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Abstract: Two independent experiments were performed
with three groups each (sepsis control, sepsis, and sepsis
with apoE23 treatment) to investigate the anti-inflamma-
tory effect of apolipoprotein 23 (apoE23) in a mouse model
of sepsis induced by S. typhimurium. Survival rates; plasma
level variations in tumor necrosis factor (TNF)-α, inter-
leukin (IL)-6, and lipopolysaccharide (LPS); S. typhimurium
colony-forming units in the spleen tissue; and mRNA and
protein expression levels of low-density lipoprotein receptor
(LDLR), LDLR-related protein (LRP), syndecan-1, and sca-
venger receptor B1 were evaluated in the livers of mice
from the three groups. Results found that the survival rate
of septic mice treated with apoE23 was 100% within 48 h,
while it was only 40% in septic mice without apoE23 treat-
ment (P < 0.001). The plasma LPS, TNF-α, and IL-6 levels and

the S. typhimurium load in mice in the apoE23-treated group
were significantly lower than those in septic mice (P < 0.05).
Moreover, apoE23 restored the downregulated expression of
LDLR and LRP in the liver tissue of septic mice. So apoE23
exhibits an anti-inflammatory effect in the mouse model of
S. typhimurium-induced sepsis. Further studies are required
to understand the mechanisms underlying the anti-inflam-
matory effects of apoE23.
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1 Introduction

Sepsis, a life-threatening condition caused by a dysregu-
lated host response to infection, remains the leading cause
of death in intensive care unit patients and has been a
global health priority since 2017 [1,2]. The hyperactive
inflammatory response mediated by immune cells against
infectious organisms and their toxins leads to host cell
death and tissue damage, which are characteristic of septic
shock [2]. Lipopolysaccharide (LPS), also known as endo-
toxin, is considered the principal trigger of the immune
response leading to sepsis [3].

Apolipoprotein E (apoE) is a plasma apolipoprotein
with multiple biological functions [4–6]. Exogenously, apoE
significantly suppresses the production of interleukin (IL)-6,
IL-1β, and tumor necrosis factor (TNF)-α induced by LPS in
RAW 264.7 cells [4]. ApoE knockout mice are highly suscep-
tible to endotoxemia and Klebsiella pneumoniae infection
due to their inability to neutralize LPS [5]. These biological
functions of apoE are mediated by the low-density lipopro-
tein receptor (LDLR) family, including LDLR, LDLR-related
protein (LRP), syndecans, heparan sulfate proteoglycans
(HSPGs), and scavenger receptor B1 (SRB1) [6,7]. Most of
these receptors are expressed in hepatic cells and macro-
phages [6,7].

ApoE23 is a mimetic peptide of apoE that downregu-
lates TNF-α, IL-6, and IL-10 expression in LPS-induced cells and
human peripheral blood mononuclear cells [8]. In this study,
the effects of intraperitoneal injection of S. typhimurium, a
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gram-negative intracellular pathogen, were studied, along
with the therapeutic effect of apoE23 on the S. typhimurium-
infected mice.

2 Materials and methods

2.1 ApoE23 synthesis and purification

ApoE23, consisting of amino acid residues 141–148 and
135–149, was synthesized by solid-phase synthesis using
standard fluorenylmethoxycarbonyl chemistry protocols.
The peptide sequence LRKLRKRLVRLASHLRKLRKRLL was
obtained after high-pressure liquid chromatography (>95%
purity). A filter-sterilized aqueous solution of apoE23 at a con-
centration of 0.3 μg/L was prepared before use.

2.2 Murine model setting

Forty-five clean level C57BL female mice (2 weeks old after
weaning, 10–12 g body weight) were obtained from the
Laboratory Animal Research Institute of Shanghai Medical
College, Fudan University. S. typhimurium colonies remaining
on the culture dish were used for the experiment. The strains
were identified using MALDI-TOF biotyper mass spectro-
metry (Bruker Company, Germany). Antimicrobial suscept-
ibility tests were performed using automatic Vitek2 compact
machines. The quality control strain was Escherichia coli
ATCC25922; S. typhimurium diagnostic serum was obtained
from Ningbo Tianrun Biotechnology Co. Ltd.

For the animal model tests, the mice were randomly
divided into three groups of 15 mice each. All mice in the
three groups were housed in a laminar flow environment
with a 12 h light/dark cycle, a stable temperature of 25°C,
and free access to diet and water. Mice survival rates were
monitored every 4 h for a total of 72 h. The three model
groups of mice were as follows: sepsis apoE23-treated group
– infected with 100 μL S. typhimurium (1.0 × 106 colony-
forming units [CFUs]) [9] by intraperitoneal injection and
immediately treated with a single dose of apoE23 (6mg/kg
body weight) [10] by tail vein injection; sepsis group – s
infected with the same dose of S. typhimurium and immedi-
ately treated with 0.9% sodium chloride by tail vein injection;
and the sepsis control group – intraperitoneal injection with
the same dose of 0.9% sodium chloride, and immediately
treated with 0.9% sodium chloride by tail vein injection.

All animals were anesthetized with ether prior to
intraperitoneal injection and euthanized with CO2 (flow
rate: 30% volume displacement per min) after 72 h.

The humane endpoints for euthanizing animals were
as follows:
1. Weight loss: When the weight loss reaches 20–25%, or

the animals have cachexia or consumptive symptoms.
2. Loss of appetite: Complete loss of appetite for 24 h or poor

appetite (less than 50% of the normal amount) for 3 days.
3. Weakness: Inability to eat or drink, animals unable to

stand, or those that could only stand with extreme reluc-
tance for 24 h without anesthesia or sedation.

4. Infection

2.3 Blood and tissue sample preparation

To observe the mechanism of the therapeutic effect of
apoE23, 45 C57BL mice were divided into three groups.
The interventions were the same as those mentioned above.
After the intervention, themice were euthanized by CO2 at 1,
3, and 24 h (n = 5 at each time point). Blood samples were
collected from the tail vein in EDTA anticoagulant tubes,
centrifuged at 3,000 rpm for 10min, and stored at −20°C
for the TNF-α, IL-6, and LPS assays. Whole blood samples
were cultured overnight on blood agar plates to verify bac-
teremia. Sepsis was confirmed by positive blood cultures
and LPS measurements (described below). The lungs, small
intestine, and liver were fixed in 10% formalin, paraffin-
embedded, and stained with hematoxylin and eosin (HE)
for histopathological observation. Pathological changes were
observed under a microscope (100× magnification; HE stain).
The liver was sectioned into two: the first section was used for
histopathological observation (as mentioned above), and the
second section was snap-frozen in liquid nitrogen, pulverized
on dry ice, and prepared for either quantitative mRNA or
protein analysis. The Knodell pathological score [11] was
used for the liver pathological score.

2.4 Salmonella typhimurium CFU analysis in
mouse spleen tissue

For direct culture, 10 μL of tissue homogenate from the
mouse spleen was incubated in a xylose lysine deoxycholate
medium (Chromagar, Shanghai, China). The number of bac-
terial colonies was calculated and identified using MALDI-
TOF mass spectrometry.

2.5 Assays for plasma TNF-α, IL-6, and LPS
levels

Plasma IL-6 and TNF-α levels were measured using murine
IL-6 and TNF-α enzyme-linked immunosorbent assay kits
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(R&D Co.), respectively. LPS was measured in mouse plasma
samples using the dynamic immunoturbidimetric assay
with the gram-negative endotoxin determination reagents
kit (EKT109; Gold Mountain River Tech, Shanghai, China)
and an auto-analyzer (MB-80; Goldstream, Shanghai,
China), according to the manufacturer’s instructions.
Negative and blank controls were used for each panel.

2.6 Quantitative real-time polymerase
chain reaction (qRT-PCR) and
western blot

To determine the possible mechanism of the anti-inflam-
matory effect of apoE23, the expression levels of the apoE
receptors LDLR, LRP, syndecan-1 (SDC1), and SRB1 in mouse
liver were detected using RT-PCR and western blotting; pre-
viously described experimental methods were followed [9].
Hepatic cells from mice were lysed, and total RNA was
extracted using the TRIzol Max kit (Invitrogen, USA). RNA
was reverse transcribed to cDNA using Moloney murine
leukemia virus reverse transcriptase (Promega, Madison,
WI, USA). The mRNA expression of LDLR, LRP, SDC1, SRB1,
and β-actin was determined by qPCR using SYBR Premix Ex
Taq (Takara, Dalian, China). β-actin was used as an endo-
genous control for sample normalization. The following
gene-specific primers, noted below, were designed and synthe-
sized by Sangon Biotech, Inc. (China).

LDLR-F: 5′-CCGACCTGATGAATTCCAGT-3′;
LDLR-R: 5′-TGGTCTTGCACTCCTTGATG-3′.
LRP-F: 5′-CGACACCAACAAGAAGCAGA-3′;
LRP-R: 5′-AGAGTGTGGTTGCTCCCATC-3′.
SDC1-F: 5′-TGCGTACAACAGGGTATGGA-3′;
SDC1-R: 5′-CCTCCCCTCCACTCCTAGAC-3′.
SRB1-F: 5′-GGGCTCGATATTGATGGAGA-3′;
SRB1-R: 5′-GGAAGCATGTCTGGGAGGTA-3′.
β-actin-F: 5′-GAGACCTTCAACACCCCAGC-3′;
β-actin-R: 5′-ATGTCACGCACGATTTCCC-3′.
The PCR thermal cycling program consisted of one

cycle at 95°C for 30 s, followed by 40 cycles at 95°C for 5 s
and 60°C for 30 s. A melting curve was generated by setting
the cycles at 95°C for 15 s, 60°C for 30 s, and 95°C for 15 s.
The confirmation of a single gene product was achieved
by generating a dissociation curve after each qPCR cycle.
The cycle threshold value was determined using iCycler
software, and quantification of gene products, normalized
to the expression of the ribosomal β-actin housekeeping
gene, was calculated using the comparative Ct (2−ΔΔCt)
method.

2.7 Western blot

The total hepatic cell protein levels were assayed using a
BCA Protein Assay kit (Beyotime, Shanghai, China). Lysates
(50 μg total protein) were mixed with 5× sample buffer,
heated to 100°C for 5 min, and separated using 10% sodium
dodecyl-sulfate polyacrylamide gel electrophoresis. The
resolved proteins were transferred onto a 0.45 μm PVDF
membrane using a Mini-Protean 3 electrophoresis system
(Bio-Rad, USA). Non-specific binding sites on the membranes
were blocked by incubation with a buffer containing 5% (w/v)
non-fat milk. The membranes were probed with primary
rabbit anti-mouse antibodies against LDLR (1:2,500; Epitomics,
Burlingame, USA), LRP (1:2,500; Epitomics, Burlingame, USA),
SDC1 (1:1,000; Abcam, Cambridge, USA), SRB1 (1:5,000; Abcam,
Cambridge, USA), and β-actin (1:3,000; Santa Cruz Biotechnologies,
Santa Cruz, USA). Immunoreactive bands were detected by
incubation with horseradish peroxidase-conjugated sec-
ondary antibodies (1:3,000; Santa Cruz Biotechnologies,
Santa Cruz, USA) and visualized by chemiluminescence.
Protein bands were quantified using the Quantity One
software (Bio-Rad, Hercules, USA) and normalized to the
corresponding β-actin bands.

2.8 Statistical methods

The detection values are expressed as the mean value ±

standard deviation (SD). Analysis of variance was used to
compare the mean of detection values between groups,
and Tukey’s Test was used as a post hoc test. Survival
curves were generated using the Kaplan–Meier method,
and survival differences were analyzed using the log-
rank test. Statistical significance was set at P < 0.05. SPSS
25.0 was used for all statistical analyses.

Ethics statement: This study was approved by the Ethical
Committee on Animal Experiments at the Children’s Hospital
of Fudan University (approval number (2011) 023).

3 Results

3.1 Cumulative survival rates in the
septic mice

The survival rates of mice from different groups were eval-
uated to investigate whether apoE23 could improve their
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survival rate. No mice in the sepsis control group died
during the observation period. The median survival time
of mice in the sepsis group was 24 h and the cumulative
survival rate of mice in the sepsis group that were treated
with apoE23 was 60% at 48 h (median survival time was
not calculated) (P < 0.001) (Figure 1). Therefore, apoE23
improved the overall survival rate of mice. However, since
there were only five mice in each group at each time point,
a larger sample size is required to determine whether apoE23
delays death.

3.2 ApoE23 attenuated infection-induced
organ injury

Histopathological sections of the lungs, liver, and small
intestine of mice in the three groups were stained with
HE and observed under an optical microscope to assess
histopathological injury in the organs. The lung tissue in
the sepsis group was slightly edematous, and many inflam-
matory cells had infiltrated around the pulmonary vessels
(Figure 2, a2). In addition, inflammatory cell exudation was
observed in the liver (Figure 2, b2). The murine small
intestinal cavities were filled with inflammatory exudate
in the sepsis group (Figure 2, c2). In contrast, only slight
inflammatory injuries were observed in apoE23-treated
septic mice (Figure 2a3, b3, and c3).

These histopathological changes indicated that S. typhi-
murium infection induced prominent inflammatory injuries

in various organs of the mice, while apoE23 treatment
minimized the inflammatory injury. However, the Knodell
pathological score showed only a few inflammatory cells
around the portal area, and no degeneration or necrosis
was found in the liver lobule. The pathological grading of
mouse liver showed mild changes both in the septic and
apoE23-treated septicmice within 24 h (score 1). Longer obser-
vations after 24 h are required to monitor the anti-inflamma-
tory effect of apoE23.

3.3 ApoE23 reduced bacterial load in
septic mice

The number of bacterial colonies in the spleen tissue homo-
genate frommice in different groups was evaluated (Figure 3).
No bacteria were isolated from mice in the sepsis control
group. The bacterial colonies in the spleen tissue homogenate
in the sepsis group increased by more than 800 CFU/mL at the
three time points. After apoE23 treatment, the number of bac-
terial colonies dramatically decreased (1,048 ± 152 vs 405 ±

178 CFU/mL [P < 0.01] at 1 h, 926 ± 236 vs 59 ± 29 CFU/mL [P
< 0.01] at 3 h, and 862 ± 235 vs 82 ± 22 CFU/mL [P < 0.01] at 24 h)
(Figure 3a). These results indicate that apoE23 has a dramatic
bactericidal effect in vivo.

3.4 ApoE23 reduced plasma TNF-α, IL-6, and
LPS levels in septic mice

Plasma TNF-α, IL-6, and LPS levels in mice from different
groups were evaluated to investigate whether apoE23 has
an effect on their levels (Figure 3).

The plasma TNF-α level in the sepsis group increased
dramatically at the 1 h time point and then continued to
decrease at 3 h and 24 h compared to the sepsis control
group (P < 0.01). Plasma IL-6 levels at the three time points
were higher in the sepsis group than in the control group (P <

0.01). ApoE23 treatment dramatically decreased plasma TNF-α
and IL-6 levels at the three time points compared to those in
the sepsis group (Figures 3b and 3c). The plasma LPS levels
increased dramatically at the 3 h and 24 h time points in the
sepsis group compared with those in the sepsis control group
(P < 0.01). ApoE23 treatment dramatically decreased plasma
LPS levels at the 3 h and 24 h time points compared to the
sepsis group (P < 0.05) (Figure 3d) while no significant differ-
ences were found between these two groups at the 1 h time
point.

These results indicate that apoE23 can downregulate
the plasma TNF-α, IL-6, and LPS levels in the septic mouse
and exert anti-inflammatory effects.

Figure 1: Kaplan–Meier curve of cumulative survival rate between
groups ApoE23 improved the overall survival rate of mice with sepsis.
The mice were randomly divided into three groups (the sepsis control,
sepsis, and sepsis apoE23 treated group) of 15 and mice survival rates
were observed every 4 h for 72 h.
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3.5 Effect of apoE23 on the expression levels
of apoE-related receptors in livers of
septic mice

The expression levels of LDLR, LRP, SDC1, and SRB1 rela-
tive to those of β-actin in the liver were evaluated at the
transcriptional and translational levels to investigate the
relationship between the anti-inflammatory effect of apoE23
and the expression of these LPS-related receptors (Figures 4
and 5, respectively).

Compared to the sepsis control group, LDLR expres-
sion in the sepsis group decreased significantly at the three

time points (P < 0.01), while LRP expression decreased at
1 h and 3 h (P < 0.05), both at the transcriptional and trans-
lational levels. SDC1 expression only decreased at the tran-
scription level at 1 h (P < 0.01).

Compared to the sepsis group, LDLR expression was
significantly recovered at the three time points in both
the transcription and translation levels in the sepsis
apoE23 treated group (P < 0.01). No significant differences
were found in LRP mRNA levels, whereas the LRP protein
levels at the 1 and 3 h time points were significantly recov-
ered in the sepsis apoE23 treated group (P < 0.05). Only a
transient increase at 1 h in the SDC1 mRNA levels was

Figure 2: ApoE23 attenuated infection-induced lung, small intestine, and liver histopathological injury. Mice were euthanized at 1, 3, and 24 h (n = 5 for
each time point) after tail vein treatment. Histopathological sections were stained with hematoxylin and eosin for histopathological observation. (a)
Histopathological sections of lungs tissues. a1: The sepsis control group; the alveoli were intact and well filled, without inflammatory cell exudation.
a2: The sepsis group; many inflammatory cells infiltrated around the pulmonary vessels. a3: The sepsis apoE23 treated group; the alveoli were intact
and well filled, with a small amount of focal inflammatory cells exuding. (b) Histopathological sections of the liver tissue. b1: The sepsis control group;
no hemorrhage or infiltration of inflammatory cells were found in the liver tissue. b2: The sepsis group; showed significant infiltration of inflammatory
cells around the portal area. b3: The sepsis apoE23 treated group; there was mild inflammatory cell infiltration around the liver sinusoids. (c)
Histopathological section of the small intestine. c1: In sepsis control mice, the intestinal villi were intact, and there was no inflammatory secretion in
the intestinal cavity. c2: the sepsis group; a large amount of inflammatory cells exudation was found in the intestinal cavity. c3: the sepsis apoE23
treated mice; a small amount of inflammatory exudation was found in the small intestine cavity.
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detected in the sepsis apoE23 treated group (P < 0.01)
(Figures 4 and 5).

Unlike LDLR, LRP, and SDC1, SRB1 expression increased
significantly at the 3 h time point in both the transcription
and translation levels in the sepsis group compared to the
sepsis control group (P < 0.01) (Figure 4d). With apoE23
treatment, no significant difference in SRB1 expression was
found, except for the transcription levels that decreased at
the 1 h time point in the sepsis apoE23 treated group (P < 0.01)
(Figures 4 and 5).

These results indicate that apoE23 has an effect on
LDLR, LRP, SDC1, and SRB1 at different stages of sepsis.

4 Discussion

The study sought to examine the anti-inflammatory impact
of apoE23 in a mouse model of S. typhimurium-induced

sepsis. It revealed that apoE23 therapy effectively reduced
plasma levels of TNF-α, IL-6, and LPS; decreased bacterial
load in the spleen tissue homogenate; and alleviated infec-
tion-induced lung, liver, and small intestine injuries in
mice with sepsis. These findings suggest that the anti-
inflammatory effect of apoE23 may be attributed to the
upregulation of apoE-related receptors, specifically LDLR
and LRP.

Although several animal models of sepsis have been
established, none perfectly replicate all clinical manifesta-
tions and pathophysiological changes observed in clinical
sepsis [12,13]. In this study, an S. typhimurium infection-
induced murine sepsis model was established based on the
ability of the zoonotic bacterium to cause severe invasive
infection in mice [14] and the similarity of the pathological
process of sepsis or septic shock in S. typhimurium-infected
mice to the clinical conditions [15–17]. Injecting bacteria
offers advantages for observing drug efficacy and studying
bacterial or LPS clearance hemodynamics [12,13]. Lipoproteins,

Figure 3: ApoE23 treatment reduced bacterial colonies in (a) spleen tissue, (b) decreased plasma TNF-α, (c) IL-6, and (d) LPS levels in the sepsis group.
The number of bacterial colonies in the spleen was calculated and identified using matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry. Plasma levels of IL-6 and TNF-α were measured by ELISA, and LPS was measured using a dynamic immunoturbidimetric assay. Results
are presented as the mean value ± standard deviation (SD). *P < 0.05; **P < 0.01.
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including apoE, are known to play a key role in downregu-
lating systemic inflammation in preclinical sepsis models
[18–20] and facilitating the clearance of gram-negative bac-
teria by binding to and neutralizing LPS [21].

Among the plasma lipoproteins that are important
host defense factors against S. typhimurium infection [22],
apoE has been closely associated with sepsis. ApoE protects
against bacterial LPS-induced lethality, and recombinant
apoE shows potential therapeutic application in protecting
against LPS-induced endotoxemia [23]. Several apoE-mimetic
peptides have been developed based on the sequence of 1–149
amino acid residues in the N domain of apoE and have
demonstrated their efficacy against inflammation, both
in vitro and in vivo [24–26]. In this study, all the experi-
mental mice exhibited septic-shock-like manifestations
and died within 24 h after being infected with a half-lethal
dose of S. typhimurium, whereas with a single dose of
apoE23 treatment, the mortality of the septic mice declined.
A previous study also found that ApoE23 downregulates
TNF-α and IL-6 expression in LPS-induced cells and human

peripheral blood mononuclear cells [8]. Further investiga-
tion demonstrated that apoE23 reduced plasma TNF-α, IL-6,
and LPS levels; decreased bacterial load in spleen tissue; and
attenuated infection-induced lung, liver, and small intestine
injuries in septic mice. The observations suggest that the
efficacy of the apoE-mimetic peptides in attenuating pro-
inflammatory cytokine production could be attributed to
the neutralization of plasma LPS, the blocking of LPS binding
tomacrophages, and the direct downregulation of pro-inflam-
matory cytokine expression.

The absorption of the LPS complex is mediated by the
binding of the apoE LDLR domain with LDLR, LRP, HSPG
(SCD1), and SRB1 expressed in hepatic cells [6,7,27–29].
ApoE has two distinct functional domains, and the motif
includes the receptor-binding region of apoE [6]. This region,
enriched in basic residues, is responsible for high-affinity
ligand binding to the LDL superfamily of receptors. Residues
142–147 within this sequence, known as the heparin-binding
domain, mediate the attachment of apoE to cellular HSPGs
[30,31]. Although tandem-repeat peptides derived from the

Figure 4: ApoE23 restored the mRNA expression of LDLR, LRP, SDC1, and SRB1 to different degrees at different times in the liver. Hepatic mRNA
expression levels of (a) LDLR, (b) LRP, (c) SDC1, and (d) SRB1 were detected using qPCR. Expression levels were normalized to β-actin. *P < 0.05;
**P < 0.01.
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receptor-binding region also bind to the LRP [32], their
binding is a complex process that likely requires the parti-
cipation of HSPGs [33]. This signal cascade is activated when
lactoferrin, lipoprotein lipase, or Pseudomonasexotoxin A
binds to LRP; however, binding of LDL or receptor-associated
protein to LRP fails to trigger signal transduction [34,35].

LDLR is the most crucial receptor of apoE. The combi-
nation of apoE and LDLR receptors facilitates the removal
of apoE glycoproteins, chylomicrons, and high-density lipo-
proteins. LDLR also exhibits anti-inflammatory properties.
Interferents that enhance LDL clearance or increase LDLR
expression may reduce endotoxemia and protect against
severe sepsis [25]. The expression of LDLR in hepatic cells
is attenuated during sepsis [26]. In contrast, higher expres-
sion was observed in liver macrophages [24]. This imbal-
ance in LDLR expression in the septic mouse liver leads to
competitive binding of LPS to macrophages. This redistri-
bution of LPS kinetics not only attenuates the efficacy of
LPS clearance by hepatic cells but also triggers the expres-
sion of pro-inflammatory cytokines in macrophages [24].
This study corroborated the variation in LDLR expression

in septic mice and demonstrated that apoE23 treatment can
reverse the downregulation of LDLR expression. These
results indicate that LDLR functionally contributes to all
stages of sepsis development and that apoE23 has a regu-
latory effect throughout the process.

LRP, another important receptor in the LDLR family, is
associated with over 40 different ligands, including lipo-
proteins, proteases, protease inhibitor complexes, bacterial
toxins, viruses, and various intracellular proteins. These
ligands activate functions of LRP, such as maintaining
the stability between proteases and protease inhibitors,
resistance to viral and toxin invasion, regulation of lyso-
somal enzyme activation, and anti-inflammatory effects
[36]. The study results revealed a decline in LRP expression
at the transcriptional and translational levels during the
early stages of sepsis. Following bacterial inoculation, hepatic
LRP expression decreased specifically at the 1 and 3 h time
points, but not at the 24 h time point, which represents the
late stage of sepsis. The sepsis-induced downregulation of LRP
protein levels was significantly recovered at 1 and 3 h after
apoE23 treatment at the translation level. Additionally, SDC1

Figure 5: ApoE23 restored the protein expression of LDLR, LRP, SDC1, and SRB1 to different degrees at different times in the liver. Hepatic (a) LDLR,
(b) LRP, (c) SDC1, and (d) SRB1 levels were measured by western blotting. The expression levels were normalized to GAPDH. *P < 0.05; **P < 0.01.

8  Chuanqing Wang et al.



is a predominant component of HSPGs and can indepen-
dently regulate lipid metabolism without affecting the LDLR
family [37]. SDC1 appears to be involved only in the early
stage (1 h time point) of sepsis in mice and transiently recov-
ered after apoE23 treatment. The shedding of SDC1 from
human hepatocytes alters very-low density lipoprotein clear-
ance [38]. Further investigation is required to determine
whether the changes in LRP and SDC1 expression affect the
metabolism of the LPS-apoE lipoprotein complex. Unlike
LDLR, LRP, and SCD1 receptors, SRB1 expression increased
rapidly in response to bacterial injection at the three time
points but decreased transiently after apoE23 treatment. SRB1
is a high-density lipoprotein receptor that is expressed pre-
dominantly in the liver [39]. It binds to and neutralizes LPS,
contributing to its anti-inflammatory effect [40]. The effect
of apoE23 on SRB1 was transient or unclear, mainly because
free apoE or apoE mimetic peptides, such as apoE23, prefer-
entially bind to lipids to promote lipid absorption, thereby
competitively weakening the apoE-SRB1 anti-inflammatory
effect [41].

The study has several limitations. First, the sample size
was small. Second, only female mice were used in the
experiments, and the phase of the estrous cycle was not con-
sidered. Additionally, while abnormal pathological changes
were evident in HE staining, other staining data, such as
collagen deposition or fibrosis-related staining, would provide
a comprehensive assessment of the inflammatory damage.
Moreover, a separate treatment group of apoE for normal
micewas not included, preventing the determination of poten-
tial side effects of apoE23 on normal mice. Finally, while the
study illustrated the anti-inflammatory effect of apoE23 on
S. typhimurium-induced sepsis in mice, further research is
needed to understand the mechanisms and signaling path-
ways involved in this effect.

The study findings indicated that sepsis-induced changes
in the expression levels of apoE-related receptors in the liver
are likely to be an acute response to infection. Following
apoE23 treatment, the sepsis-induced downregulation of
LDLR and LRP was significantly restored. However, the
effect of apoE23 on SDC1 and SRB1 expression remains tran-
sient or unclear.

5 Conclusion

The investigation revealed that apoE23 therapy effectively
mitigates sepsis with its direct bioactivity against intracellular
bacteria and its anti-endotoxemia effect. Furthermore,
apoE23 appears to modulate LDLR expression in both
the early and late stages of sepsis, while its effect on

LRP, SDC1, and SRB1 was only observed in the early stage.
Further research is required to fully understand the
effects of apoE23 on apoE-related receptors.
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