Review Article

Hassan Choudry, Fateen Ata*, Wanis Ibrahim, Mohammad Omer Rehman Rana, Shoaib Ahmad, Asim Mehmood, Basir Afzaal Gill, Mahammed Khan Suheb

Saddle pulmonary embolism in the setting of COVID-19 infection: A systematic review of case reports and case series

https://doi.org/10.1515/med-2023-0724 received January 6, 2023; accepted May 2, 2023

Abstract: Saddle pulmonary embolism (SPE) is a rare type of pulmonary embolism that can lead to hemodynamic compromise causing sudden deaths. Due to a dearth of large prospective studies in this area, little is known regarding the epidemiology, and prognosis and factors affecting the latter for COVID-19-associated SPE. We aimed to describe COVID-19-associated SPE and quantify and compare mortality and factors affecting mortality among the cases. We included a total of 25 publications with a total of 35 cases. The average age was 45 ± 16.3 years with 11 females and 24 males. Dyspnoea (82.5%), orthopnoea (43.5%), and cough (43.5%) were the most common symptoms, and obstructive shock was present in five (21.7%) patients. The average reported oxygen (O₂) saturation was $85.8\% \pm 11.9 \,\mathrm{mm}$ Hg. Hypertension (26.1%), diabetes (21.7%), and deep vein thrombosis (21.7%) were the most commonly reported comorbidities. Right heart strain was

recognized in seven (30%) patients on electroencephalogram (S1QIIITIII) and 12 (52.2%) patients on echocardiogram. Anticoagulation, thrombolysis, and percutaneous intervention were tried in 21 (91.3%), 13 (56.5%), and 6 (26.1%) cases, respectively. Despite the aggressive management, 2 of 25 (8.7%) patients died in our smaller case report cohort. We conclude that despite aggressive management modalities, the mortality of SPE remains high in COVID-19.

Keywords: saddle pulmonary embolism, SPE, COVID-19, coronavirus disease 2019, SARS-CoV-2, severe acute respiratory syndrome-related coronavirus 2

1 Introduction

Saddle pulmonary embolism (SPE) is a large pulmonary embolism (PE) that straddles the bifurcation of the pulmonary trunk and extends into both the left and right pulmonary arteries. It is a rare type of PE that can cause sudden death. Higher incidences of cardiac arrest, cardiogenic shock, respiratory failure, and mean length of stay (LOS) have all been linked to SPE [1]. Consequently, SPE has historically been considered a condition associated with high mortality. PE-related death has been observed in the range of 1-7.0% in non-SPE patients [2]. SPE has been reported to occur in about 2.6-5.4% of all acute PE patients and is expected to predict poorer outcomes if not treated aggressively [3]. Standard anticoagulation (AC), systemic thrombolysis, catheter-directed thrombolysis and surgical embolectomy are all alternatives for the treatment.

Thrombotic events are one of the common features of coronavirus diseases 2019 (COVID-19) [4]. The underlying pathophysiological mechanisms are complex and involve two distinct mechanisms, namely, thromboembolism and immunothrombosis. The former is characterized by the activation of coagulation cascade due to endothelial cell

FAta@hamad.qa, tel: +974 66055176

Hassan Choudry: Department of Respiratory Medicine, University Hospital of Leicester, Leicester LE1, UK

Wanis Ibrahim: Department of Internal Medicine and Pulmonology, Hammad Medical Corporation, Doha, Qatar

Mohammad Omer Rehman Rana: Department of Adult Cardiology, Chaudhary Pervaiz Ilahi Institute of Cardiology, Wazirabad, Pakistan Shoaib Ahmad: Department of Medicine, Punjab Medical College, Faisalabad, Pakistan

Asim Mehmood: Respiratory Department, Derriford Hospital, University Hospitals Plymouth, Plymouth, UK

Basir Afzaal Gill: Intensive Care Unit, Department of Anaesthesia, Jinnah Hospital, Lahore, Pakistan

Mahammed Khan Suheb: Critical Care Department, St. Luke's Aurora Hospital, Milwaukee, Wisconsin, USA ORCID: Fateen Ata 0000-0001-7121-8574

^{*} Corresponding author: Fateen Ata, Department of Endocrinology, Hamad General Hospital, Hammad Medical Corporation, PO BOX 3050, Doha, Qatar, e-mail: docfateenata@gmail.com,

damage, and the latter is characterized by intense inflammatory and immune reactions causing massive coagulation cascade activations and intense and prolonged fibrin degradation [5,6]. However, understanding this association and treating it promptly are critical for effectively managing this condition. The incidence of PE in COVID is known to be around at least 15% [4]. However, the incidence of SPE in COVID-19 is not widely known and needs further studies for its estimation. Some clinical features denoting severity in SPE, such as obstructive shock and right ventricular (RV) strain pattern, are associated with increased mortality [7]. Mortality in COVID-19 itself has been found to be associated with comorbidity status as well as PE [8]. The overall mortality of SPE in COVID-19 patients has also not been studied systematically in larger studies. More studies are needed on SPE in COVID-19 patients to estimate mortality and factors associated.

Cases of SPE in COVID-19 patients have also been reported with conflicting results concerning treatment success. In our recent systematic review of SPE, we reported that SPE mortality was 4.6% and found that AC, surgical thrombectomy, thrombolysis, and percutaneous treatment significantly increased the odds of survival in SPE patients [9]. In this focused systematic review, we aim to describe SPE in the context of COVID-19 and quantify and compare mortality, and possible factors affecting mortality among the cases.

2 Materials and methods

2.1 Literature search

PubMed, Scopus, and Google Scholar were searched for articles (any date up to February 28, 2022) reporting patients with SPE. Keyword as generated used advanced search function and was ("covid 19" [All Fields] OR "covid 19" [MeSH Terms] OR "covid 19 vaccines" [All Fields] OR "covid 19 vaccines" [MeSH Terms] OR "covid 19 serotherapy" [All Fields] OR "covid 19 serotherapy" [Supplementary Concept] OR "covid 19 nucleic acid testing" [All Fields] OR "covid 19 nucleic acid testing" [MeSH Terms] OR "covid 19 serological testing" [All Fields] OR "covid 19 serological testing" [MeSH Terms] OR "covid 19 testing" [All Fields] OR "covid 19 testing" [MeSH Terms] OR "sars cov 2"[All Fields] OR "sars cov 2"[MeSH Terms] OR "severe acute respiratory syndrome coronavirus 2"[All Fields] OR "ncov" [All Fields] OR "2019 ncov" [All Fields] OR (("coronavirus" [MeSH Terms] OR "coronavirus" [All

Fields] OR "cov"[All Fields]) AND 2019/11/01:3000/12/31[Date - Publication])) AND (("saddle"[All Fields] OR "saddles"[All Fields]) AND ("pulmonary embolism"[MeSH Terms] OR ("pulmonary"[All Fields] AND "embolism" [All Fields])). Scopus keywords and google scholar keywords were "COVID-19 AND Saddle Pulmonary Embolism," respectively.

2.2 Study selection and data extraction

Retrieved articles from the search strategy were uploaded to Rayyan. AI software for screening. HC and FA screened the articles independently. WI conducted an independent review of the disputed articles for a final decision. The extracted studies were initially screened from the title, abstract, and keywords, followed by a full-length screening.

2.3 Inclusion criteria

Studies published in English, reporting primary patient data (case reports, series, observational retrospective, prospective studies, and clinical trials) regarding SPE in the context of COVID-19 patients, were added to the systematic review.

2.4 Exclusion criteria

Exclusion criteria included studies in languages other than English. In addition, review articles with secondary patient data were excluded.

2.5 Quality assessment

FA and HC assessed the quality of the added studies independently. Case reports and series were assessed using the Joanna Briggs Institute case report appraisal checklist for inclusion in systematic reviews [10].

2.6 Data collection and analysis

Data on demographics, clinical characteristics, clinical observations, diagnostics results, LOS, management, and

outcomes were extracted and analyzed. Data were collected in Microsoft Excel 2016, and analysis was performed in R Studio 2022.2.3. Dplyr, psych, and epitools packages were used for analysis in R Studio. We excluded the case series in the inferential statistics as the individual case data for each case were unavailable in these publications. The chi-square test and Mann-Whitney $\it U$ tests were used where appropriate.

Systematic Review Registration: The protocol has been registered in the International Prospective Register of Systematic Reviews (PROSPERO): CRD42021286270. https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=286270.

3 Results

A total of 25 publications (case reports and series) were identified with 35 cases (Figure 1). The average age was 45.6 ± 16.3 years, with 11 females (31.4%) and 24 males (68.6%). As discussed in Section 2, we included only the case reports for our descriptive and inferential analysis of clinical parameters, observations, diagnostic testing, treatment, and outcome. COVID-19 variant information was not available for any of the publications. All of our included cases, however, correspond to a time period from summer of 2020 to mid-summer of 2021. Hence, it is probable that alpha and delta strains were the most prevalent ones.

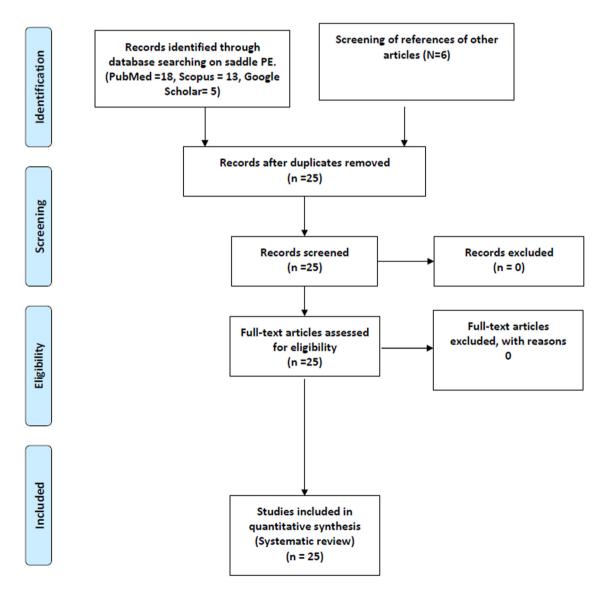


Figure 1: The Prisma flow diagram summarizing the inclusion and exclusion of relevant studies.

Only four publications mentioned prophylactic AC, despite which patients developed the PE [11–13]. Himwaze et al. in the autopsy study mentioned four patients being on AC prophylactically and still having the thrombotic event [11]. None, except one of the cases, Shazley et al. mentioned COVID-19 vaccination [14].

The basic characteristics of the patients, including clinical presentations, investigations, and treatment modalities, are all listed in Table 1. Dyspnoea (82.5%), orthopnoea (43.5%), and cough (43.5%) were the most common symptoms. Features of obstructive shock were reported in 5 (21.7%) patients. The average reported oxygen (O_2) saturation was 85.8% \pm 11.9. It was normal (\geq 94%) only in 2 of 14 patients (14.3%) and <90% in 6 of 14 (42.8%) cases.

The most common comorbidities were hypertension present in 6 (26.1%) and diabetes mellitus in 5 (21.7%) cases, followed by lung disease and patent foramen ovale (PFO) in 3 (13.0%) cases each. Deep vein thrombosis (DVT) was reported in five cases (21.7%), with two being bilateral and three unilateral.

Right heart strain pattern on electroencephalogram (ECG) (S1QIII TIII) was identified in seven (30%) patients, while another seven (30%) cases had abnormal ECG with findings other than the RV strain pattern. Echocardiography revealed RV strain in 12 (52.2%) patients. Initial computed tomography pulmonary angiogram (CTPA) revealed SPE in 20 (86.9%) of cases, whereas 8 cases mentioned additional non-SPEs upon imaging.

The average hospital stay was 9.8 ± 8.9 days, with 15 reported admissions to the intensive care unit (ICU). The most common treatment modality was AC, reported in 21 (91.3%) cases, while thrombolysis and percutaneous thrombectomy percutaneous intervention (PCI) were tried in 13 (56.5%) and 6 (26.1%) cases, respectively. Alteplase (r-tpa) and tPA were two reported thrombolytic agents used in six and four cases, respectively. An inferior vena cava filter was reported in one case for recurrent thromboembolism.

The outcome was 2 of 21 (8.7%) deaths in our smaller case report cohort.

3.1 Inferential statistics

Statistical analysis was performed to assess the relationship of outcome with gender, age, clinical presentations, comorbidity status, and diagnostic findings and treatment. We found no statistical difference between any of the variables mentioned earlier in terms of outcome (p > 0.05), as presented in Table 2. Comorbidity status (defined as the presence of either of the following:

hypertension, diabetes, chronic kidney disease, lung disease, any valvular disorder, PFO, or history of PE) was also unrelated to the outcome (P = 0.34). The mean age of alive and dead was 45.7 and 61.0 years, respectively, but the difference was statistically insignificant (P = 0.23). Gender also did not influence the outcome in our small cohort (P = 1).

4 Discussion

Historically, SPE has been reportedly associated with a higher (9.2–65%) in-hospital mortality in multiple studies [1,15] compared with a relatively lower overall mortality of non-SPE cases, which varies from 0.2 to 6% depending on the clinical context [16–20]. Pathak et al. compared outcomes of hospitalizations due to PE in the United States and reported that SPE represented only 0.16% of all PE-related hospitalizations [21]. They reported similar outcomes but higher rates of cardiogenic shock, respiratory failure, thrombolysis, and LOS in the SPE group. Multiple comparative studies have reported similar outcomes in SPE and non-SPE [3,22].

To the best of our knowledge, our study represents the first systematic review of SPE in COVID-19 cases, charting the prevalence of mortality and possible prognostic factors. Our recent systematic review discussed the prognostic factors among SPE cases and found an overall mortality of 4.6% [9]. We report a slightly higher mortality of 8.7% in our current small cohort of patients with SPE in the context of COVID-19, excluding the postmortem studies for apparent bias.

PE is risk stratified for management decisions and prognostic determination using the PE severity index (PESI), a widely validated risk score [23]. This scale has historically been based on epidemiological variables (age and gender), comorbidity status (cancer, heart failure, and lung failure), as well as vital instability [7]. A simplified PESI later on excluded gender and some of the vitals [24]. In terms of clinical severity, it is classified into high risk (massive), intermediate risk (submassive), and low risk based on hemodynamic instability, demonstration of RV dysfunction on echocardiogram or CTPA, PESI score, and elevated troponins. There is a significant difference in outcomes between these severity classes with massive PE mortality ranging from 20 to 65% and submassive with 5-25% [1,25]. Low-risk PE has been reported to carry a mortality risk of close to 1%. Although hemodynamic instability was not a common feature for most of our patients, RV dysfunction on Echo and Saddle embolus

Table 1: Clinical characteristics and outcomes of patients with SPE in the setting of COVID-19 infection (N = 35)

	Gender	Females: 11 (31.4%)
		Male: 24 (68.5%)
	Age	Mean: 45 years
		SD: 16.3
Clinical presentations	Syncope	4/23 (14.7%)
	Dyspnoea	19/23 (73%)
	Chest pain	7/23 (29.4%)
	Hemoptysis	2/23 (5.9%)
	Cough	10/23 (29.4%)
	Orthopnoea	10/23 (41.2%)
	Unconscious on presentation	0
	Lower limb pain	1 (5.9%)
	Obstructive shock	5 (14.7%)
OBS	Systolic blood pressure	Mean: $110.9 \pm 26.3 \text{ mm Hg}$
	HR	Mean: 129 ± 18.6
	O2 saturation	85.8 ± 11.8%
Comorbidities	Patent foramen ovale	3/23 (13.0%)
	Any valvular disorder	2/23 (8.7%)
	Diabetes	5/23 (21.7%)
	Hypertension	6/23 (26.1%)
	Lung disease	3/23 (13.0%)
	Chronic kidney disease	1/23 (4.3%)
	Malignancy	1/23 (4.3%)
	Any comorbidity	10/23 (43.5%)
	DVT	5/23 (21.7%)
	History of PE	1/23(4.3%)
Diagnostics	ECG findings	Normal/not mentioned: 9 (39.1%)
	•	Right heart strain (S1Q3T3): 7 (30.4%)
		Other findings: 7 (30.4%)
	Echocardiogram findings	Right ventricular strain: 12 (52.2%)
		Normal/not mentioned: 11 (47.8%)
	Right heart strain (ECG or echo)	Present: 16 (69.6%)
	, ,	Not present or mentioned: 7 (30.4%)
	СТРА	Saddle thrombus: 20 (86.9%)
		Other findings: 3 (13.1%)
Treatments employed	Surgical removal	0
, ,	Catheter removal	6 (26.1%)
	Thrombolysis	13 (56.5%)
	Anticoagulation	21 (91.3%)
	IVC filter	1 (4.3%)
Outcome	LOS	Mean: 9.8 days
		SD: 8.9
	ICU admissions	15/23 (65.2%)
	Outcome (total)*	Alive: 21 (61.8%)
		Died: 13 (38.2%)
		Total: 33 (100%)
	Outcome (case reports)	Alive: 21 (91.3%); died: 2 (8.7%)

^{*}Total outcome includes autopsy studies where all the patients were deceased.

IVC: inferior vena cava; SD: standard deviation; HR: heart rate; LOS: length of stay; ICU: intensive care unit; CTPA: computed tomography pulmonary angiogram; ECG: electrocardiogram; Echo: echocardiogram; DVT: deep vein thrombosis; PE: pulmonary embolism; O2: oxygen.

on CTPA was demonstrable in 70 and 86% of patients in our cohort, respectively (Table 1). Almost all of our cases constitute an intermediate risk, as all had a CTPA hemodynamic instability.

elucidated defect straddling the bifurcation of vessels, with the exception of five (14%) who presented with

Table 2: Inferential statistics of patients with SPE and COVID-19 based on mortality (N = 24)

Variable	Alive (21) vs dead (2)	<i>P</i> value
Gender: male vs female	15 vs 1 6 vs 1	1
Syncope	4 vs 0	1
Dyspnea	17 vs 2	1
Chest pain	7 vs 0	0.86
Hemoptysis	2 vs 0	1
Cough	8 vs 2	0.35
Orthopnea	10 vs 0	0.58
Lower limb pain	1 vs 0	1
Obstructive shock	5 vs 0	_
SBP (mm of Hg)	106 vs 174	0.20
O ₂ saturation	88 vs 57	0.12
Any valvular disorder	2 vs 0	1
Diabetes	4 vs 1	0.90
Hypertension	4 vs 2	0.09
Lung disease	2 vs 1	0.60
Any comorbidity	8 vs 2	0.35
ECG (RV strain)	7 vs 0	0.86
Echo (RV strain)	10 vs 2	0.49
CTPA (SPE)	19 vs 2	1
PCI	4 vs 2	0.09
Thrombolysis	13 vs 0	0.3
Anticoagulation	19 vs 2	1
IVC filter	1 vs 0	1

PCI: percutaneous intervention, IVC filter: inferior vena cava filter, SBP: systolic BP; RV strain: right ventricular strain; SPE: saddle pulmonary embolism.

Two of our case series were post-mortem and represented 12 patients in our cohort [11,26]. Mucheleng'anga et al. described 21 cases in a post-mortem case series of COVID-19 patients from Zambia, Africa [26]. They mentioned eight (38%) cases with SPE among their cohort, while details were given for 7, which we eventually included in this study. PE in one form or another (shower, saddle, non-saddle) was diagnosed on autopsy in 17 patients (81%), while the remaining were found to have changes consistent with severe pneumonia. The authors later from the same region presented another case series of 29 cases with 5 (17%) cases of SPE. Because of the nature of these studies and the type of data presented, it was not possible to include these cases in the inferential statistics (Table 3).

The proportion of SPE among PE patients has largely been found to be 2–5% [15]. The two autopsy studies we included describe the share of SPE to be ranged from 17 to 38% among all patients who died of COVID [11,26]. It would be prudent to keep in mind the nature of these two studies, which included only the COVID patients who died and hence likely to overestimate the SPE proportion. Similarly,

prophylactic AC, which was rare during the first wave of the COVID-19 pandemic and became commonplace later, is also very likely to affect this number [27].

In one of the interesting studies on COVID and PE, Hobohm et al. reported a 1.9% prevalence of PE in hospitalized patients with COVID-19. More than 33% of COVID patients with PE had ICU admission. They also reported a significantly higher case fatality rate in COVID patients with PE vs COVID without PE (28.7% vs 17.7%). Another interesting trend was higher case fatality in COVID and PE patients versus patients with PE without COVID (28.7% vs 12.5%) [8]. In the current systematic review, ICU admission was reported for 15 (76% of smaller cohort) cases, which is much higher but in line with the clinical instability and interventions required for this subset of PE (saddle).

The pathophysiology of PE in COVID is complex and multifactorial. The distinct angiocentric feature of COVID-19 was recognized relatively early in the pandemic [28]. Two distinct mechanisms have been elucidated for the overall pathogenesis of thrombosis in COVID-19. The first mechanism is the classic thromboembolism that arises due to sepsis and endothelial dysfunction, leading to tissue factor expression, thrombosis cascade activation, and finally classic thromboembolism [6]. The second mechanism, somewhat novel, involved micro-thrombosis due to the activation of immune pathways causing severe organ damage in lungs, kidneys, skin (blue toes), and other organs [29]. The latter severe type causing widespread immune-mediated microthrombi was reported to be found in patients on prophylactic AC. We found that three of the publications (with a total of six patients) mentioned PE despite prophylactic AC [11,13,30]. PE, one of the sequelae of the angiocentric activity of the disease, has been found in most COVID-19 patients upon autopsy. The prevalence of any pulmonary thromboembolism in the two autopsy studies in our cohort was 80.9 and 48.3% among those deceased [11,26]. It was also one of the leading causes of death among those.

Treatment modalities in our sample did not affect the outcomes. We believe that this is because of the small number in one group, i.e., the deceased. Our general SPE study earlier recognized that all interventions affected mortality in the SPE. However, we are unsure if this is due to forward or reverse causation, i.e., the severity of SPE (upon presentation) discouraging operators or not allowing enough time for clinicians to perform any intervention [9]. Undoubtedly more studies, clinical trials, in particular, are needed to look at the impact of different treatment modalities on the recovery and outcome of SPE in COVID patients.

Our study has several limitations. The small sample size of our study makes our data less reliable, as the

Table 3: Available clinical details of all 25 included studies

Sr no.	Author	Epidemiology, presentations	Comorbidities	Investigations	Treatment	Outcome
1	Cristoforo et al. [31]	11 M	Nephrotic syndrome	Diagnosed on CT, ECG: RV strain		Discharged
7	Teklie et al. [32]	20 M		Elevation of 50% of complement	Heparin infusion, bilateral PA catheter	Discharged
m	Molina et al. [33]	23 M	Nitric oxide inhalation	ECG: Sinus tachy, RBBB,	Thrombolysis (tPA)	Alive
4	Atallah et al. [30]	29 M	Autism	ICU MV, CT angio	Thrombolysis (tPA)	Discharged
5	Kharazmi et al. [34]	32 M	PFO	Echo: RVS, TIT, IVC clot	Thrombolysis (r-tPA)	Discharged
9	Hoilat et al. [35]	32 M		CT angiography	ICU MV, mechanical	Discharged
		:		-	embolectomy	
_	Vyas et al. [36]	32 M		CT angiography	Mechanical thrombectomy	
80 O	Himwaze et al. [11]	33 M with dyspnoea and fever 36 M dyspnoea/Abdo pain, abdominal TB	ΛΙΗ			Died (Autopsy) Died (Autopsy)
10		47 F saddle emboli, heavy lungs		Deep venous thrombosis, and		Died (autopsy)
Ħ		(>1,000 g eacn), 65 M	CVA	amuse alveolar damage		Died (autopsv)
12		70 F	Hypertension	DVT, thrombosed mesenteric		Died (autopsy)
				arteries		
13	Pendower et al. [37]	64 F syncope, SOB, dizziness	Old DVT	Echo: RVS.	Infusion catheter (alteplase)	Discharged
;		:		CI Anglo,	-	-
1 4	Flemming et al. [38]	47 M		ECG: Normal Echo: RVS. CT anglo	Catheter thrombolysis	Discharged
15	Jafari et al. [39]	50 F saddle after 3 days stay in		CTPA, AC		Discharged
16	Ali et al. [40]	52 F SPF 7 days after discharge		FCG: \$103T3	r-tPA	Discharged
ì				CTPA syncope	ICU	
					Anticoagulation (enoxaparin)	
17	Shazley and	52 M after J&J vaccine	Hypertension, diabetes, obesity	Bilateral DVT CTPA	ICU MV	Death in 1
	Alshazley [14]				PCI	month
18	Valencia-Manrique et al. [12]	52 F	Diabetes, obesity	510373	ICU, anticoagulation (enoxaparin)	
19	Ismail et al. [41]	52 M with left weakness	DVT	ECG: bifascular block, Echo: RV embolus, third- degree AV block.	Anticoagulation (IV heparin)	Recovered
20	Yu et al. [42]	55 M syncope	Hypertension, diabetes	Echo: intracardiac shunt, CTPA	Catheter-directed	Discharged
					thrombolysis (t-PA), Anticoagulation (IV heparin)	
						(Continued)

Table 3: Continued

Sr no.	Author	Epidemiology, presentations	Comorbidities	Investigations	Treatment	Outcome
21	Aaron et al. [43]	56 M	DVT	Echo: RV strain CTPA	ICU MV tPA (resolution) Saddle PE again in 1 week: tPA	Discharged
22	Khurram et al. [44]	61 M	End-stage renal disease, OSA, diabetes, CVA, BPH, superior ophthalmic vein thrombosis	CTPA ICU	Anticoagulation (LMWH)	Discharged
23	Bhatt et al. [45] Aoi et al. [13]	65 M DVT 70 F	DVT Hypertension, DM, history of SVT	CTPA ECG: S1Q3T3 Echo: RVS CTPA: CIT	Anticoagulation (IV heparin) PCI + Cath thrombolysis	Discharged Died
25	Fujikura et al. [46]	77 F DVT, discharged → missed apixaban → dyspnea again	77 F DVT, discharged → missed CVA, DM, PFO, DVT, history of cancer apixaban → dyspnea again	Echo: RV strain. CTPA Re-echo: B/ atrial RA CIT	Anticoagulation (IV heparin) Discharged	Discharged
56	Chang and Segura [47]	43 M		СТРА	ICU MV tPA Cardiac support	Discharged
27	Nehme et al. [48]	56 M		CTPA multiple Pes, tracheal necrotic flap	Thrombolysis (alteplase) ICU MV VAP	Discharged
28	Namburu et al. [49]	69, ST elevation, Takasubo cardiomyopathy		Cath: Takasubo Cardiomyopathy Echo: Enlarged right ventricles, atrial thrombus. CTPA	Thrombolysis	Discharge
33 33 34 35	Mucheleng'anga et al. [26]	32 M Headache and diarrhea 37 M chest pain dyspnoea 51 M Chest pain and dyspnoea 20 M Dyspnea and painful legs 39 F Chest pain 38 M				Died Died Died Died Died

DM: diabetes mellitus CVA: cerebrovascular accident, DVT: deep venous thrombosis, CTPA: CT pulmonary angiogram, MV: mechanical ventilation, VAP: ventilation associated pneumonia, Cath: catheterization (Coronary), RV: right ventricle, BPH: benign prostatic hyperplasia, SVT: supraventricular tachycardia, TB: tuberculosis, SOB: shortness of breath.

statistical inferences are not generalizable. The types of studies included (case reports and series) and the cases they represented suffer multiple biases, including publication and survival ones. These studies may be a source of selection bias in our sample, something inherent for most systematic reviews, which include these types of studies. Barring the aforementioned limitations, we believe our study is free from any systematic biases. Nevertheless, this is the first systematic review highlighting an important and clinically significant combination of SPE with COVID-19 infection and opening doors to further research on the topic.

5 Conclusion

SPE is relatively common in COVID-19 cases and is associated with high mortality. More extensive data are needed to understand the association between COVID-19 infection and SPE.

Acknowledgments: The publication of this article was funded by the Qatar National Library.

Funding information: This study was not funded.

Author contributions: HC: conceptualization, methodology, data collection, data analysis, data interpretation, literature review, writing original draft, critical review, and revisions in the manuscript; FA: conceptualization, methodology, data collection, literature review, writing original draft, critical review, and revisions in the manuscript; MR, SA, AM, BG, MK: data collection, literature review, and manuscript writing; WI: conceptualization, supervision, manuscript review, and revisions. All authors reviewed and approved the final version of this manuscript.

Conflict of interest: This manuscript is original work and has not been submitted or is not under consideration for publication elsewhere. All the authors have reviewed the manuscript and approved it before submission. The authors declare that they have no competing interest.

Data availability statement: Data sharing not applicable.

References

[1] Bělohlávek J, Dytrych V, Linhart A. Pulmonary embolism, Part I: Epidemiology, risk factors and risk stratification, pathophysiology, clinical presentation, diagnosis and nonthrombotic pulmonary embolism. Exp Clin Cardiol. 2013;18(2):129–38.

- [2] Carson JL, Kelley MA, Duff A, Weg JG, Fulkerson WJ, Palevsky HI, et al. The clinical course of pulmonary embolism. N Engl J Med. 1992;326(19):1240-5.
- [3] Alkinj B, Pannu BS, Apala DR, Kotecha A, Kashyap R, Iyer VN. Saddle vs Nonsaddle pulmonary embolism: Clinical presentation, hemodynamics, management, and outcomes. Mayo Clin Proc. 2017;92(10):1511–8.
- [4] Malas MB, Naazie IN, Elsayed N, Mathlouthi A, Marmor R, Clary B. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: A systematic review and meta-analysis. eClinicalMedicine. 2020;29:100639. doi: 10.1016/j.eclinm.2020.100639.
- [5] Vinayagam S, Sattu K. SARS-CoV-2 and coagulation disorders in different organs. Life Sci. 2020;260:118431.
- [6] Gómez CA, Sun C-K, Tsai IT, Chang Y-P, Lin M-C, Hung IY, et al. Mortality and risk factors associated with pulmonary embolism in coronavirus disease 2019 patients: A systematic review and meta-analysis. Sci Rep. 2021;11(1):16025.
- [7] Konstantinides SV, Meyer G, Becattini C, Bueno H, Geersing GJ, Harjola VP, et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J. 2020;41(4):543–603.
- [8] Hobohm L, Sagoschen I, Barco S, Farmakis IT, Fedeli U, Koelmel S, et al. COVID-19 infection and its impact on casefatality in patients with pulmonary embolism. Eur Respir J. 2023;61(1):2200619. doi: 10.1183/13993003.00619-2022.
- [9] Ata F, Ibrahim WH, Choudry H, Shams A, Arshad A, Younas HW, et al. Optimal management, prevalence, and clinical behavior of saddle pulmonary embolism: A systematic review and metaanalysis. Thromb Res. 2022;217:86–95.
- [10] Munn Z, Barker TH, Moola S, Tufanaru C, Stern C, Stephenson M, et al. Methodological quality of case series studies: an introduction to the JBI critical appraisal tool. JBI Evid Synth. 2020;18(10):2127-33. doi: 10.11124/JBISRIR-D-19-00099.
- [11] Himwaze CM, Telendiy V, Maate F, Mupeta S, Chitalu C, Chanda D, et al. Post-mortem examination of hospital inpatient COVID-19 deaths in Lusaka, Zambia - A descriptive wholebody autopsy series. Int J Infect Dis Off Publ Int Soc Infect Dis. 2021;108:363-9.
- [12] Valencia-Manrique JC, Ghosh K, Velasquez Espiritu MR, Poor A. A case of saddle pulmonary embolism in the recovery phase of COVID-19 infection. American Thoracic Society International Conference Meetings Abstracts American Thoracic Society International Conference Meetings Abstracts; 2021. p. A3501-A.
- [13] Aoi S, Kakkar AM, Golowa Y, Grushko M, Coyle CM, Elrafei T, et al. Saddle pulmonary embolism and clot in transit in COVID-19 infection: A case report of catastrophic venous thromboembolism. Eur Heart J Case Rep. 2020;4(6):1–6.
- [14] Shazley O, Alshazley M. A COVID-positive 52-year-old man presented with venous thromboembolism and disseminated intravascular coagulation following johnson & johnson vaccination: A case-study. Cureus. 2021;13(7):e16383. doi: 10. 7759/cureus.16383.
- [15] Wong KJ, Kushnir M, Billett HH. Saddle pulmonary embolism: Demographics, clinical presentation, and outcomes. Crit Care Explor. 2021;3(6):e0437.
- [16] Douketis JD, Kearon C, Bates S, Duku EK, Ginsberg JS. Risk of fatal pulmonary embolism in patients with treated venous thromboembolism. JAMA. 1998;279(6):458-62.

- [17] Conget F, Otero R, Jiménez D, Martí D, Escobar C, Rodríguez C, et al. Short-term clinical outcome after acute symptomatic pulmonary embolism. Thromb Haemost. 2008;100(5):937–42.
- [18] Donzé J, Le Gal G, Fine MJ, Roy PM, Sanchez O, Verschuren F, et al. Prospective validation of the Pulmonary Embolism Severity Index. A clinical prognostic model for pulmonary embolism. Thromb Haemost. 2008;100(5):943–8.
- [19] Douketis JD, Gu CS, Schulman S, Ghirarduzzi A, Pengo V, Prandoni P. The risk for fatal pulmonary embolism after discontinuing anticoagulant therapy for venous thromboembolism. Ann Intern Med. 2007;147(11):766–74.
- [20] Jiménez D, Aujesky D, Díaz G, Monreal M, Otero R, Martí D, et al. Prognostic significance of deep vein thrombosis in patients presenting with acute symptomatic pulmonary embolism. Am J Respir Crit Care Med. 2010;181(9):983–91.
- [21] Pathak R, Giri S, Karmacharya P, Aryal MR, Donato AA.
 Comparison between saddle versus non-saddle pulmonary
 embolism: insights from nationwide inpatient sample. Int J
 Cardiol. 2015;180:58-9.
- [22] Choi KJ, Cha SI, Shin KM, Lim JK, Yoo SS, Lee J, et al. Central emboli rather than saddle emboli predict adverse outcomes in patients with acute pulmonary embolism. Thromb Res. 2014;134(5):991–6.
- [23] Aujesky D, Obrosky DS, Stone RA, Auble TE, Perrier A, Cornuz J, et al. Derivation and validation of a prognostic model for pulmonary embolism. Am J Respir Crit Care Med. 2005;172(8):1041-6.
- [24] Jiménez D, Aujesky D, Moores L, Gómez V, Lobo JL, Uresandi F, et al. Simplification of the pulmonary embolism severity index for prognostication in patients with acute symptomatic pulmonary embolism. Arch Intern Med. 2010;170(15):1383-9.
- [25] Torbicki A, Perrier A, Konstantinides S, Agnelli G, Galiè N, Pruszczyk P, et al. Guidelines on the diagnosis and management of acute pulmonary embolism: the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). Eur Heart J. 2008;29(18):2276–315.
- [26] Mucheleng'anga LA, Telendiy V, Hamukale A, Shibemba AL, Zumla A, Himwaze CM. COVID-19 and sudden unexpected community deaths in Lusaka, Zambia, Africa - A medico-legal wholebody autopsy case series. Int J Infect Dis. 2021;109:160-7.
- [27] Reis S, Popp M, Schießer S, Metzendorf MI, Kranke P, Meybohm P, et al. Anticoagulation in COVID-19 patients - An updated systematic review and meta-analysis. Thromb Res. 2022;219:40-8.
- [28] Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120-8.
- [29] Coccheri S. COVID-19: The crucial role of blood coagulation and fibrinolysis. Intern Emerg Med. 2020;15(8):1369-73.
- [30] Ataallah B, Sharma A, Tamanna S, Ng J, Haggerty G. Major thrombotic event despite anticoagulation in a patient with COVID-19. Cureus. 2020;12(6):e8896. doi: 10.7759/cureus.8896.
- [31] Cristoforo T, McKinley G, Ambrosio P. Saddle pulmonary embolism in a pediatric patient with nephrotic syndrome and

- recent COVID-19 pneumonia: A case report. Am J Emerg Med. 2021;48:376.e1–2.
- [32] Teklie Y, Campdesuner V, George J, Villasmil R. Role of classical complement activation in SARS-Cov-2 infection; A case report of COVID-19 in a patient with saddle pulmonary embolism. J Med Case Rep Case Ser. 2020;1(4).
- [33] Molina MF, Al Saud AA, Al Mulhim AA, Liteplo AS, Shokoohi H. Nitrous oxide inhalant abuse and massive pulmonary embolism in COVID-19. Am J Emerg Med. 2020;38(7):1549.e1-2.
- [34] Kharazmi A, Mirbaha S, Hatamabadi H, Shojaeian F, Omidi F. Medical treatment for paradoxical and saddle pulmonary embolism in a young man with patent foramen ovale and coronavirus disease 2019. Turkish J Emerg Med. 2021;21(3):133.
- [35] Hoilat GJ, Durer C, Durer S, Gupta P. Percutaneous mechanical pulmonary thrombectomy in a patient with pulmonary embolism as a first presentation of COVID-19. Cureus. 2020;12(8):e9506. doi: 10.7759/cureus.9506.
- [36] Vyas V, Kanagalingam G, Yadava S, Gambhir HS, Costanza M, Chaudhuri D. Bilateral pulmonary artery thrombectomy with saddle embolism and COVID-19 infection. Proceedings (Baylor University Medical Center), 2020;33(4):666-7.
- [37] Pendower L, Benedetti G, Breen K, Karunanithy N. Catheter-directed thrombolysis to treat acute pulmonary thrombosis in a patient with COVID-19 pneumonia. BMJ Case Rep. 2020;13(8):e237046.
- [38] Flemming N, Sittol R, Simmonds R-K, Grant J, Lofters J, Alfaki M, et al. Saddle Up! A case of Covid-19-associated saddle pulmonary embolism. Chest. 2020;158(4):A1017-A.
- [39] Jafari R, Cegolon L, Jafari A, Kashaki M, Otoukesh B, Ghahderijani BH, et al. Large saddle pulmonary embolism in a woman infected by COVID-19 pneumonia. Eur Heart J. 2020;41(22):2133.
- [40] Ali S, Mathew S, Pappachan JM. Acute cor pulmonale from saddle pulmonary embolism in a patient with previous COVID-19: Should we prolong prophylactic anticoagulation? Int J Infect Dis Off Publ Int Soc Infect Dis. 2020;97:299–302.
- [41] Ismail Z, Salabei JK, Stanger G, Asnake ZT, Frimer L, Smock A. Third-degree heart block associated with saddle pulmonary embolism: A rare sequelae of COVID-19-induced hypercoagulable state. Cureus. 2021;13(7):e16246. doi: 10.7759/ cureus.16246.
- [42] Yu MD, Desai N, Sanagala T, Darki A. Paradoxical embolism causing myocardial infarction in a COVID-19 patient presenting with pulmonary embolism. Cureus. 2021;13(3):e13975. doi: 10. 7759/cureus.13975.
- [43] Aaron L, Welch M, Shah A, Thomas T, McKechnie SR. Recurrent massive pulmonary emboli in a critically ill patient with COVID-19. Anaesth Rep. 2020;8(2):94–7.
- [44] Khurram R, Naidu V, Butt MF, Durnford L, Joffe M. Superior ophthalmic vein thrombosis secondary to COVID-19: An index case. Radiol Case Rep. 2021;16(5):1138-43.
- [45] Bhatt H, Singh S. Venous thromboembolism and COVID-19: A case report and review of the literature. J Med Case Rep. 2020;14(1):1-4.
- [46] Fujikura K, Fontes JD, Taub CC. Saddle pulmonary embolism and thrombus-in-transit straddling the patent foramen ovale 28 days after COVID symptom onset. Echocardiography (Mt Kisco, NY). 2020;37(8):1296-9.

- [47] Chang EE, Segura EMBA. Acute refractory hypoxemia due to pulmonary saddle embolism in a COVID-19 patient with ARDS. Present Future Rev Lit. 2021;3(5).
- [48] Nehme R, Fleifel M, Abou Khalil M, Al Dailaty A. A case of massive saddle pulmonary embolism and benign tracheal
- stenosis in a patient with COVID-19 infection. Respirol Case Rep. 2021;9(11):e0861. doi: 10.1002/rcr2.861.
- [49] Namburu L, Bhogal SS, Ramu VK. COVID-19-induced takotsubo cardiomyopathy with concomitant pulmonary embolism. Cureus. 2021;13(10):e18693.