lncRNA-miRNA-mRNA regulatory network in HCC based on
TCGA-LIHC data and three key lncRNAs were eventually
screened to construct a prognostic signature for OS. Simi-
larly, Huang et al. [15] constructed a ceRNA network com-
prising 44 DEmRNAs, 7 DElncRNAs, and 20 DEmiRNAs in
hepatitis B virus (HBV)-related HCC, and then established a
7-lncRNA signature, which was finally verified as a potential
prognostic predictor for HBV-related HCC patients. Notably,
as VI has been identified to be a prognostic index for HCC
patients’ survival, a VI-related ceRNA network and a 8-
lncRNA prognostic model were subsequently constructed

by Tao et al. and time-dependent ROC analysis verified the
utility of the model to predict the clinical outcomes of HCC
patients [16]. Currently, several circRNA-related ceRNA net-
works were constructed for HCC. However, there was no
prognostic model for HCC built based on the hub genes in
relation to VI and circRNA-related ceRNA network simulta-
neously so far.

Here we sought to establish a novel prognostic signa-
ture for HCC by selecting VI-related hub genes within the
circRNA-related ceRNA network. In this study, we first
explored the DEGs between HCC and normal tissue through
GEO and TCGA databases. Then, we constructed a circRNA-
miRNA-mRNA network and investigated the biological func-
tions of these HCC-related DEGs. Additionally, the DEGs
between HCC with and without VI were also screened to
build a protein–protein interaction (PPI) network. After
making the intersection of DEGs within PPI and ceRNA net-
works, we obtained seven hub genes to construct a novel
prognostic risk score model. The prognostic value of the
model for HCC patients’ survival was further investigated.
Finally, the immune cell infiltration in HCC was assessed
according to the risk scores from the prognostic model.

2 Methods and materials

2.1 Data acquisition and processing

We downloaded the circRNA expression dataset GSE94508
[17] and GSE97332[18] containing human HCC and adjacent
normal tissues from GEO (https://www.ncbi.nlm.nih.gov/geo/)
database. Two sets of data are from platform GPL19978 and
our search terms were HCC and circRNA. There are 10 sam-
ples in GSE94508, which are divided into 5 tumor tissues and 5
tumor adjacent normal tissues, and 14 samples in GSE97332,
consisting of 7 tumor tissues and 7 tumor adjacent normal
tissues. The primary data were processed by background
correction and quantile normalization, and the integrated
circRNA expression data were obtained after batch effect
removal using R package sva [19]. The ComBat function in
R packet sva [19] was used to integrate multiple data and
remove the batch effect. We used TCGAbiolinks package [20]
to download HCC (Liver hepatocellular carcinoma, TCGA-
LIHC)-related gene expression data from the TCGA database
(https://portal.gdc.cancer.gov/), which contained 371 HCC tis-
sues and 50 tumor adjacent normal tissues. Meanwhile,
TCGAbiolinks package [20] was used to obtain the corre-
sponding clinicopathological survival information of 371
tumor samples, including age, survival status, follow-up
time, VI, stage, and so on. In addition, the gene expression
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data of normal liver tissue (GTEX-Liver) were downloaded
from GTEX database, which contained 110 normal samples.
Two datasets of TCGA-LIHC and GTEX-Liver were combined
to extract the expression data of common genes, and the
batch effect between different datasets was corrected by
ComBat function in R package sva [19]. The combined data
included 371 HCC tumor samples and 160 control samples.
Gene expression data included miRNA and mRNA expres-
sion levels of each patient, and clinical information included
age, sex, pathological stage, VI, survival status, and total
survival time. Only patients with complete survival informa-
tion and gene expression data were included in this study.
Finally, a total of 358 patients were selected for further
analysis.

2.2 Screening of DEGs

In order to assess the difference of gene expression between
HCC and normal tissue, R packet limma [21] was used to
analyze the difference among different groups. |logFC| > 1
and P value < 0.05 were set as thresholds for differentially
expressed circRNAs (DEcircRNAs), where circRNAs with
logFC > 1 were considered significantly up-regulated, and
circRNAs with logFC < −1 were considered down-regulated.
For differentially expressed mRNAs (DEmRNAs), we set the
threshold value as |logFC| > 2 and P value < 0.05, where
DEmRNAs with logFC < −2 were down-regulated and DEmRNAs
with logFC > 2 were up-regulated. Similarly, |logFC| > 1 and
P value < 0.05 were used to identify differentially expressed
miRNAs (DEmiRNAs). The volcano map was used to show
the up and down-regulated DEGs, and pheatmap R-package
[22] was used to draw the heat map of these DEGs in all
samples.

2.3 Construction of a ceRNA network

To better understand the effect of circRNAs on the progres-
sion of HCC, a ceRNA network was built based on DEcircRNAs,
DEmiRNAs, and DEmRNAs. The human sequences of
DEcircRNAs and DEmiRNAs were downloaded from
circBase (http://www.circbase.org/) and miRBase (version
21; http://www.mirbase.org/) databases, respectively. The
miRanda prediction tool was used to predict the interaction
between DEcircRNAs and DEmiRNAs. In addition, the poten-
tial mRNAs targeted by DEmiRNAs were obtained from
StarBase (http://starbase.sysu.edu.cn/) database, which pro-
vided prediction results from seven prediction programs
(TargetScan, microT, miRmap, picTar, RNA22, PITA, and
miRanda). If the interaction between miRNA and mRNA

was predicted in not less than four programs, it was selected
for next analysis. Then, we overlapped the target mRNAs
with the DEmRNAs mentioned above. The nodes that could
not form circRNA-miRNA-mRNA interaction relationship
were removed, and finally a ceRNA network was established
and visualized by the Cytoscape software (version 3.7.0/
www.cytoscape.org).

2.4 Functional enrichment analysis

Gene Ontology (GO) functional annotation analysis is a
common method for large-scale functional enrichment of
genes [23], including biological processes (BPs), molecular
functions (MFs), and cellular components (CC). Kyoto Ency-
clopedia of Genes and Genomes (KEGG) is a widely used
database for storing information about genomes, biological
pathways, and drugs [24]. In order to study the BPs that the
ceRNA network might participate in, we chose the DEmRNAs
within the ceRNA network for GO functional annotation
analysis and KEGG pathway enrichment analysis by using
clusterProfiler R software package [25]. P value < 0.05 was
considered statistically significant.

2.5 Gene expression difference between HCC
with and without VI

According to the clinical information of patients with HCC,
we divided patients into two groups according to HCC with
or without VI; 236 patients with HCC marked “None”
without VI, and 122 patients with HCC labeled “Micro”
and “Macro” with VI. In order to explore the difference
between HCC with and without VI, limma R-packet
was used to analyze the DEGs between the two groups.
|logFC| > 1 and Padj < 0.05 were set as the threshold of
DEGs. The genes of logFC > 1 and Padj < 0.05 were regarded
as the up-regulated DEGs, and the genes of logFC < −1 and
Padj < 0.05 were down-regulated. The volcano map was
used to show the up-regulated and down-regulated DEGs,
and the pheatmap R-package drew the heat map of these
DEGs in all samples.

2.6 Construction of PPI network

PPI network is composed of individual proteins through
the interaction between each other, which participates in
various life processes such as biological signal transmission,
gene expression regulation, and cell cycle regulation. PPI
analysis is very important for elucidating the molecular
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mechanism of key cellular activities in carcinogenesis.
Based on the DEGs between HCC with and without VI,
the STRING database (https://string-db.org/) was used to
evaluate the PPI information and further construct the
PPI network [20]. Taking the interaction score of 0.4 as
the cut-off value, the PPI network was visualized by cytos-
cape software.

2.7 Construction of prognostic model and
analysis of prognosis

Based on the intersection of DEGs within the PPI and
ceRNA network mentioned above, we constructed a prog-
nostic risk score model through the method of least abso-
lute shrinkage and selection operator (LASSO) to realize
the risk stratification of HCC patients. LASSO regression
is a commonly used variable selection method when fitting
high-dimensional generalized linear models. The glmnet
package [26] in R was used to execute the LASSO algorithm.
The risk scoring model was established by combining the
regression coefficient with the corresponding gene expres-
sion value. After calculating the risk score, taking the
median risk score as the cut-off point, the patients in each
cohort were divided into low- and high-risk group accord-
ingly. Univariate and multivariate Cox analyses were used
to analyze the ability of risk score in combination with clin-
icopathological features to predict the OS. Then, the risk
score model and clinicopathological parameters were used
for further analysis through the clinical predictive Nomo-
gram, which was constructed by rms R-packet [27]. Decision
curve analysis (DCA) was performed, and clinical impact
curves were drawn to evaluate whether the model-based
decisions were beneficial to patients.

2.8 Difference of immune cell infiltration
between high- and low-risk groups

The immune microenvironment is mainly composed of
immune cells, inflammatory cells, fibroblasts, endothelial
cells, bone marrow-derived cells, extracellular matrix, cyto-
kines, and chemokines, which is a comprehensive system.
The analysis of immune cells infiltration in the clinical sam-
ples is of great importance to discern the mechanisms under-
lying cancer progression and predict prognosis. Single sample
gene cluster enrichment analysis (ssGSEA) is an extension of
GSEA method. ssGSEA algorithm was used to calculate the
content of 28 kinds of immune cells in high- and low-risk
groups [28]. The composition of immune cells in high and
low risk groups was visualized by box map.

2.9 Statistical analysis

All statistical analyses were carried out in R language
(https://www.r-project.org version 4.0.2). For the compar-
ison of continuous variables in two groups, the statistical sig-
nificance of normal distribution variables was estimated by
independent t-test, the differences between non-normal distri-
bution variables were analyzed by Wilcoxon rank sum test,
and the differences between multiple groups of independent
variables were analyzed by Kruskal−Wallis Test. The Kaplan
−Meier (KM) method was used to evaluate the difference in
survival time of patients with HCC, and the logarithmic rank
test was used to determine the statistical significance of the
observed differences between distinct groups. The hazard
ratio and 95% confidence interval were calculated based
on Cox regression analysis. All the statistical P values were
bilateral, P < 0.05 was considered statistically significant.

Ethics approval and consent to participate: TCGA and
GEO both are public databases. The patients involved in
the database have given their approval in the original stu-
dies. Users can download relevant data for research and
publish relevant articles. Our study is based on these open-
source data, so there are no ethical issues.

3 Results

3.1 Identification of DEGs

The schematic diagram of our analysis strategy is shown in
Figure A1. To analyze the difference of gene expression
between HCC and normal tissue, we first analyzed the
mRNA expression data. We used limma differential ana-
lysis to get 6,674 DEmRNAs, including 4,446 up-regulated
DEmRNAs and 2,228 down-regulated DEmRNAs. Using DEmRNAs
and data grouping information to draw a classification heat
map, DEmRNAs could well distinguish HCC from normal
tissue (Figure 1a and b). For miRNA expression data, we
used limma differential analysis to get 100 DEmiRNAs,
including 33 up-regulated DEmiRNAs and 67 down-regulated
DEmiRNAs. Using DEmiRNAs and data grouping informa-
tion to draw a classification heat map, DEmiRNAs could
well differentiate HCC from normal tissue (Figure 1c and d).
For the integrated circRNA expression data, we used limma
difference analysis to get 211 up-regulated DEcircRNAs and
47 down-regulated DEcircRNAs. Using DEcircRNAs and data
grouping information to draw a classification heat map, DEc-
ircRNAs could also well discriminate HCC from normal tissue
(Figure 1e and f).
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3.2 Construction of the ceRNA network
based on HCC-related DEGs

We used the StarBase database to identify the DEmRNAs
targeted by DEmiRNAs. A total of 1,059 miRNA-mRNA inter-
actions were predicted, including 51 DEmiRNAs and 316
DEmRNAs (Figure 2a). Using the miRanda prediction tool,

36 circRNA-miRNA interactions were predicted, based on
19 DEcircRNAs and 25 DEmiRNAs (Figure 2b). After inte-
grating the circRNA-miRNA interaction with the miRNA-
mRNA interaction and removing the nodes that cannot
form circRNA-miRNA-mRNA interaction, a novel HCC-related
ceRNA network was established. The network consisted of 11
DEcircRNAs, 12 DEmiRNAs, and 161 DEmRNAs (Figure 2c).

Figure 1: Screening of DEGs between HCC and normal tissue. (a) and (b) Identification of DEmRNA. (c) and (d) Identification of DEmiRNAs. (e) and (f)
Identification of DEcircRNAs. Abscissa was log2 FoldChange, ordinate was log10 (adjust P-value), red nodes represent up-regulated DEGs, blue nodes
represent down-regulated DEGs, and grey nodes represent non-DEGs.
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3.3 Functional enrichment analysis of
DEmRNAs

In order to explore the biological functions of these HCC-
related DEmRNAs, we performed the functional enrichment
analysis (Figure 3a and Tables 1 and 2) HCC-related DEmRNAs

were mainly enriched in BPs associated with axonogenesis,
skeletal system development, mesenchyme development,
epithelial cell proliferation, and protein kinase B signaling
(Figure 3b). At the same time, it was enriched in CCs such
as filopodium, transcription regulator complex, neuron to
neuron synapse, neuronal cell body, and postsynaptic

Figure 2: Construction of the ceRNA network. (a) miRNA-mRNA interaction network, green node represents miRNA and blue node represents mRNA.
(b) circRNA-miRNA interaction network, green node represents miRNA and blue node represents circRNA. (c) circRNA-miRNA-mRNA interaction
network, green node represents miRNA, orange node represents circRNA, and blue node represents mRNA.
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density (Figure 3c) and MFs such as DNA-binding tran-
scription activator activity, RNA polymerase II-specificity,
DNA-binding transcription activator activity, beta-catenin
binding, chemorepellent activity, and growth factor binding
(Figure 3d). Then, the pathway enrichment analysis was car-
ried out, and the results showed that HCC-related DEmRNAs
were enriched in biological pathways such as breast cancer,

melanoma, transcriptional mis-regulation in cancer, p53 sig-
naling pathway, cell cycle, glioma, and so on (Figure 3e).
Figure 3f shows the most significant enrichment pathway:
hsa05224: breast cancer (Figure 3F). Here we found that it
was intriguing to observe the enrichment of a pathway for
a different cancer type. Therefore, we compared the DEGs
between breast cancer and HCC from TCGA database, and

Figure 3: GO and KEGG enrichment analysis. (a) GO function enrichment analysis, ordinate was log10 (P value), abscissa was GO terms, node color
represented z-score. (b)−(d) The top five items of BP, CC, and MF showed that the node size indicated the number of genes contained in the current
GO term, the color of the line represents different GO terms, and the node color represents the FC of the gene. (e) KEGG pathway enrichment analysis
showed that the node color represents the FC of the gene, and the line color represents different KEGG pathways. (f) Significantly enriched KEGG
pathway, hsa05224: Breast cancer.
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found that there were commonalities between these two
cancer types (Figure A2).

3.4 Screening hub genes in relation to VI

A total of 748 DEGs were obtained by differential expres-
sion analysis between HCC with VI and those without VI,
including 625 up-regulated and 123 down-regulated DEGs
(Figure 4a). We screened the proteins encoded by these
DEGs to construct a PPI network visualized in Cytoscape
(Figure 4b). There are 122 DEGs and 278 PPI pairs in the PPI
network. The top five genes that interact with other DEGs
are FOS and NRXN1 (interacting with 18 DEGs), CCNA2,
ESR1, and NTRK2 (interacting with 17 DEGs). We over-
lapped the DEGs within the PPI and ceRNA network men-
tioned above to get seven genes as hub genes (Figure 4c).
We used the R packet “GOSemSim” to calculate the GO
semantic similarity of these seven hub genes. The results
showed that there was a high correlation among HOXC10,
HOXC11, HOXC8, and HOXD10 (Figure 4d). Furthermore, the

gene expression levels of seven hub genes were screened
from two datasets of TCGA-LIHC and GTEX-Liver, and visua-
lized by R-packet ggplot2 box map. The results showed that
there were significant differences in the expression of seven

Table 1: GO analysis of DEmRNAs

Ontology ID Description P.adjust

BP GO:0007409 Axonogenesis 2.82 × 10−10

BP GO:0001501 Skeletal system development 1.22 × 10−9

BP GO:0060485 Mesenchyme development 7.40 × 10−9

BP GO:0050673 Epithelial cell proliferation 9.80 × 10−9

BP GO:0043491 Protein kinase B signaling 1.24 × 10−8

BP GO:0060537 Muscle tissue development 2.16 × 10−8

BP GO:0045444 Fat cell differentiation 2.67 × 10−8

BP GO:0045165 Cell fate commitment 5.34 × 10−8

BP GO:0048732 Gland development 5.84 × 10−8

CC GO:0030175 Filopodium 3.31 × 10−6

CC GO:0005667 Transcription regulator complex 6.30 × 10−6

CC GO:0098984 Neuron to neuron synapse 3.24 × 10−6

CC GO:0043025 Neuronal cell body 7.33 × 10−5

CC GO:0014069 Postsynaptic density 8.89 × 10−5

CC GO:0005874 Microtubule 9.02 × 10−5

CC GO:0032279 Asymmetric synapse 0.00010944
CC GO:0098858 Actin-based cell projection 0.000112462
CC GO:0099572 Postsynaptic specialization 0.00019835
CC GO:0044304 Main axon 0.000456943
MF GO:0001228 DNA-binding transcription activator activity, RNA polymerase II-specific 2.10 × 10−7

MF GO:0001216 DNA-binding transcription activator activity 2.54 × 10−7

MF GO:0008013 Beta-catenin binding 6.49 × 10−7

MF GO:0045499 Chemorepellent activity 2.16 × 10−6

MF GO:0019838 Growth factor binding 4.12 × 10−6

MF GO:0019199 Transmembrane receptor protein kinase activity 1.69 × 10−5

MF GO:0015631 Tubulin binding 6.02 × 10−5

MF GO:0008017 Microtubule binding 6.79 × 10−5

MF GO:0004714 Transmembrane receptor protein tyrosine kinase activity 8.36 × 10−5

MF GO:0001217 DNA-binding transcription repressor activity 0.000131863

Table 2: KEGG analysis of DEmRNAs

Ontology ID Description P.adjust

KEGG_PATHWAY hsa05224 Breast cancer 2.40 × 10−6

KEGG_PATHWAY hsa05218 Melanoma 3.56 × 10−6

KEGG_PATHWAY hsa05202 Transcriptional mis-
regulation in cancer

7.51 × 10−5

KEGG_PATHWAY hsa04115 p53 signaling pathway 0.000157097
KEGG_PATHWAY hsa04110 Cell cycle 0.000165791
KEGG_PATHWAY hsa05214 Glioma 0.00019382
KEGG_PATHWAY hsa04151 PI3K-Akt signaling

pathway
0.000268124

KEGG_PATHWAY hsa05215 Prostate cancer 0.000306014
KEGG_PATHWAY hsa04810 Regulation of actin

cytoskeleton
0.000309593

KEGG_PATHWAY hsa04510 Focal adhesion 0.00039945
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hub genes between HCC tumor samples and control samples
(Figure A3).

3.5 Construction of prognostic risk score
model based on hub genes

We used R packet “glmnet” to obtain the regression coeffi-
cients of these seven hub genes based on LASSO method.
Combined with the gene expression levels of these hub
genes, we constructed a risk score model to predict the
prognosis of patients with HCC. The regression coefficients
of the seven hub genes were as follows: HOXC8: 0.037,
GNAO1: 0.017, ADRA1D: 0.020, ARPP21: −0.008, HOXC11:
0.020, HOXC10: −0.014, and HOXD10: 0.047 (Figure 5a and b).
We explored the correlation among the expression of these
hub genes, and the results showed high levels of correlation
among HOXC10, HOXC11, and HOXC8 (Figure 5c). We calcu-
lated the risk score for each patient in the TCGA-HCC cohort,

and then divided the patients into high and low risk
groups according to the median risk score. KM survival
analysis showed that OS in the higher risk group was
significantly shorter than that in the lower risk group
(P < 0.0001, Figure 5d). Next we assessed the relationship
between risk score and HCC patient survival. The results
showed that the higher the risk score, the shorter the
survival time of HCC patient and the higher the propor-
tion of death (Figure 5e).

In order to verify the robustness of the risk score, we
tested the utility of our model in the validation set data. The
verification set data were from the Chinese HCC patients
with HBV infection (CHCC-HBV) cohort from 2010 to 2014
at Zhongshan Hospital [29], which was accessed through
NODE (https://www.biosino.org/node). Combined with the
survival data of patients and our model, the risk score of
each patient was calculated, and the patients were grouped
and analyzed by risk score. The results showed that the
patients with high-risk score in the verification set also
showed a trend of worse prognosis (Figure A4).

Figure 4: PPI network of DEGs between HCC with and without VI. (a) The DEGs between HCC with and without VI were analyzed, the abscissa was log2
fold change, the ordinate was log10 (adjust P-value), the red node was up-regulated DEGs, the blue node was down-regulated DEGs, and the grey node
was non-significant DEGs. (b) The PPI network constructed by the encoded proteins of DEGs, and the orange color represents the key genes. (c) The Venn
diagram of genes in PPI and DEmRNA in ceRNA network, the orange color represents the DEmRNA in ceRNA network, and green color represents the
genes in PPI network. (d) The GO semantic similarity of key genes, the horizontal axis represents similarity, and the vertical axis was the genes.
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3.6 Correlation between risk score and
clinical parameters

We analyzed the correlation between risk score and clin-
ical parameters, and the results showed that patients in the

high-risk group were usually associated with higher T/N/M
stages and VI occurrence (Figure 6a). Then, the effects of
the expression levels of seven key genes on the prognosis
of patients was analyzed, and the results indicated that the
high expression of HOXC8, ADRA1D, HOXC11, HOXC10, and

Figure 5: Construction of risk scoring model. (a) LASSO regression characteristic fitting curve. (b) Quantitative analysis of key genes in LASSO
regression. (c) Correlation analysis of expression levels of hub genes. (d) Survival analysis between patients in high- and low-risk groups. Orange color
indicated patients in low-risk group, green color indicated patients in high-risk group, the horizontal axis was survival time, and the vertical axis was
survival probability. (e) Correlation diagram of the risk factors in risk scoring model. The vertical axis in the top figure was the risk score, the horizontal
axis was the patient, the vertical axis in the middle figure was the survival time of the patient, and the horizontal axis was the patient. The lower figure
is the heat map of the expression levels of key genes, orange color indicats high expression and green color indicates low expression.
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HOXD10 predicted a poor prognosis (Figure 6b−f). In order to
assess the effects of risk score and clinical characteristics on the
prognosis of HCC patients, the Nomogram model was con-
structed using clinical parameters and risk score to predict
the 1, 3, and 5 year survival rate of patients with HCC. Com-
paring with the actual 1, 3, and 5 year survival rate of patients,
the results showed that the survival rate of HCC patients could
be well predicted by the Nomogram model (Figure 7b−d). Uni-
variate Cox analysis using risk score and clinical characteristics

showed that risk stratification, T/N/M stage, and ethnicity were
all prognostic factors for HCC (Figure 7e). Multivariate Cox
analysis showed that risk stratification was the only prognostic
factor for HCC (Figure 7f). The DCA curve showed that the
model could be beneficial to the prognosis evaluation of
patients (Figure 7g). The time-ROC analysis also showed that
the 1 year survival prediction performance of the prognostic
model was 58%, and both the 3 and 5 year survival prediction
performance were 61% (Figure 7h).

Figure 6: The prognostic relevance of seven characteristic gene. (a) The correlation between risk score, clinical parameter, and key gene expression
level. (b)−(f) The survival curves show the effects of HOXC8, ADRA1D, HOXC11, HOXC10, and HOXD10 gene expression on the prognosis of patients.
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Figure 7: The Nomogram models. (a) Nomograph of HCC patients’ clinical parameters and risk score. (b)–(d) Nomogram model was used to predict
the 1 year survival rates, 3 year survival rates, and 5 year survival rates of HCC patients. The horizontal axis and vertical axis were the predicted survival
rate and the actual survival rate of HCC patients, respectively. (e) and (f) Univariate and multivariate COX analyses of risk score and HCC patients’
clinical parameters. (g) DCA curve was applied to assess the useful degree of the model for HCC patients. (h) Time ROC analysis was applied to predict
2 year survival rates, 3 year survival rates, and 5 year survival rates of HCC patients.
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Figure 8: Immune infiltration analysis. (a) The difference of immune cell infiltration between high-risk group and low-risk group, green color indicates
high-risk group, orange color indicates low-risk group. (b) and (c) There was a correlation between the immune cell infiltration in the high-risk group
and the low-risk group, with blue color indicating a positive correlation and red indicating a negative correlation. (d) and (e) The correlation analysis
between immune cell infiltration and hub genes in high-risk group and low-risk group shows that the horizontal axis is immune cell, the vertical axis is
key gene, and the node size indicated significant level. The node color represented the correlation level ratio.
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3.7 Differences in immune infiltration

After analyzing the immune cell infiltration in HCC, we
found that the counts of activated CD4+ T cell, T follicular
helper cell, mast cell, type 2T helper cell, activated CD8+ T
cell, regulatory T cell, and natural killer T cell in high-risk
group were significantly more than that of low-risk group
(Figure 8a). Moreover, the correlations between the immune
cells content in the high-risk group and the low-risk group
were further calculated, and the results showed that the
correlation between the immune cells content in the high-
risk group was significantly higher than that in the low-risk
group (Figure 8b and c). The relationship between hub gene
expression and the immune cells of two groups were ana-
lyzed and the result showed that there was a noteworthy
difference between HOXC11, HOXC8 expression, and immune
cells (Figure 8d−e).

4 Discussion

Nowadays, HCC is still the leading cause of cancer mortal-
ities globally [30]. Over the past decades, large numbers of
studies had been conducted to explore the molecular
mechanisms underlying HCC advancement and many target
drugs have been applied to treatment, but patients with
metastatic HCC still had poor prognosis [31]. Among all the
factors, VI stands out due to significant contribution to HCC
metastasis, and VI could include angiogenesis and dysfunc-
tion of vascular endothelial cell barrier, which provide
pathway for cancer cells to invade other organs [32]. Pre-
vious study revealed that the presence of microvascular
invasion means the presence of tumor invasion to the adja-
cent tissues of HCC. Microvascular invasion was one of the
vital elements of early HCC recurrence and distal metastasis
[33]. Therefore, it is of great importance to investigate the
molecular mechanism underlying VI of HCC and explore
effective treatment target to improve the prognosis of HCC
patients.

Increasing evidence has uncovered the significant involve-
ment of noncoding RNAs (ncRNAs) in the tumorigenesis of HCC.
circRNAs are covalently closed loop structure ncRNA with evo-
lutionary conservation and high abundance in eukaryotes.
Functionally, circRNAs could compete for miRNA binding and
remove the inhibitory effect of miRNA on their target mRNAs,
thus forming ceRNA mechanism. In addition to functioning
as miRNAs sponges, circRNAs could also interact with RNA-
binding proteins, and eventually exert regulatory roles in
different BPs, including cell proliferation, cell cycle, apop-
tosis, migration, EMT invasion, glycolysis, angiogenesis, VI,

and metastasis [34]. A growing body of studies has demon-
strated that circRNAs play important roles in the occurrence
and development of HCC and other liver diseases. Most
importantly, circRNAs have great clinical value as potential
biomarkers and therapeutic target for HCC [35,36]. There-
fore, more and more attention has been paid to circRNAs in
HCC. Very recently, several circRNA-related ceRNA net-
works were identified in HCC and subsequently the prog-
nostic risk score models were built based on key genes
within these ceRNA network. Han et al. reported a ceRNA
network composed of DEcircRNAs and then a prognostic
risk assessment model was developed based on seven hub
genes (PLOD2, TARS, RNF19B, CCT2, RAN, C5orf30, and
MCM10), which was verified to be an independent factor
for predicting prognosis of HCC [37]. Notably, two lncRNA-
related ceRNA networks associated with VI have been
reported in HCC by Cai et al. [38] and Tao et al. [16],
respectively, and the prognostic signatures were also
built based on distinct DEGs. However, to our knowledge,
the prognostic risk score models for HCC based on hub
genes in relation to both VI and circRNA-related ceRNAs
have never been reported. In the current study, the dif-
ferences of gene expression between HCC and adjacent
normal tissue were explored first, and then we identified
a novel circRNA-miRNA-mRNA network consisting of 12
DEmiRNAs, 11 DEcircRNAs, and 161 DEmRNAs. Previous
study demonstrated that a circRNA-miRNA-mRNA net-
work involved in the pathogenesis and therapy strategy
of HCC [39], and the DEmiRNAs, DEcircRNAs, and DEmRNAs
were all different from our study, it might be explained that
the distinct database and biological function were investigated.

In our study, the DEGs between HCC with and without
VI were also analyzed and used to build a PPI network. The
top five genes that interacted with other DEGs were FOS,
NRXN1, CCNA2, ESR1, and NTRK2. The great importance of
FOS in HCC has also been reported by others. Study has
verified that FOS might be a potential marker for pre-
dicting HCC prognostic. The expression level of FOS in
HCC patients was inversely related to the OS [40]. Further-
more, we made the intersection of the DEGs within the PPI
network and the DEGs in the ceRNA network to get seven
hub genes. Subsequently, a seven-gene based prognostic
risk score model was constructed for HCC. The result of
TCGA-HCC cohort showed that the OS of the higher risk
group was markedly shorter than that of the lower risk
group. These seven hub genes were GNAO1, ADRA1D,
ARPP21, HOXC8, HOXC11, HOXC10, and HOXD10. Some of
these hub genes have been reported to be implicated in
HCC progression. GNAO1 was shown to be significantly
downregulated in HCC, as well as being implicated in a
variety of intracellular biological events. GNAO1 may act
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as a tumor suppressor and was a reliable biomarker of
relapse prediction for HCC [41,42]. A previous bioinformatics
analysis revealed that HOXC genes (HOXC8, HOXC9, HOXC10,
HOXC11, HOXC12, and HOXC13) might participate in pathogen-
esis of gastric adenocarcinoma [43]. In addition, high expres-
sion levels of HOXC genes were significantly correlated with
shorter OS of the gastric cancer patients [44]. Here we found
that HOX genes might play the same roles in HCC, as KM
analysis demonstrated that HOXC8, HOXC11, HOXC10, and
HOXD10 expressions were all inversely related to HCC
patients’ OS. To our knowledge, this is the first time to report
the expression and the prognostic role of HOXC genes
in HCC.

It is generally believed that HCC is preceded by liver
damage and extensive inflammation, and therefore is
accompanied by immune cells infiltration. Intratumoral
immune cell infiltration has been associated with HCC prog-
nosis in previous study [45]. HCC is often accompanied with
a dense stroma coupled with infiltrated immune cells, refer-
ring to as the tumor microenvironment. Populations of infil-
trated immune cells, such as CD163+macrophages and CD8+
T cells, are associated with the prognosis in HCC, and
immune cells in the tumor microenvironment can be a
target for HCC therapy [46]. Here we analyzed the immune
cell infiltration in HCC patients according to the risk strati-
fication based on the prognostic model. The counts of sev-
eral important immune cells, such as Activated CD4+ T cell,
Mast cell, Activated CD8+ T cell, and Natural killer T, in high-
risk group were all significantly higher than those in low-
risk group, and the correlation of infiltrated immune cells in
high-risk group was also significantly higher than that in
low-risk group. This indicated that our prognostic model
was useful in predicting immune response in HCC. More-
over, our data showed a significant correlation among the
expression levels of HOXC11, HOXC8, and immune cells infil-
tration in HCC, indicating that the HOXC genes might play
vital roles in immune response of HCC.

It should be noticed that there are some limits in our
study. First, the data sources and any assumptions inherent
in the analysis process may enhance the potential bias of the
results of this study; therefore, larger sample sizes, more
databases, and better algorithms are needed to build a
more comprehensive ceRNA network in HCC. Second, HCC
tissue sample detection in our research center should be
performed to test the clinical utility of the prognostic model.
Furthermore, the role of HOXC genes in HCC progression
should be verified in vitro and in vivo experiments, which
might explore the underling molecular mechanism for HCC
metastasis.

Furthermore, we have also noticed the technical lim-
itations and uncertainties in applying our model to real-

world scenarios. Liver cancer is a complex disease with
various unknown factors and variables influencing its pro-
gression and treatment. Therefore, our model’s predictions
may carry a certain degree of uncertainty, particularly in
complex clinical cases. We believe it is crucial to highlight
this aspect to ensure transparent communication and informed
decision-making by healthcare professionals.

5 Conclusion

Here we established a novel prognostic model based on
seven hub genes, which were screened from the intersection
of DEGs within a VI-related PPI network and a circRNA-
related ceRNA network. The seven-gene based prognostic
model was useful for evaluating the prognosis of HCC
patients. This study clarified for the first time that the
abnormal expression and the prognostic roles of HOXC
genes (HOXC10, HOXC11, and HOXC8) in HCC. Additionally,
the expression of HOXC11 and HOXC8 were correlated with
immune cell infiltration, suggesting that they might be
potential immunotherapy targets for HCC. Further studies
are needed to verify these results in vitro and in vivo.
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Appendix

Figure A1: The schematic diagram showed the analysis strategy of our study.
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Figure A2: (a) There are obvious batch effects in TCG A-BRCA and GTEX- Breast. (b) TCG A-BRCA and GTEX- Breast data are integrated and batch effects
are removed for subsequent analysis. (c) Of the 14 differentially expressed genes in hepatocellular carcinoma, 12 were also significantly differentially
expressed in breast cancer, * indicating P < 0.05, **indicating P < 0.01, *** indicating P < 0.001.
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Figure A3: (a) TCGA-LIHC and GTEX-Liver have obvious batch effect. (b) TCGA-LIHC and GTEX-Liver data are integrated after batch effects removal.
(c) There was a significant difference in the expression of seven characteristic genes between hepatocellular carcinoma tumor samples and control
samples. * it means P < 0.05, ** means P < 0.01, *** means P < 0.001.

Figure A4: The patients with high risk scores in the validation set of CHCC data also showed a tendency to have a worse prognosis.

20  Yun Liu et al.


	1 Introduction
	2 Methods and materials
	2.1 Data acquisition and processing
	2.2 Screening of DEGs
	2.3 Construction of a ceRNA network
	2.4 Functional enrichment analysis
	2.5 Gene expression difference between HCC with and without VI
	2.6 Construction of PPI network
	2.7 Construction of prognostic model and analysis of prognosis
	2.8 Difference of immune cell infiltration between high- and low-risk groups
	2.9 Statistical analysis

	3 Results
	3.1 Identification of DEGs
	3.2 Construction of the ceRNA network based on HCC-related DEGs
	3.3 Functional enrichment analysis of DEmRNAs
	3.4 Screening hub genes in relation to VI
	3.5 Construction of prognostic risk score model based on hub genes
	3.6 Correlation between risk score and clinical parameters
	3.7 Differences in immune infiltration

	4 Discussion
	5 Conclusion
	Acknowledgements
	References
	Appendix


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


