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Abstract: Phosphodiesterase 4D interacting protein (PDE4DIP)
interacts with cAMP-specific phosphodiesterase 4D and its
abnormal expression promotes the development of hematolo-
gical malignancies, breast cancer, and pineal cell carcinoma.
However, there is currently no systematic pan-cancer analysis
of the association between PDE4DIP and various cancers.
Thus, this study aimed to elucidate the potential functions
of PDE4DIP in various cancers. Based on the multiple public
databases and online websites, we conducted comprehen-
sive analyses for PDE4DIP in various cancers, including
differential expression, prognosis, genetic variation, DNA
methylation, and immunity. We thoroughly analyzed the
specific role of PDE4DIP in acute myeloid leukemia (LAML).
The results indicated that there were differences in PDE4DIP
expression in cancers, and in kidney chromophobe, LAML,
pheochromocytoma and paraganglioma, thymoma, and
uveal melanoma, PDE4DIP had potential prognostic value.
PDE4DIP expression was also correlated with genetic varia-
tion, DNAmethylation, immune cell infiltration, and immune-
related genes in cancers. Functional enrichment analysis
showed that PDE4DIP was mainly related to immune-related
pathways in cancers, and in LAML, PDE4DIP was mainly
related to immunoglobulin complexes, T-cell receptor com-
plexes, and immune response regulatory signaling pathways.

Our study systematically revealed for the first time the poten-
tial prognostic and immunotherapeutic value of PDE4DIP
in various cancers, including LAML.

Keywords: PDE4DIP, pan-cancer, prognosis, immune, acute
myeloid leukemia

1 Introduction

Phosphodiesterase 4D (PDE4D) is an important member of
the nucleotide phosphodiesterase superfamily, which can
specifically hydrolyze the intracellular second messenger
cyclic adenosine monophosphate (cAMP), and plays a vital
regulatory role in various activities of cells and the develop-
ment of malignant tumors [1]. Many studies have pointed out
that PDE4D is a tumor-promoting molecule in some cancers,
including hematological malignancies, lung cancer, prostate
cancer, colorectal cancer, gastric cancer, melanoma, head and
neck cancer, breast cancer, ovarian cancer, endometrioma,
pancreatic ductal adenocarcinoma (PDAC), etc. [1–5]. For
example, Rahrmann et al. revealed that PDE4D is a common
insertion site in prostate cancer, and PDE4D knockout can
reduce the growth and migration rate of prostate cancer
cells in vitro [3]. Liu et al. discovered that the up-regulation
of PDE4D expression in patients with PDAC is closely related
to poor prognosis and multiple clinicopathological character-
istics, indicating that the PDE4D gene may be a potential
target for the prognosis and treatment of PDAC [5]. In
addition, Dong and Zhang et al. indicated that there are
differences in the expression of PDE4D in hematological
malignancies, i.e., compared to peripheral blood mononuc-
lear cells from healthy adults, the expression of PDE4D is
significantly reduced in cells extracted from patients with
chronic lymphocytic leukemia, while is more abundant in
CEM and Jurkat T leukemia cell lines [6,7]. All in all, the
above studies demonstrated that PDE4D may be a potential
target for multiple cancer treatments.
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Related studies further found that phosphodiesterase
4D interacting protein (PDE4DIP) is a protein that can
interact with PDE4D and anchor PDE4D in the centro-
some/Golgi region of cells, and is mainly expressed in the
brain and heart [8]. Some studies have shown that there is a
close association between PDE4DIP gene mutations and
atrial fibrillation, stroke, and heart failure [9]. However,
there are relatively few reports on the PDE4DIP gene and
tumor development, only including leukemia, breast cancer,
and pineoblastoma. Yao et al. found for the first time in their
research on gene mutation profiles in Chinese leukemia
patients that high mutations in the PDE4DIP gene are sig-
nificantly associated with the occurrence of leukemia [10].
Onyeisi et al. pointed out that in breast cancer, the most
common malignancy in women, the abnormal expression
of syndecan-4 is affected by transcriptional and post-tran-
scriptional mechanisms, including PDE4DIP gene mutations
[11]. Furthermore, Snuderl et al. found that there is a small
duplication of the PDE4DIP gene in patients with pineal cell
tumors and this gene mutation may lead to the overexpres-
sion of PDE4DIP, which is closely related to the development
of pineal cell tumors [12]. However, the full picture of
PDE4DIP in pan-cancer has not been reported.

In order to fully elucidate the important role of PDE4DIP
in multiple cancer types, we conducted a systematic pan-
cancer analysis of the PDE4DIP gene based on The Cancer
Genome Atlas (TCGA) [13] and the Genotype-Tissue Expres-
sion (GTEx) [14] public databases in this study. We evaluated
the differential expression of PDE4DIP in various cancers and
its relationship with patients’ prognosis, and further analyzed
the relevance between PDE4DIP expression and genetic var-
iation, DNA methylation, and immune characteristics, as well
as the potential biological functions of PDE4DIP in pan-
cancer. In addition, because previous research has found
that PDE4DIP is associated with hematological malignancies,
we further explored the specific role of PDE4DIP in acute
myeloid leukemia (LAML) in depth, providing a new target
for the future diagnosis and treatment of various cancers,
including LAML.

2 Methods and materials

2.1 Data collection and expression analysis
of PDE4DIP

The RNA sequencing data (fragments per kilobase million
[FPKM]) and clinical data of PDE4DIP in 33 cancers were
obtained from the TCGA database using UCSC Xena (https://
xenabrowser.net/datapages/), and the full names of all cancers

are shown in Table S1. The RNA sequencing data (FPKM) of
normal tissues were obtained from the GTEx database
(https://commonfund.nih.gov/GTEx). During the above pro-
cess, we used Perl to extract and merge PDE4DIP data, and
used the R package “limma” to conduct batch correction
and differential expression analysis. Then, we used R
packages “ggplot2” and “ggpubr” to draw a box diagram
of PDE4DIP differential expression. Because basal-like breast
cancer (BLBC), mesothelioma (MESO), and uveal melanoma
(UVM) have no corresponding normal tissues, this diagram
did not show them. Afterward, we used the R package
“ggradar” to draw a radar map of PDE4DIP expression in
tumors and healthy tissues, respectively, where the value
represents the mean value of PDE4DIP expression.
Furthermore, based on tumor tissues and their corresponding
paracancerous tissues in TCGA data, we used wilcox.test to
analyze the differential expression of PDE4DIP, in which R
packages “ggplot2,” “ggpubr,” and “patchwork” were used for
mapping. In addition, based on the CPTAC data set in the
UALCAN database (http://ualcan.path.uab.edu/), we explored
the differential expression of the PDE4DIP protein in tumors
and normal tissues.

2.2 Prognostic analysis

Based on the Cox regression analysis, we evaluated the
relevance between four survival data of tumor patients
and PDE4DIP expression, including overall survival (OS),
disease-specific survival (DSS), disease-free interval (DFI),
and progression-free interval (PFI). The R package “sur-
vival” was used for the above analysis. Furthermore, we
evaluated the relationship between PDE4DIP expression
and patients’ OS using the Kaplan–Meier (KM) analysis.
Specifically, we used Perl to extract expTime.txt survival
data and used R packages “survival,” “ggplot2,” “ggpubr,”
and “surviver” to analyze and draw survival curves.

2.3 Genetic alteration analysis

Gene mutation and copy number variation (CNV) analyses
were conducted on the cBioPortal website (http://www.
cBioPortal.org/). Pearson’s correlation analysis was used to
explore the relationship between PDE4DIP expression and
CNV in cancers. Correlation analysis was carried out through
the R package “corrplot” and the method “spearman,” and R
packages “ggplot2” and “ggpubr” were used to draw the lol-
lipop diagram.
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2.4 DNA methylation analysis

We downloaded the survival evaluation index data (OS,
DFI, PFI, and DSS) of cancer patients from the UCSC Xena
website (https://xenabrowser.net/datapages/), and matched
them with the methylation β-values of PDE4DIP to further
obtain the analysis data. After that, the methylation β-values
were separated into two groups on the basis of the median
value, and R packages “survival,” “ggplot2,” “ggpubr,” and
“survivor” were used for drawing KM curves. Pearson’s cor-
relation analysis was used to explore the relationship between
PDE4DIP expression and DNAmethylation in cancers through
the R package “corrplot” and the method “spearman.”

2.5 Immune level analysis

First, the relevance between PDE4DIP expression and tumor-
associated macrophage (TAM) infiltration was studied using
the TIMER 2.0 online website (http://timer.cistrome.org/), and
the heat map was plotted by the R package “pheatmap.”
Second, based on the TISIDB website (http://cis.hku.hk/
TISIDB/index.phpc), we extracted immune-related gene
sets from TCGA, including major histocompatibility com-
plex, chemokine, acceptor, immunoinhibitor, and immu-
nostimulator, and further analyzed their correlation with
PDE4DIP expression. Then, the above correlation ana-
lyses were carried out through the R package “corrplot”
and the method “spearman.” Third, based on LAML data in
the TCGA database (TCGA-LAML), we used the CIBERSORT
algorithm to obtain 22 immune cell scores, and further ana-
lyzed their correlation with PDE4DIP expression.

2.6 Gene set enrichment analysis (GSEA)

The GSEA of PDE4DIP in 33 cancers was carried out using R
packages “ggplot2,” “limma,” “pheatmap,” “ggsci,” “org.Hs.eg.db,”
“patchwork,” and “ggridges.” Afterward, the enrichment results
were sorted by the normalized enrichment score (NES) value,
and the first 20 pathways were visualized in the form of moun-
tain maps.

2.7 Statistical analysis

In this study, all statistical analyses and result maps were
completed by R software (v 4.0.2). p < 0.05 indicated statis-
tically significant, and we marked the significant results

with *, where * represents p < 0.05, ** represent p < 0.01,
*** represent p < 0.001.

3 Results

3.1 Aberrant expression of PDE4DIP in
pan-cancer

To determine the basic landscape of PDE4DIP expression,
multi-omics data on PDE4DIP levels in various cancers
were analyzed. Differential analysis of PDE4DIP mRNA
expression from the TCGA and GTEx databases revealed
that PDE4DIP expression was significantly up-regulated in
14 cancers compared to that in healthy tissues, including
adrenocortical carcinoma (ACC), bladder urothelial carci-
noma (BLCA), breast invasive carcinoma (BRCA), brain lower
grade glioma (LGG), liver hepatocellular carcinoma (LIHC),
ovarian serous cystadenocarcinoma (OV), pancreatic adeno-
carcinoma (PAAD), pheochromocytoma and paraganglioma
(PCPG), prostate adenocarcinoma (PRAD), stomach adenocar-
cinoma (STAD), testicular germ cell tumors (TGCT), thyroid
carcinoma (THCA), uterine corpus endometrial carcinoma
(UCEC), and uterine carcinosarcoma (UCS) (all p < 0.05). In
contrast, it was significantly down-regulated in eight tumors:
kidney chromophobe (KICH), kidney renal clear cell carci-
noma (KIRC), kidney renal papillary cell carcinoma (KIRP),
LAML, lung adenocarcinoma (LUAD), lung squamous cell car-
cinoma (LUSC), rectum adenocarcinoma (READ), and skin
cutaneous melanoma (SKCM) (all p < 0.05) (Figure 1a). The
average expression levels of PDE4DIP in 33 tumors and
healthy tissues are shown in Figure 1b and c. Furthermore,
we analyzed the expression of PDE4DIP at the protein level in
different cancers based on the CPTAC data set. The results
showed that the expression of the PDE4DIP protein in PAAD,
KIRC, and colon adenocarcinoma (COAD) (all p < 0.05) was
significantly down-regulated compared with that in normal
tissues, while it was significantly up-regulated in BRCA, glio-
blastoma multiforme (GBM), head and neck squamous cell
carcinoma (HNSC), LIHC, LUAD, and UCEC (all p < 0.05)
(Figure 2). The detailed results of the differential expression
analysis of PDE4DIP at mRNA and protein levels are shown in
Tables S2 and S3.

3.2 Prognostic value of PDE4DIP in
pan-cancer

Prognostic analysis aims to elucidate the association between
the expression of a specific gene and the prognosis of cancer
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patients, thus determining the prognostic value of that gene
[15]. Through Cox regression analysis, we studied the rele-
vance between PDE4DIP expression and four survival data
of cancer patients, including OS, DSS, DFI, and PFI, to further
reveal the potential prognostic value of PDE4DIP in different
cancers. The results of the Cox proportional hazards model
showed that the expression of PDE4DIPwas significantly cor-
related with lower OS in patients with LAML (p = 0.001), PCPG
(p = 0.020), thymoma (THYM) (p = 0.002), and UVM (p = 0.003)
(Figure 3a). Univariate Cox regression analysis showed that
high PDE4DIP expression was associated with a significant
decrease in DSS in PCPG (p = 0.028), THYM (p = 0.043), and
UVM (p = 0.006) patients (Figure 3b), as well as poor DFI in
HNSC (p = 0.023) patients, while it was significantly associated
with better DFI in PAAD (p = 0.033) and PCPG (p = 0.034)
patients (Figure 3c). For PFI, high PDE4DIP expression was

associated with the significant reduction in PFI in KICH (p =

0.030), THYM (p = 0.006), and UVM (p = 0.016) patients, while
it was significantly associated with better PFI in PAAD (p =

0.003) patients (Figure 3d). In addition, KM curves further
showed that the high expression of PDE4DIPwas significantly
related to the shortened survival time of LAML (p = 0.003) and
UVM (p = 0.002) (Figure 3e and f) patients, indicating that
PDE4DIP had a poor prognosis in LAML and UVM patients.

3.3 Association of PDE4DIP expression with
genetic alterations

Alterations in specific gene sequences or DNA copy num-
bers can potentially lead to changes in gene expression or
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abnormalities in gene function [16]. In cancer-related stu-
dies, evaluating the genetic variation profiles of a specific
gene or exploring the relationship between these varia-
tions and gene expression levels can further determine
whether specific alterations within that gene are asso-
ciated with tumor occurrence, progression, and treatment

response [17–19]. Genetic variation analysis pointed out
that the mutation frequency of PDE4DIP was higher in
endometrial cancer, bladder cancer, melanoma, non-small
cell lung cancer (NSCLC), hepatobiliary cancer, and BRCA,
and the main types included mutation and amplification
(Figure S1). CNV indicated that PDE4DIP expression was
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Figure 2: PDE4DIP expression pattern in tumor and normal tissues at protein level: (a)–(l) PAAD, KIRC, COAD, BRCA, GBM, HNSC, LIHC, LUAD, UCEC,
STAD, PRAD, and OV. p < 0.05 indicates statistically significant.
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positively related to DNA copy number in most cancers,
including UCEC, sarcoma (SARC), KICH, BRCA, BLCA, eso-
phageal carcinoma (ESCA), READ, OV, THCA, KIRC, GBM,
COAD, LUAD, STAD, KIRP, cervical squamous cell carcinoma
and endocervical adenocarcinoma, LIHC, LUSC, SKCM, and
PRAD (Figure S2a).

3.4 Association of PDE4DIP expression with
DNA methylation

DNA methylation is an epigenetic modification, which is
closely related to gene expression and regulation [20].
During cancer progression, abnormal DNA methylation
patterns are often accompanied, whichwill result in abnormal
expression of some genes and disorder of normal cell func-
tions, thus promoting the development of tumors [21,22]. DNA
methylation analysis showed that in GBM, COAD, LUSC, PAAD,
HNSC, LGG, UCEC, and BLCA patients, PDE4DIP expression
was significantly positively related to DNA methylation, while
was significantly negatively related to DNA methylation in
STAD, KIRC, SARC, MESO, THCA, THYM, PCPG, and UVM
patients (Figure S2b). Furthermore, we evaluated the prog-
nostic value of PDE4DIP methylation based on OS, DSS, DFI,
and PFI. The results showed that PDE4DIP methylation was a
prognostic factor for OS of KIRC, PAAD, LGG, SKCM, UCEC, and
UVM patients. To be specific, the high level of PDE4DIPmethy-
lationwas significantly related to the increase of OS in patients
with PAAD, LGG, SKCM, UCEC, and UVM (Figure 4b–f), but
only to the decrease of OS in patients with KIRC (Figure 4a).
In addition, PDE4DIP methylation was a prognostic factor for
DSS of DLBC, LGG, SKCM, UCEC, UCS, and UVM patients
(Figure S3), and for PFI in patients with LGG, MESO, UVM,
UCEC, UCS, and ACC (Figure S4). However, there was no sig-
nificant correlation between PDE4DIPmethylation and DFI in
any cancers.

3.5 Association of PDE4DIP expression with
immune-related characteristics

Tumor-infiltrating immune cells are typically dysfunctional,
fail to control tumor growth and may even promote tumor
development and immune escape [23]. Moreover, abnormal
expression of immune-related genes can lead to reduced
antigen presentation, and increased production of immuno-
suppressive substances, and tumor immune escape, thereby
impacting tumor immune therapy [24]. Based on the TIMER
2.0 online website, we studied the relevance between TAM

infiltration and PDE4DIP expression in the tumor micro-
environment (TME). The results showed that there was a
significant positive correlation between TAM infiltration
levels and PDE4DIP expression in most cancers, mainly
including M2-like TAMs (Figure 5a). Furthermore, based
on the TISIDB online website, we further evaluated the
potential relevance between immune-related genes and
PDE4DIP expression in the TME. Notably, gene co-expres-
sion analysis revealed that PDE4DIP expression was signifi-
cantly positively related to the expression of most immu-
noinhibitors in cancers (Figure 5b; Figure S5a–d).

3.6 Biological function of PDE4DIP in pan-
cancer

GSEA of single gene determined the pathways affected by
PDE4DIP expression in pan-cancer. According to the ranking
of the NES value, the first 20 pathways were markedly
enriched in 33 kinds of cancers. Among them, the pathways
that appeared more than ten times mainly included tuber-
culosis, Epstein-Barr virus infection, JAK-STAT signaling
pathway, chemokine signaling pathway, NOD-like receptor
signaling pathway, Th17 cell differentiation, cell adhesion
molecules, etc.

3.7 Role of PDE4DIP in LAML

Based on the TCGA-LAML data, we analyzed the correlation
between PDE4DIP expression and immune cell infiltration
in LAML. The results revealed that PDE4DIP expression was
significantly positively related to the infiltration of B cell
naive and plasma cells, but negatively related to the infiltra-
tion of dendritic cell resting, T cell follicular helper, and
mast cell resting (Figure 6).

In order to better clarify the role of PDE4DIP in LAML
and its relationship with immune response, TME, and
tumor purity, we conducted correlation analyses between
PDE4DIP expression and estimate score, immune score,
normal score, and TumorPurity score. The results revealed
that there was a significant positive association between
PDE4DIP expression and immune score, indicating that the
PDE4DIP gene might have a certain impact on the immune
response process of LAML, but there was no significant
correlation between the PDE4DIP gene and estimate score,
normal score, and TumorPurity score (Figure 7a–d).

We further explored the potential function of PDE4DIP in
LAML.GSEA showed thatPDE4DIPwasmostmarkedly enriched
in immune-related pathways in LAML, including primary
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immunodeficiency, intestinal immune network for IgA pro-
duction, viral protein interaction with cytokine and cytokine
receptor, cell adhesion molecules, chemokine signaling
pathway, B cell receptor signaling pathway, Th17 cell dif-
ferentiation, T cell receptor signaling pathway, and JAK-
STAT signaling pathway (Figure 8a). Gene ontology (GO)

functional enrichment analysis revealed that in LAML, PDE4DIP
was mainly enriched in immunoglobulin complex, T cell
receptor complex, chromosomal region, ATP-dependent
activity acting on DNA, methyltransferase activity, double-
strand break repair, immune response-regulating signaling
pathway, etc. (Figure 8b–d).
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4 Discussion

As we all know, PDE4DIP is a protein that can interact with
cAMP-specific PDE4D and is widely expressed in various
cell types, including neurons, cardiomyocytes, immune
cells, and tumor cells, and participates in cell proliferation,
migration, and cell cycle [8,25,26]. Previous studies have
found that PDE4DIP exhibits abnormal expression in var-
ious diseases, including malignant tumors [9–12], but its
effect on the diagnosis, prognosis, and TME of tumors
remains to be further explored. Therefore, our study is
the first to comprehensively and systematically analyze
the expression, prognosis, genetic changes, DNA methyla-
tion, immune cell infiltration, immune-related genes, and
biological functions of PDE4DIP in many cancers. Our
research revealed that the PDE4DIP gene had potential prog-
nostic and immunotherapeutic values in various cancers,
including LAML, providing a certain theoretical basis for
using PDE4DIP as a biomarker in future cancer treatment.

Previous studies have pointed out that different tumors
exhibit tumor heterogeneity due to genetic and epigenetic
changes in the evolution and development of tumors [27].

Consistent with previous reports, our study found that
PDE4DIP expression was heterogeneous in different can-
cers, where it was up-regulated in some cancer types and
down-regulated in others. Although the exact mechanisms
remain unclear, multiple factors could result in the differ-
ential expression of PDE4DIP. On the one hand, differences
in gene expression regulatory networks between different
cancer types might result in different regulatory mechan-
isms of PDE4DIP, leading to different expression patterns in
cancers [10–12]. On the other hand, PDE4DIP expression can
be influenced by various factors, including transcription
factor regulation, epigenetic modifications, and activation
of signaling pathways. And relevant studies have revealed
that the PDE4DIP expression may be related to some sig-
naling pathways, such as PI3K/AKT, RAS/ERK, and NF1/RAS
pathways [28,29]. However, the specific regulatorymechanism
of PDE4DIP expression in different cancers needs further
exploration in subsequent studies. It is worth noting that
PDE4DIPwas significantly up-regulated in many cancer types,
including ACC, BLCA, BRCA, LGG, LIHC, OV, PAAD, PCPG,
PRAD, STAD, TGCT, THCA, UCEC, and UCS. It is speculated
that PDE4DIP may serve as an oncogene in these cancers,
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Figure 6: Correlation between PDE4DIP expression and immune cell infiltration in LAML.
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possibly promoting tumor development. In addition, we com-
pared the expression patterns of PDE4DIP at the mRNA and
protein levels (Table S4), and the results showed that in some
cancer types, the expression patterns of PDE4DIP at themRNA
and protein levels were inconsistent, such as in PAAD and
LUAD. We speculated that this may be related to the changes
in post-transcriptional regulation [30], the differences in post-
translational modification [31], and the differences in sample
sources. In future research, we will collect more clinical data
or design relevant experiments to further clarify the expres-
sion pattern of PDE4DIP in different cancers.

Prognostic analysis based on OS, DSS, DFI, and PFI
indicated that high expression of PDE4DIP had a potential
prognostic effect on some cancers, with a poor prognosis in
LAML, PCPG, THYM, UVM, and HNSC patients, and a good
prognosis in PAAD and PCPG patients. Previous studies have
reported that the treatment of LAML remained unchanged
for most of the twentieth and early twenty-first centuries,

and the survival curve remained stagnant for decades [32].
UVM is one of the most invasive and deadly skin cancers,
and its mortality increases with the increase of incidence
rate [33]. Immunotherapy and targeted therapy can mark-
edly improve the survival rate of patients, but due to the
complexity of cancer treatment, seeking the best treatment
still requires continuous efforts. In this study, we found
that PDE4DIP had potential prognostic value in pan-
cancer, including LAML and UVM, giving a new guidance
for the diagnosis and treatment of cancers in the future.

PDE4DIP is an anchor protein, and its genetic muta-
tions can result in impaired cell function, further leading to
changes in intracellular targeting and cell survival, and the
occurrence of diseases such as atrial fibrillation, stroke,
and heart failure [9,34]. In this study, we further found
that PDE4DIP had a higher frequency of mutations in some
cancers, including endometrial cancer, bladder cancer, mela-
noma, NSCLC, hematological malignancies, and BRCA. Chang
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et al. conducted whole-exome or targeted gene sequencing of
tumor regions in patients with NSCLC and found that many
gene mutations occur in patients’ bodies, and certain gene-
specific mutation patterns may affect targeted treatment of
cancers [35]. Onyeisi et al. found that mutations in the
PDE4DIP gene may be a key factor leading to the imbalance
of expression of cell surface heparan sulfate proteoglycan
syndecan-4, thereby promoting the development of BRCA
[11]. In addition, Yao et al. found that the PDE4DIP gene is
one of the highly mutated genes during the occurrence and
development of leukemia [10]. All in all, given the high muta-
tion frequency of PDE4DIP in various cancers, we speculated
that PDE4DIP mutations might be closely related to the

development of cancers, which needs to be verified through
subsequent experiments in different cancers.

Numerous studies have pointed out that TME has a
notable effect on the progression of tumors, including immune
cells, blood vessels, fibroblasts, lymphocytes, endothelial cells,
and extracellular components (cytokines, hormones, etc.)
[36,37]. The content of various immune cell infiltrating
tumor tissues and the expression level of immune-related
genes are closely related to the immune regulation and
prognosis of patients [38]. Our study revealed that PDE4DIP
expression was markedly correlated with immune cell infil-
tration and the expression of immune-related genes in var-
ious cancers. In LAML, PDE4DIP expression was positively
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related to B cell naive and plasma cell infiltration, and nega-
tively related to dendritic cell resting, T cell follicular helper,
and mast cell resting infiltration. Moreover, TME score
showed that there was a significant positive association
between PDE4DIP expression and immune score in AML.
These results indicate that PDE4DIP plays a vital role in
the possible immune regulation of tumors, which may
become a new marker for cancer immunotherapy.

Finally, through functional enrichment analysis, we
found that PDE4DIP had a critical impact on the immu-
notherapy of various cancers, i.e., PDE4DIP expression was
mainly associated with immune-related pathways such as
JAK-STAT signaling pathway, chemokine signaling pathway,
and NOD-like receptor signaling pathway, and in LAML,
PDE4DIP expression was also related to immune modulators
such as immunoglobulin complexes and T-cell receptor com-
plexes. Currently, immunotherapy is regarded as a promising
option for cancer treatment [39]. Our findings further provide
more theoretical basis for using PDE4DIP as a biomarker for
future immunotherapy of various cancers.

Inevitably, there are some shortcomings in our research
that are worth considering. Our research mainly studied the
potential role of PDE4DIP expression in multiple cancer types
based on online public databases, whichmay have systematic
errors and lack of large-scale clinical cohort data for further
analysis and verification. At the same time, the specific role of
PDE4DIP in cancers, especially in LAML, still needs to be
further clarified through molecular experiments.

5 Conclusion

In summary, our study first conducted a comprehensive
analysis of the PDE4DIP gene in pan-cancer, revealing its
potential prognostic and immunotherapeutic values in var-
ious cancers, including LAML, and providing a theoretical
basis for the future use of the PDE4DIP gene as a potential
target for the treatment of cancers.
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