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Abstract: Ovarian cancer (OC) represents a significant
health challenge, characterized by a particularly unfavor-
able prognosis for affected women. Accumulating evidence
supports the notion that inflammation-related factors
impacting the normal ovarian epithelium may contribute
to the development of OC. However, the precise role of
inflammatory response-related genes (IRRGs) in OC remains
largely unknown. To address this gap, we performed an
integration of mRNA expression profiles from 7 cohorts
and conducted univariate Cox regression analysis to screen
26 IRRGs. By utilizing these IRRGs, we categorized patients
into subtypes exhibiting diverse inflammatory responses,
with subtype B displaying the most prominent immune
infiltration. Notably, the elevated abundance of Treg cells
within subtype B contributed to immune suppression,
resulting in an unfavorable prognosis for these patients.
Furthermore, we validated the distribution ratios of stromal
cells, inflammatory cells, and tumor cells using whole-slide
digitized histological slides. We also elucidated differences
in the activation of biological pathways among subtypes. In
addition, machine learning algorithms were employed to
predict the likelihood of survival in OC patients based on
the expression of prognostic IRRGs. Through rigorous testing
of over 100 combinations, we identified CXCL10 as a crucial
IRRG. Single-cell analysis and vitro experiments further con-
firmed the potential secretion of CXCL10 by macrophages
and its involvement in lymphangiogenesis within the tumor
microenvironment. Overall, the study provides new insights

into the role of IRRGs in OC and may have important
implications for the development of novel therapeutic
approaches.
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1 Introduction

Ovarian cancer (OC) is a prevalent malignancy among
women, characterized by a poor prognosis with the lowest
survival rate among gynecologic cancers. In 2020 alone,
around 320,000 women worldwide were diagnosed with
OC [1]. However, the asymptomatic nature of most OC
cases leads to distant metastases at the time of diagnosis
[2]. While postoperative chemotherapy and maintenance
therapy have shown improved therapeutic outcomes,
common side effects such as nausea and vomiting pose a
significant challenge [3]. Thus, developing a robust model
for predicting OC prognosis is crucial for personalized
treatment.

The association between inflammation and cancer
has two pathways: an extrinsic path that increases cancer
risk due to inflammatory conditions and an intrinsic path
that causes inflammation and tumor formation due to
genetic alterations [4]. Inflammatory cells and mediators
in the tumor microenvironment (TME) orchestrate pro-
inflammatory responses that act in an autocrine and
paracrine manner on malignant and non-malignant cells
[5,6]. Furthermore, recent studies have established a con-
nection between inflammation of the normal ovarian
epithelium and an increased risk of OC, such as ovula-
tion, endometriosis, and pelvic inflammatory disease [7].
Inflammatory mediators and cytokines, such as TNF-α,
IL-1β, and IL-6, have been implicated in promoting OC
growth, progression, and development [8,9] While pre-
vious studies have investigated mRNA-level prognostic
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signatures in OC patients [10–12], genetic signatures
associated with inflammatory response, TME, and drug
sensitivity have not been studied in the field of OC
to date.

This study aimed to comprehensively investigate the
molecular alterations and clinical relevance of inflamma-
tory response-related genes (IRRGs) in OC. To achieve
this, we constructed molecular subtypes, screened hub
IRRGs, and established prognostic models. The results of
this study provide novel insights into the prognosis of OC
and offer new opportunities for personalized treatment
strategies.

2 Materials and methods

2.1 Datasets and data preprocessing

We selected 200 IRRGs from previously published refer-
ences [13–15]. We then obtained gene expression profile
data from the Cancer Genome Atlas (TCGA) [16] and the
Gene Expression Omnibus (GEO) [17] databases, including
GSE19829, GSE18520, GSE9891, GSE26193, GSE30161, and
GSE63885 based on microarray, and the TCGA-OV cohort
based on RNA-seq, using the same inclusion criteria. For
more detailed description, see Table A1. Only samples with
both sequencing data, clinical information, prognostic data,
and no duplicate sequencing were included, resulting in 597
patients in the GPL570 platform cohort and 372 patients in
the TCGA-OV cohort. To remove batch effects between RNA-
seq and microarray data, we utilized the “sva” package. We
also retrievedmutation data from the TCGA-OV cohort, which
included 274 samples, and used the “maftools” package to
present the top 10 gene mutations. In addition, we down-
loaded whole-slide digitized histological slides that corre-
sponded to RNA-seq data from the TCGA database.

2.2 Cell culture

The HO-8910 and A2780 cell lines as well as human lym-
phatic tube endothelial cells (HLECs) were obtained from
Dr. Feng at Southeast University. HO-8910 and A2780
cells were cultured in RPMI-1640 supplemented with 10%
fetal bovine serum (FBS), while HLECs were cultured in
Endothelial Cell Medium (ScienCell Research Laboratories,
Inc.)with 10% FBS. The cultures were maintained at 37°C in
a humidified incubator with 5% CO2. To stimulate CXCL10
in vitro, we purchased recombinant human CXCL10 from

Peprotech and incubated cells with 100 and 200 ng/ml
hCXCL10 for 48 h.

2.3 Lymphangiogenesis and cell adhesion
assay

A precooled 96-well plate was first filled with 50 μL of
precooled PBS, followed by the addition of 50 μL Matrigel
Basement Membrane (BD Biosciences). HLECs were diluted
with conditionedmedium, and 60,000 cells were introduced
into each well. Lymphangion formation was observed to
begin at 6 h and reach completion around 10 h. HO-8910
and A2780 cells were then seeded onto the HLECs in a sepa-
rate 96-well plate for 30min, washed twice with PBS to
remove free cells, and lysed by the addition of red blood
cell lysate for 10min. The absorbance at 690 nm was mea-
sured, and the NC group was normalized to 1.

2.4 Single-cell analysis

The Tumor Immune Single-cell Hub (TISCH) is a scRNA-
seq database that characterizes the TME at the single-cell
level [18]. To explore cell interactions in GSE154600, we
used this database. The single-cell level expression matrix
was standardized by scaling the raw counts (UMI) in each
cell to 10,000 using Seurat’s “NormalizeData” function.
The data were then log-transformed. More detailed pre-
processing steps are available in the TISCH database doc-
umentation function. We focused on CXCL10-related data
from the cell–cell interaction module.

2.5 Construction and functional verification
of molecular subtypes

In the meta-cohort (GPL570 platform and TCGA-OV), uni-
variate cox regression analysis was used to determine the
prognostic value of IRRGs, followed by unsupervised con-
sensus clustering to determine the optimal number of clus-
ters (k value) using “consensusClusterPlus” package and
principal component analysis (PCA) to determine subtype
heterogeneity. Importantly, we performed consensus clus-
tering with a range of k values (from 2 to 10), and found
that k = 3 gave the most stable and significant clustering
results based on the consensus heatmap and consensus
cumulative distribution function plots. Kaplan–Meier

2  Li Dong et al.



analysis and log-rank test were used to assess the different
for overall survival (OS). For functional analysis, differen-
tial expression genes (DEGs) between subtypes were ana-
lyzed using the limma package (adj. p < 0.05, |logFC| > 1),
and Kyoto Gene and Genome Encyclopedia (KEGG) enrich-
ment analysis was performed using the “clusterProfiler”
package. Moreover, gene set variation analysis (GSVA)
was used to assess differences in biological pathways
between different subtypes. p-value <0.05 and q-value
<0.05 were considered significant enrichment pathways.

2.6 Immune cell analysis

Following the pipeline developed in previous studies [12],
we used eight algorithms (TIMER, CIBERSORT, QUANTI-
SEQ, MCP-counter, XCELL, EPIC, ESTIMATE, and ssGSEA)
to estimate the abundances of immune cells in different
risk groups and molecular subtypes.

2.7 Construction and validation of machine
learning-derived risk score

To create a consensus prognostic model for EC patients,
we employed our prior approach [19–21]. First, we cre-
ated a combination of 101 machine learning algorithms
based on the traits of ten models, including LASSO, RSF,
GBM, Survival-SVM, SuperPC, ridge regression, plsRcox,
CoxBoost, StepCox, and Enet. We chose antecedent models
with variable filtering capabilities (RSF, CoxBoost, StepCox,
and LASSO). Subsequently, we generated signatures in an
expression file using predictive IRRGs in the TCGA-OV
training cohort. Finally, we calculated risk scores using
the obtained signatures in the training cohort and validated
the scores in other testing cohorts (GSE19829, GSE18520,
GSE9891, GSE26193, GSE30161, and GSE63885) to identify
the best consensus prognostic model based on the mean C-
index of the seven cohorts. We plotted ROC curves to eval-
uate the predictive accuracy of the risk score and used Cox
regression analysis to determine the independent prog-
nostic value of the risk score.

As the cell cycle, PI3K/mTOR pathway, and Wnt
pathway have been implicated in AML progression, we
used the “pRRophetic” package to calculate the half max-
imal inhibitory concentration (IC50) of various targeted
and chemotherapy drugs, such as CGP.60474 (cell cycle),
JW.7.52.1 (PI3K/mTOR), CHIR.99021 (Wnt), cisplatin, bleo-
mycin, and paclitaxel. Relevant references support the role
of these pathways in AML progression.

2.8 Statistical analysis

Statistical analyses of the genome were conducted using
R software (v.4.1.2). Further elaboration on the statistical
methods is provided in statistical section in the previous
reference [11]. Briefly, to compare categorical variables,
we applied the chi-squared or Fisher exact test, while the
Wilcoxon rank-sum test or T-test was used to compare
continuous variables. Statistical significance was defined
as p < 0.05.

3 Results

3.1 Identification of inflammatory response-
derived subtypes

In the meta-cohort, we conducted univariate Cox analysis
on all IRRGs to identify their prognostic significance.
Among them, only 26 IRRGs demonstrated a strong asso-
ciation with survival (Figure 1a). Based on the expression
profile of these 26 IRRGs in the meta-cohort, we per-
formed consistent clustering to classify all patients into
three molecular subtypes. The clustering results were
more stable when k = 3 (Figure 1b and c). The three mole-
cular subtypes identified were subtype A, subtype B, and
subtype C, with subtype C being the most prevalent (415
patients), and subtypes A and B having similar numbers
of patients (268 and 288, respectively). Notably, subtype
B had the poorest prognosis, whereas subtype A had the
best prognosis (Figure 1d). PCA confirmed the genomic
heterogeneity of the different subtypes, with significant
dispersion among the three subtypes (Figure 1e). Intrigu-
ingly, heatmap analysis of clinical information and IRRGs
expression in the meta-cohort revealed that most IRRGs
were significantly down-regulated in subtype C (Figure 1f).

3.2 Difference in immune microenvironment
in different subtypes

The immune microenvironment of different molecular
subtypes was analyzed using ssGSEA. Although there
was no significant difference in the number of activated
T cells between subtype A, which had a better prognosis,
and subtype B, which had the worst prognosis, the
number of Treg cells was significantly higher in subtype
B compared to the other subtypes. These results suggest
that subtype C has a greater infiltration of immune cells,
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Figure 1: Identification of molecular subtypes associated with inflammatory response. (a) Univariate Cox analysis of IRRGs in the meta
cohort. (b and c) Selection of the optimal k value based on conensusClusterPlus package. (d) Kaplan-Meier analysis of different molecular
subtypes. (e) PCA in three molecular subtypes. (e) A heatmap combined clinical characteristics with gene expression in different molecular
subtypes.
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but its immune cell function is suppressed, which may be
the main reason for its poorer prognosis (Figure 2a). In
addition, a comparison of HLA and ICI mRNA expression
in different molecular subtypes revealed higher expres-
sion in subtype A (Figure 2b and c). The ESTIMATE algo-
rithm was used to re-evaluate the overall TME landscape
of different subtypes, and subtype B had the highest
stromal score (Figure 2d). To investigate the sensitivity
of different subtypes to commonly used chemotherapy
regimens (cisplatin, bleomycin, and paclitaxel), we found
that subtype B, with more immune-infiltrating cells, had
better sensitivity to the three chemotherapeutic agents
(Figure 2e). Notably, subtype B was also more sensitive
to CHIR.99021, JW.7.52.1, and CGP.60474 (Figure A1).
Furthermore, the combination of corresponding HE sec-
tions of the molecular subtypes in the TCGA database
revealed more lymphoid follicle-like structures in sub-
type B (Figure 2f).

3.3 Difference in functional analysis in
different subtypes

We performed a comparative analysis of the mutation dif-
ferences among different molecular subtypes. Remarkably,
MUC16 and CSMD3 had significantly higher mutation fre-
quencies in subtype C than in subtypes A and B, which
were among the top 10 mutations in the TCGA-OV cohort
(Figure 3a). We further identified 60 DEGs between subtypes,
with the volcano map highlighting significant changes in the
collagen and chemokine families, such as CXCL10, CXCL11,
COL11A1, COL5A2, and COL5A1 (Figure 3b–e). KEGG analysis
revealed that cytokine–cytokine receptor interaction was a
major enrichment pathway of the 60 DEGs (Figure 4a). Based
on KEGG and Hallmark gene sets, GSVA showed that com-
pared to subtype A, subtype B was significantly enriched in
p53, KRAS signaling, and IL2-STAT5 signaling pathways
(Figure 4b). Subtype C was significantly enriched in wnt-
beta and hedgehog signaling pathways, while subtype B
was enriched in interferon gamma response, complement
pathway, and inflammatory response, compared to subtype
A (Figure 4c and d). Furthermore, subtype B was enriched in
TGF beta signaling pathway, glycosaminoglycan biosynth-
esis chondroitin sulfate, andmelanoma compared to subtype
A (Figure 4e), whereas subtype A was significantly enriched
in cell adhesion molecules cams, leishmania infection, and
toll-like receptor signaling pathway compared to subtype C
(Figure 4f). Finally, compared to subtype C, subtype B was
enriched in ECM receptor interaction, focal adhesion, and
leukocyte transendothelial migration (Figure 4g).

3.4 Construction and validation of a
machine learning-based signature

We conducted an analysis to determine the effectiveness
of different algorithms in predicting the risk of OC. Our
results showed that the RSF algorithm had the highest
average C-index (0.615) across all cohorts (Figure 5a and b).
The top 5 IRRGs identified by the RSF model were CXCL11,
ITGB8, CLEC5A, MMP14, and CXCL10 (Figure 5c). We then
established an optimal cut-off value of 45.71 based on risk
scores in the TCGA-OV cohort (Figure 5d). Notably, the
AUC values for the ROC curve at each time point in
the training set exceeded 0.9 (Figure A2a). Additionally,
the Kaplan–Meier survival curve revealed that high-risk
patients, of the 374 in the training set, had significantly
reduced OS (Figure A2b). The AUC values for the 1-, 2-,
and 3-year OS were 0.960, 0.998, and 0.993 in the
training cohort (Figure A2c). Finally, the risk survival
distribution showed that OC patients with a higher risk
score had a worse prognosis (Figure A2d).

3.5 Evaluating clinical significance of
machine learning-derived risk score

The distribution of FIGO stage wasmarkedly distinct between
the high- and low-risk groups (Figure 6a). Notably, our find-
ings indicated a significant association between risk score and
advanced age, higher FIGO stage, and higher grade (Figure
6b). Furthermore, we observed that patients with larger post-
operative residual size had higher risk scores, suggesting that
our risk score could serve as a useful tool for preoperative
guidance. Cox regression analyseswere performed in both the
TCGA-OV (Figure 6c) and all GEO-OV cohorts (Figure 6d),
confirming the independent prognostic value of the risk score.

3.6 Macrophage-derived CXCL10 is the hub
indicator of signature

In our analysis of immune cell infiltration, we employed
multiple algorithms to estimate immune cell activity
across various samples. The resulting heatmap indicated
that the low-risk group had a more active TME (Figure
A3a). Although patients in both the high- and low-risk
groups did not exhibit significant differences in topmutated
genes based on whole-exome sequencing data, the overall
mutation frequency was higher in the low-risk group
(Figure A3b and c). To explore the molecular importance
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Figure 2: Immune landscape in molecular subtypes associated with inflammatory response. (a) Abundance of 24 immune cells based on
ssGSEA algorithm. (b and c) Differences in mRNA associated with ICIs and HLA. (d) Overall TME status based on ESTIMATE algorithm. (e)
Differences in the sensitivity of three commonly used chemotherapy regimens (cisplatin, bleomycin, and paclitaxel). (f) HE sections of the
different molecular subtypes in the TCGA database. **p < 0.01, ***p < 0.001.
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Figure 3: Genetic variants in different molecular subtypes. (a) The top 10 mutated genes in the different molecular subtypes. (b) Common
differential expression genes in molecular subtypes. (c) Volcano map of DEGs for subtypes A and B. (d) Volcano map of DEGs for subtypes C
and A. (e) Volcano map of DEGs for subtypes C and B.
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Figure 4: Biological function in molecular subtypes associated with inflammatory response. (a) KEGG enrichment analysis of DEGs. (b)
Heatmap of matrix of Hallmark enrichment scores using GSVA algorithm in subtypes A and B. (c) Heatmap of matrix of Hallmark enrichment
scores using GSVA algorithm in subtypes A and C. (d) Heatmap of matrix of Hallmark enrichment scores using GSVA algorithm in subtypes B
and C. (e) Heatmap of matrix of KEGG enrichment scores using GSVA algorithm in subtypes A and B. (f) Heatmap of matrix of KEGG
enrichment scores using GSVA algorithm in subtypes A and C. (g) Heatmap of matrix of KEGG enrichment scores using GSVA algorithm in
subtypes B and C.
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Figure 5: Construction of machine learning-derived signature. (a) The C-indexes of 101 machine-learning algorithm combinations. (b) Error
rate curve of random forest tree model. (c) Importance of each variable in random forest tree model. (d) Risk score distribution map and
optimal cut-off value selection.
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Figure 6: Clinical significance of risk score. (a) The differences in risk scores across clinical subgroups, including age, grade, FIGO stage,
and pathologic types. (b) Kaplan–Meier analysis of different age subgroups. (c) Cox regression analyses in TCGA-OV cohorts. (d) Cox
regression analyses in GEO-OV cohorts. *p < 0.05, **p < 0.01.
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of immune-related risk genes (IRRGs) involved in the RSF
model, we constructed a protein–protein interaction (PPI)
network in the STRING database and ranked the IRRGs by
maximum matching coefficient (MMC) (Figure A3d). CCL17,
CCR7, CXCL10, CXCL9, and CCL5 were the top 5 genes in
the PPI network, with CXCL10 being the most important.
Using single-cell data, we confirmed that CXCL10 ismainly
located in macrophages (C5) (Figure 7a). Cell communi-
cation analysis indicated a significant association of
CXCL10 between macrophages and endothelial cells
(C15) (Figure 7b–c). LYVE1, the lymph endothelial cell
marker, was significantly overexpressed in the C15 sub-
group (data not shown). We, therefore, hypothesize that
CXCL10 secreted by macrophages promotes lymphangio-
genesis and cell adhesion. As anticipated, with increasing
hCXCL10 concentrations, lymphatic tube growthwas observed
(Figure 7d), along with increased adhesion to tumor cells
(Figure 7e and f).

4 Discussion

Chronic inflammation plays a critical role in cancer, and
OC’s TME exhibits elevated levels of inflammatory pro-
teins [22]. TCGA has described an immune-responsive
subtype of high-grade plasmacytosis characterized by
the expression of T-cell chemokine ligands CXCL11 and
CXCL10 and the receptor CXCR3 and observed overex-
pression of inflammatory lipoxygenase pathway recep-
tors [23]. A recent study found that minor alleles ALOX5
in rs17561 and rs4848300 and rs1864414 in IL-1A were
consistently and negatively associated with the risk of
OC [24]. However, no study has investigated genetic sig-
natures associated with inflammatory response, TME,
and drug sensitivity in OC. Therefore, in our study, we
performed consistent clustering to classify all patients
based on IRRGs. We identified three molecular subtypes,
with subtype C accounting for the majority of all patients,
and subtype B exhibiting the worst prognosis.

We observed that while the number of activated
T cells did not differ significantly between subtype A,
which had a favorable prognosis, and subtype B, which
had the worst prognosis, the number of Treg cells was
significantly higher in subtype B than in other subtypes.
Our findings suggest that subtype C has a higher infiltra-
tion of immune cells, but the function of its immune cells
is suppressed, which may contribute to its poorer prog-
nosis. Regulatory T cells, which are tumor immunosup-
pressors, have emerged as a critical area of research to
identify the underlying biological mechanisms associated

with OC development and progression [25]. Although Treg
cells are known to inhibit CD4+ and CD8+ T cells [26,27],
evidence also suggests that they suppress natural killer
cells and specialized antigen-presenting cells, such as
dendritic cells [28]. Furthermore, in an intentional epide-
miological survey, the average frequency of Treg cells was
significantly higher in newly diagnosed OC patients than
in women with benign ovarian disease and cancer-free
controls [27].

Our study has revealed that the B subtype, character-
ized by more immune-infiltrating cells, displayed better
sensitivity to the three chemotherapeutic agents. Further
analysis of the corresponding HE sections of the molecular
subtypes revealedmore lymphoid follicle-like structures in
the B subtype. The known effects of chemotherapy on the
TME of OC include enhanced T-cell activation, increased
density of T cells, B cells, and NK cells and decreased
density of Treg cells [29–31]. Our findings suggest that
our inflammatory response-related subtypes may be asso-
ciated with chemotherapy sensitivity and underscore the
critical role of the TME.

We computed the average C-index for all cohorts to
evaluate the machine learning-based signature. The RSF
algorithm yielded the highest C-index. The top 5 IRRGs
of importance in the RSF model were CXCL11, ITGB8,
CLEC5A, MMP14, and CXCL10. Notably, the AUC value
at each time point in the training set was above 0.9.
Previous studies have constructed prognostic signatures
for OC based on cancer-associated fibroblasts [11] or fer-
roptosis-related long non-coding RNA [32], using only
the LASSO-Cox modeling scheme. To avoid personal pre-
ferences and inappropriate modeling approaches, we
combined 101 machine learning algorithms and selected
the best-performing model. We examined the molecular
significance of the IRRGs identified by the RSF model
by constructing a PPI network in the STRING database.
The top 5 genes in the PPI network were CCL17, CCR7,
CXCL10, CXCL9, and CCL5, with CXCL10 being the most
critical. Notably, our study is the first to investigate the
correlation of CXCL10 with human lymphatic endothelial
cells. An earlier study highlights the clinical relevance of
the CXCL10 + IRF1 + STAT1 + macrophage subset as a
biomarker for intratumoral T-cell activation [33]. A com-
bined bioinformatics in vitro assay suggested that CXCL10
could impact OC progression by increasing the expres-
sion of cytotoxic T cells and inhibiting angiogenesis [34].

However, our study has some limitations that need to
be acknowledged. First, further experiments are required
to unravel the mechanism underlying CXCL10’s impact
on human lymphatic endothelial cells. Second, although
we validated our findings on six external cohorts,
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Figure 7: Macrophage-derived CXCL10 in ovarian cancer. (a) Clusters of single-cell dataset. (b) Localization of CXCL10. (c) Cell commu-
nication analysis between different cell types. (d) Relative length of tube in different concentration of CXCL10. (e) The ability of adhesion of
A2780 to HLECs in different concentration of CXCL10. (f) The ability of adhesion of HO-8910 to HLECs in different concentration of CXCL10.
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prospective clinical trials involving larger local cohorts are
necessary. In conclusion, our machine learning-based sig-
nature for the inflammatory response can distinguish the
TME and predict prognosis in patients with OC.

5 Conclusion

The study aimed to investigate the role of IRRGs in OC and
develop a machine learning-based inflammatory response-
related signature to identify distinct TME and predict patient
prognosis. The study integrated mRNA expression profiles
from seven cohorts and identified CXCL10 as a critical factor
in distinguishing patient prognosis based on the expression
of prognostic IRRGs. The study also confirmed the distribu-
tion ratios of stromal cells, inflammatory cells, and tumor
cells using whole-slide digitized histological slides and elu-
cidated differences in biological pathway activation among
subtypes using KEGG-related gene sets. Single-cell and
in vitro experiments confirmed that macrophage-derived
CXCL10 promotes lymphangiogenesis and cell adhesion.
Overall, the study provides new insights into the role of
IRRGs in OC and may have important implications for
the development of novel therapeutic approaches.
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Appendix

Table A1: Detailed description for different datasets

Dataset Platform Samples Type

GSE19829 Affymetrix Human Genome U133 Plus 2.0 Array 28 Microarray
GSE30161 Affymetrix Human Genome U133 Plus 2.0 Array 58 Microarray
GSE63885 Affymetrix Human Genome U133 Plus 2.0 Array 75 Microarray
GSE26193 Affymetrix Human Genome U133 Plus 2.0 Array 107 Microarray
GSE9891 Affymetrix Human Genome U133 Plus 2.0 Array 276 Microarray
GSE18520 Affymetrix Human Genome U133 Plus 2.0 Array 53 Microarray
TCGA_OV Illumina HiSeq 2000 374 RNA-seq

Figure A1: Differences in the sensitivity of three targeted drugs.
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Figure A2: Validation of prognostic signature. (a) The distribution between risk groups and clinical features. (b) The differences in risk
scores across clinical subgroups. (c) AUC for the 1-year, 2-year, and 3-year OS in the TCGA-OV cohort. (d) Risk score distribution map.
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Figure A3: Identification of hub IRRGs in PPI network. (a) Difference of abundance of immune cells based on six algorithms in different risk
groups. (b and c) The top 10 mutated genes in the high-risk and low-risk group. (c) PPI network of IRRGs in prognostic model.
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