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Abstract: Dihydroartemisinin (DHA) has been found to
inhibit the expression of von Willebrand factor (VWEF), a
marker of endothelial cell injury, but its mechanism in cere-
bral ischemia/reperfusion (I/R) injury remains obscure. In
this study, I/R model was constructed through middle cere-
bral artery occlusion (MCAO) in rats, followed by DHA admin-
istration. The effect of DHA on rat cerebral I/R injury was
investigated by 2,3,5-triphenyltetrazolium chloride staining,
hematoxylin and eosin staining, TUNEL staining, and Western
blot. Brain microvascular endothelial cells (BMVECs) isolated
from newborn rats were exposed to oxygen—glucose depriva-
tion/reoxygenation (OGD/R), and then treated with DHA. The
results showed that MCAO treatment induced infarction,
nerve cell apoptosis, and brain tissue impairment in rats,
which was mitigated by DHA. OGD/R inhibited viability and
accelerated apoptosis of BMVECs, which was alleviated by
DHA. I/R procedures or OGD/R up-regulated expressions of
VWE, ATG7, Beclinl, and LC3-II/LC3-I ratio, while down-reg-
ulating Occludin, Claudin-5, Z0-1, P62, SIRT1, and FOXO1
expressions in vivo and in vitro; however, these effects of
I/R procedures or OGD/R were offset by DHA. VWF over-
expression reversed the above effects of DHA on OGD/R-
induced BMVECs. In summary, DHA ameliorates cerebral
I/R injury in rats by reducing VWF level and activating
autophagy-mediated SIRT1/FOXO1 signaling pathway.
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1 Introduction

The annually rising incidence of cerebral ischemic stroke
(CIS) is consequent on population aging worldwide [1]. As a
common neurological disorder, CIS is characterized by
high rates of recurrence, disability, and mortality [2].
Revascularization therapy is now widely recognized as
an effective treatment for cerebral infarction caused by
the occlusion of main arteries in China and abroad. How-
ever, extensive data showed that patients with CIS are
predisposed to cerebral ischemia/reperfusion (I/R) injury
after revascularization, including increased vascular per-
meability, disruption of the blood-brain barrier (BBB), and
cerebral edema, posing a threat to the life of patients [3,4].
Brain microvascular endothelial cells (BMVECS), connected
by tight junction proteins, are the main cells that contri-
bute to the formation of BBB [5]. A study has demonstrated
that I/R-induced BMVEC impairment is the initial stage of
BBB disruption, leading to poor prognosis of patients with
CIS [6]. Hence, studying how to maintain normal function
of BMVECs is an essential part of protecting the BBB, thus
alleviating cerebral I/R injury.

Von Willebrand factor (VWF), a glycoprotein synthe-
sized and secreted by vascular endothelial cells and mega-
karyocytes, has been early identified to be associated with
vascular hemophilia, and is perceived as a marker of
endothelial cell damage [7]. In recent years, numerous stu-
dies have confirmed that elevated VWF expression is a risk
factor for vascular diseases [8—10]. Besides, VWF was found
to be highly expressed in mice with liver I/R injury, and to
exacerbate the disease progression [11]. Presently, the role
of VWF in cerebral I/R injury has not been fully elucidated.

The main pathological mechanism of ischemic cere-
brovascular disease is irreversible damage and death of
brain neurons [12]. It is generally believed that necrosis
and apoptosis are the primary processes of cell death.
Notably, autophagy has been identified to be critical in a
range of pathophysiological changes following cerebral I/R
[13-15]. Autophagy is a cellular self-stabilization program
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that is highly conserved in eukaryotic evolution. In this pro-
cess, autophagic vesicles encapsulate damaged organelles and
proteins, and deliver them to lysosomes for degradation which
in turn provides substrates for cellular metabolism [16]. Sir-
tuinl (SIRT1)/forkhead box 01 (FOXO1) signaling pathway-
mediated autophagy has been proved to be implicated in a
variety of organ damages, including cerebral I/R injury [17-19].
Therefore, probing into the mechanisms that activate the
SIRT1/FOXO1 signaling pathway to inhibit autophagy has
become a topical issue in cerebral I/R injury research.

Dihydroartemisinin (DHA) is a semi-synthetic deriva-
tive of the natural compound artemisinin, which exerts
assorted pharmacological effects such as anti-malaria, anti-
oxidation, anti-inflammation, and anti-apoptosis [20-22]. An
existing study has identified that DHA is capable of regulating
multiple biological properties of endothelial cells and sup-
pressing VWF expression [23]. Also, DHA has been proven
to protect against myocardial I/R injury [24], but its role in
cerebral I/R injury needs further study.

Here, the current study investigated the role of DHA in
rat cerebral I/R injury, and whether its potential mechan-
isms are related to VWF expression and SIRT1/FOXO1 sig-
naling pathway through in vivo and in vitro experiments.

2 Methods

2.1 Animals and ethics statement

This study was carried out on newborn Sprague Dawley
(SD) rats (10 days old) and adult male SD rats weighing
240-310 g (Charles River Laboratories, Beijing, China). The
rats were housed in a specific pathogen-free environment
and given a standard diet and drinking water ad libitum.
Animal surgical procedures were approved by the Committee
of Laboratory Animals of Nantong Rich Hospital (CIR20201006),
and performed in accordance with the Guideline for the Care
and Use of Laboratory Animals.

2.2 Cerebral I/R procedures and drug
administration

All rats were randomly divided into three groups: Control
group, I/R group, and I/R + DHA group. The cerebral I/R
model was constructed using middle cerebral artery occlu-
sion (MCAO), as previously reported [25]. Briefly, the rats
in the I/R group and I/R + DHA group were anesthetized
with pentobarbital sodium (45 mg/kg, P-010; Whitehouse
Station, New Jersey, Merck, USA). Then, a midline incision
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was created to expose the right common carotid artery,
internal carotid artery, and external carotid artery (ECA).
After the ECA was separated, a nylon suture (0.26 mm in
diameter) was inserted into the lumen of the ECA for
18-20 mm until blunted distal end met resistance. Two
hours later, the incision was sutured when the suture
was withdrawn. The rats in the Control group received
identical surgical procedures aside from the occlusion. Sub-
sequently, 15 min later, 0.5 mL dimethyl sulfoxide (DMSO, 10%
v/v, D8418, Merck, USA) and DMSO-dissolved DHA (0.1 mg/kg,
Ci5H,405, D140839, Aladdin, China) were used to treat rats in
I/R group and I/R + DHA group, respectively, by tail vein
injection [24]. Following 14 days of reperfusion, all animals
were euthanized by anesthesia and cervical dislocation for
histological analysis of brain tissues.

2.3 Histological analysis

To evaluate the neuroprotective effect of DHA on I/R rat
brain, 2,3,5-triphenyltetrazolium chloride (TTC) staining
was applied to calculate cerebral infarct volumes, as pre-
viously described [26]. The frozen brain tissues were cut
into sections (5 um) and stained with TTC solution (17779,
Merck, USA) at 37°C in the dark for 30 min. Then, the TTC-
stained sections were fixed with 4% paraformaldehyde
(abs9179, Absin, China). Infarction areas, which are mani-
fested by a lack of red staining on the sections, were
quantified using Image ] software (vision 1.8.0, National
Institutes of Health, Bethesda, MD, USA).

For morphological evaluation, hematoxylin and eosin
(HE) staining was carried out using HE Staining Kit (G1121,
Solarbio, China). According to the protocols, the frozen
sections were stained with hematoxylin at room tempera-
ture for 10 min followed by differentiation. Afterward, the
sections were subjected to bluing treatment, then were
stained with eosin for 2min and washed with water. A
microscope (CX23, Olympus, Japan) was finally used for
observation under x100 magnification.

Terminal deoxynucleotidyl transferase-mediated dUTP-
biotin nick end labeling (TUNEL) staining was conducted using
a TUNEL kit (MK1015, Wuhan Boster Biological Technology,
Ltd). A microscope was applied to observe five randomly
selected fields in the injury site of brain tissues in a blinded
manner and determine the TUNEL-positive neurons.

2.4 Cell culture

BMVECs were isolated from newborn SD rats as previously
described [6]. In brief, the sacrificed rats were scrubbed
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with 75% ethanol (E111991, Aladdin, China) and the cranial
cavity was exposed. Next, the cerebral cortex was sepa-
rated after removal of the meninges and blood vessels.
The cortex was minced, and collagenase and dispase two-
step combined dissociation (10269638001, Roche, Basel,
Switzerland) was used to digest the tissues. By centrifuga-
tion at 1,000xg for 5 min at 4°C, BMVECs were aspirated and
suspended with Dulbecco’s Modified Eagle Medium/Nutrient
Mixture F-12 (DMEM/F-12, 11320033, Thermo Fisher, Wal-
tham, MA, USA) supplemented with 20% fetal bovine serum
(FBS, 10091155, Thermo Fisher, USA) and basic fibroblast
growth factor (70 ng/mL, TL-401, Wolcavi, China). Lastly,
BMVECs were seeded (1 x 10°>/cm?) in a gelatin-coated plastic
dish at 37°C with 5% CO, for 2 days of subculture.

2.5 Oxygen-glucose deprivation/
reoxygenation (OGD/R) treatment

The cultured BMVECs were treated with glucose-free medium
(E600010-0500, Sangon Biotech, China) with 2% FBS in an
incubator (37°C, 5% CO, and 95% N,) as per guidance. Six
hours later, the cells were transferred to the standard
medium and incubated in a normoxic condition (25% O,
5% CO,, and 70% N,) for 4 h. BMVECs cultured in the nor-
moxic condition were used as the control.

2.6 Cell transfection and DHA treatment

VWE-overexpressing plasmids (Bes-mR-053889) and control
plasmids (NC) were purchased from BersinBio (Guangzhou,
China). BMVECs were transfected with VWF-overexpressing
plasmids or control plasmids by Lipofectamine 3000
(L3000008, Thermo Fisher, USA) according to the specifica-
tion. After OGD/R treatment, the cells were incubated with
25 uM DHA for 24 h [23]. In the end, five groups were con-
structed: Control group, OGD/R group, OGD/R + DHA group,
OGD/R + DHA + NC group, and OGD/R + DHA + VWF group.
The cells from above groups were subsequently subjected
to quantitative real-time reverse transcription polymerase
chain reaction (qRT-PCR), cell function experiments, and
Western blot.

2.7 RNA extraction and gRT-PCR

Total RNA from BMVECs with different treatments was
isolated with Trizol (9108, Takara, Japan) according to the
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manufacturer’s instructions, and then was reverse-tran-
scribed using cDNA Synthesis Kit (6130, Takara, Japan).
After that, qRT-PCR was conducted on a Real-Time System
(CFX96, Bio-Rad, Hercules, CA, USA) with Fast SYBR Green
Master Mix (4385612, Thermo Fisher, USA). The gene-specific
primer sequences were VWF (forward: 5-ATGGCCCTTTCCT
GACCTAC-3; reverse: 5-GGATTAGGGTTGGCCCTGAG-3) and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH, forward:
5-TAATGCCGCCCCTTACCATC-3;; reverse: 5-~GGTGCAGCGATGC
TTTACTT-3). The conditions of PCR reaction were as follows:
predenaturation at 95°C for 20 s and 40 cycles of amplification
at 95°C for 10 s, annealing at 60°C for 20 s and extension at 60°C
for 30 s. The relative expression of VWF was normalized based
on the 27 method [27], with GAPDH serving as the endo-
genous control.

2.8 Cell counting kit 8 (CCK-8) assay

After OGD/R, BMVECs transfected with VWF-overexpres-
sing plasmids or not were adjusted to the density of 2 x
102 cells/well and seeded in a 96-well plate (100 pL/well).
Following 24 h of incubation, the cells were subjected to
DHA treatment and incubation with 10 uL. CCK-8 solution (M4839,
Abmole Bioscience, Houston, TX, USA) for 1h. Thereafter, the
optical density value was detected by a microplate reader
(Synergy HTX, BioTek, Winooski, VT, USA).

2.9 Flow cytometry

Annexin V-FITC/propidium iodide (PI) Apoptosis Detection
Kit (CA1020, Solarbio, China) was employed to detect cell
apoptosis. In short, BMVECs treated with DHA for 24 h were
collected at a concentration of 1 x 10° cells/mL, washed with
cold phosphate buffered solution (PBS, abs9459, Absin,
China), suspended with Binding Buffer, and centrifuged.
Then, 100 uL cell suspension was incubated with 5puL
Annexin V-FITC at room temperature for 10 min away
from light, and 5 uL PI for 5min. The cells were mixed
with 500 uL PBS, and apoptotic cells were analyzed using
a flow cytometer (CytoFlex LX, Beckman Coulter, Miami,
FL, USA).

2.10 Western blot

Total protein from rat cerebral cortex and BMVECs was
extracted with a lysis buffer (BC-R327, Elabscience, China),
and protein concentration was determined using BCA
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Protein Assay Kit (ab102536; Abcam, Cambridge, UK) according
to the protocols. Equal numbers of protein samples (30 ug)
were separated by 10% SDS-PAGE (P0670, Beyotime, China).
After electrophoresis, the protein samples were transferred
onto polyvinylidene fluoride membranes (P2438, Merck,
USA), which were then treated with Tris buffered saline
with Tween 20 (TBST)-dissolved in 5% skim milk (E-BC-
R337, Elabscience, China) at room temperature for 1h. Then,
the membranes were cultured with diluted primary antibodies
overnight (4°C). The next day, the membranes were washed
with TBST and probed with secondary antibodies at room
temperature for 1h. Immunoblots were visualized by ECL
Western Blotting Substrate (PE0010, Solarbio, China), and
iImmunoreactivity was analyzed using a Tanon 5200 Imaging
System (Shanghai, China). GAPDH served as the loading con-
trol. All antibodies used were as follows: VWF (1/1,000,
309 kDa, ab174290; Abcam, UK), Occludin (1/1,000, 59 kDa,
ab167161; Abcam, UK), Claudin-5 (1 mg/mL, 23kDa, AF5216;
Affinity Biosciences, China), ZO-1 (1/500, 195kDa, ab190085;
Abcam, UK), LC3-I/LC3-1I (1/2,000, 14, 16 kDa, ab192890; Abcam,
UK), P62 (1/10,000, 62 kDa, ab109012; Abcam, UK), GAPDH
(1/10,000, 36 kDa, ab181602; Abcam, UK), SIRT1 (0.125 pg/mL,
81kDa, ab110304; Abcam, UK), FOXO01 (1/2,000, 70 kDa,
ab70382; Abcam, UK), transcription factor 5 (ATF5)
(1/2,000, 31 kDa, ab184923; Abcam, UK), autophagy-related
gene 7 (ATG7) (1/10,000, 77 kDa, ab133528; Abcam, UK),
Beclin1 (2 pg/mL, 52 kDa, ab217179; Abcam, UK), goat anti-rabbit
IgG H&L (HRP) (1/2,000, ab205718; Abcam, UK), and goat anti-
mouse IgG H&L (HRP) (1/2,000, ab205719; Abcam, UK).

2.11 Statistical analysis

Data were analyzed by Graphpad Prism 8.0 (GraphPad
Software Inc., San Diego, CA, USA) and expressed as mean
+ standard deviation. Differences of CCK-8 assay results
among multiple groups were compared using two-way ana-
lysis of variance (ANOVA). Differences of other experiment
results were analyzed using one-way ANOVA. Values of
p < 0.05 indicated significant difference.

3 Results

3.1 DHA attenuated cerebral I/R injury and
apoptosis in rats

As illustrated in Figure 1a, no infarction was observed in
TTC-stained brain sections in the Control group. By contrast,
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cerebral I/R procedures induced a high infarction rate in the
I/R group, but treatment with DHA in I/R-induced rats sig-
nificantly reduced the infarction rate in IR + DHA group
(Figure 1a, p < 0.001). The degree of rat brain injury after
I/R was assessed by HE staining. The results revealed an
intact tissue structure and normal neuron cells with clear
membranes and nuclei in the Control group, but different
degrees of interstitial edema, neuronal cell swelling, and
nucleus disintegration in the I/R group. These conditions
were mitigated by DHA administration in IR + DHA group
(Figure 1b). In addition, TUNEL results indicated that DHA
administration evidently reduced the number of TUNEL-posi-
tive cells in I/R-induced rats on day 14 following recovery
(Figure 1c, p < 0.001). These results demonstrated that DHA
administration exerted a protective effect by relieving the
injury and apoptosis of nerve cells following IR.

3.2 DHA down-regulated VWF expression,
protected BBB from breakdown, and
inhibited autophagy in rat brain with I/R
injury

Previous evidence indicated that VWF contributes to endothe-
lial cell injury, which could be associated with autophagy-
related SIRT1/FOXO1 pathway. Hence, we measured protein
expressions of VWF, BBB-related proteins, and autophagy-
related genes in rat brain tissues by Western blot. In the I/R
group compared with the Control group, VWF, ATG7, and
Beclinl protein expressions and LC3-II/LC3-I rate were
obviously elevated, yet Occludin, Claudun-5, ZO-1, P62,
and ATFS protein expressions were markedly lessened
(Figure 1d-n, p < 0.01). In contrast, these trends were
reversed by DHA treatment in the I/R + DHA group
(Figure 1d-n, p < 0.01).

3.3 DHA promoted viability and suppressed
apoptosis of BMVECs by down-regulating
VWF expression

To figure out whether the effect of DHA on cerebral I/R
injury is mediated by VWF, we carried out in vitro experi-
ments using BMVECs exposed to OGD/R. The results of qRT-
PCR unveiled that VWF plasmid remarkably elevated the
mRNA level of VWF in BMVECS, indicating successful trans-
fection (Figure 2a, p < 0.001). Furthermore, the results
showed that OGD/R led to VWF overexpression, the effect
of which was notably reversed after DHA treatment
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Figure 1: Effects of DHA on cerebral I/R injury in vivo. SD rats were subjected to MCAO to mimic I/R injury and then administrated with DHA (0.1 mg/kg), with
unprocessed rats serving as the control. (a) Brain tissues were collected from sacrificed rats to calculate infarction area by TTC staining. (b) HE staining was
applied to evaluate histopathological conditions in rat brain (magnification x100, scale bar: 100 pm). (c) TUNEL staining indicated neuron nuclei (brown). Red
arrows indicated TUNEL-positive neurons after I/R injury (magnification x100, scale bar: 100 pm). (d-j) Western blot was employed to detect relative protein
levels of VWF, Occludin, Claudin-5, ZO-1, LC3L, LC3IL, and P62 in rat brain tissues. GAPDH was used as the loading control. (k-n) Western blot was applied to
detect relative protein levels of ATF5, ATG7, and Beclin1 in rat brain tissues. GAPDH was used as the loading control. ““p < 0.01, *"p < 0.001 vs Control; *'p <
0.01, ™*p < 0.001 vs I/R, ischemia/reperfusion; DHA, dihydroartemisinin; VWF, von Willebrand factor; ATF5, transcription factor 5; ATG7, autophagy-related
gene 7; Z0O-1, zonula occludens 1; LC3, microtubule associated protein 1 light chain 3 alpha; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; TTC,
triphenyltetrazolium chloride; HE, hematoxylin and eosin.
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(Figure 2b, p < 0.001). In the OGD/R + DHA + VWF group
compared with the OGD/R + DHA + NC group, the expression
of VWF was significantly augmented (Figure 2b, p < 0.001).
CCK-8 assay results unraveled that DHA treatment remark-
ably enhanced OGD/R-suppressed cell viability, which, how-
ever, was reversed by VWF overexpression (Figure 2c, p <
0.001). Moreover, the analysis of flow cytometry demon-
strated that cell apoptosis was boosted by OGD/R, but was
then inhibited after DHA treatment (Figure 2d, p < 0.001).
However, VWF overexpression offset the protecting effect of
DHA on cell apoptosis (Figure 2d, p < 0.001).

3.4 DHA inhibited SIRT1/FOX01 pathway-
mediated autophagy and improved tight
junction of BMVECs by down-regulating
VWF expression

To explore the mechanism of DHA in tight junction of
BMVECs exposed to OGD/R, we quantified protein expres-
sions of Occludin, Claudin-5, and ZO-1 by Western blot. The
results proved that prominent decreases of Occludin,
Claudin-5, and ZO-1 expressions were observed in OGD/R-
treated BMVECs, which was counteracted after DHA treat-
ment (Figure 3a—d, p < 0.01). The protein levels of these three
genes were down-regulated by VWF overexpression in the
OGD/R- and DHA-treated BMVECs, which reversed the effect
of DHA (Figure 3a—d, p < 0.01). Furthermore, to elucidate the
mechanism by which DHA treatment may suppress autop-
hagy via VWF/SIRT1/FOXO01 axis in OGD/R-treated BMVECs,
we measured protein expressions of ATF5, ATG7, Beclinl,
LC3-1, LC3-IL, P62, SIRT], and FOXO1 through Western blot.
The results demonstrated that the protein expressions of
ATFS5, SIRT1, FOXO01, and P62 were decreased, and those of
ATG7 and Beclin1 as well as LC3-II/LC3-I ratio were increased
in the cells exposed to OGD/R, which was reversed by DHA
treatment (Figure 3e-m, p < 0.01). Notably, VWF overexpres-
sion offset the effects of DHA treatment, and strikingly
reduced ATF5, SIRT1, FOXO01, and P62 expressions, yet
increased the protein expressions of ATG7 and Beclinl
as well as the LC3-II/LC3-I ratio in DHA- and OGD/R-
treated BMVECs (Figure 3e-m, p < 0.01).

4 Discussion

It is documented that reperfusion after cerebral ischemia
triggers more intense neurological damage, including exci-
totoxicity, oxidative stress, and inflammatory responses, in
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which oxidative stress is the most severe and longest-
lasting risk factor [28]. An increasing number of natural
compounds have been found to have anti-inflammatory
and anti-oxidant biological activities with low toxicity
and stable efficacy, which have a wide application prospect
in the treatment of cerebrovascular diseases [29-31]. Khan
et al. verified that DHA markedly reduces myocardial
infarct size and attenuates reperfusion injury in a rat
model of myocardial I/R [24]. In a study of lung injury,
DHA is able to inhibit tissue fibrosis by reducing oxidative
stress [22]. Furthermore, Xiong et al. [32] recently identified
that DHA attenuates the damage and improves the func-
tion of brains in neonatal SD rats with hypoxic-ischemic
brain damage by inhibiting oxidative stress. Similarly, by
observing the staining results of brain tissue from rats with
cerebral I/R, we found that DHA signally decreased infarct
rate, neuronal deficits, and apoptosis, implying that DHA
may play a protective role in cerebral I/R injury.

Studies have suggested that high expression of VWF is
closely associated with the development and progression
of ischemic cerebrovascular diseases through thrombus
formation and endothelial dysfunction [9,33,34]. Evidence
from Martinez de Lizarrondo et al. confirmed that N-acet-
ylcysteine can exert a potent thrombolytic effect in stroke
by inhibiting the production of VWF [35]. Moreover, Dong
et al. revealed that VWF transcription is decreased by DHA,
which is beneficial to vascular homeostasis [23]. In this
study, we determined high expression of VWF in rat cere-
bral cortex after MCAO, and DHA treatment dwindled VWF
expression, indicating that VWF may be the molecular
target of DHA in cerebral I/R injury.

Research has shown that the development and pro-
gression of vasogenic cerebral edema is closely dependent
on BBB integrity [36]. In the formation of BBB, tight junc-
tion formed between BMVECs is an important factor in
maintaining the stability of BBB. Occludin and Claudin-5,
as major transmembrane proteins, contribute to the tight
junction of endothelial cells, and can interact with cyto-
plasmic adhesion protein ZO-1 to regulate the structural
alterations of tight junction and thus maintain the normal
function of BBB [37,38]. The present findings indicated that
DHA may stabilize BBB in cerebral I/R injury by enhancing
the tight junction. During cerebral I/R, the generation of
substantial reactive oxygen species in the ischemic region
induces the accumulation of endoplasmic reticulum stress
and oxidative stress, so as to prompt excessive autophagy
and cause cell death. Shao et al. uncovered that apelin-13
inhibits excessive autophagy through upregulation of P62
and downregulation of LC3B, thereby exerting neuropro-
tective effects in rats with cerebral I/R injury [39]. P62, as
an autophagic substrate, can bind to LC3-II on the internal
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Figure 2: DHA promoted viability and repressed apoptosis of OGD/R-treated BMVECs by down-regulating VWF level. BMVECs isolated from newborn
SD rats were transfected with VWF-overexpressing plasmids or control plasmids. OGD/R exposure was conducted on the cells with or without
transfection, followed by 24 h 25 pM DHA treatment. (a and b) mRNA expression of VWF in BMVECs was determined by qRT-PCR. GAPDH served as the
internal control. (c) Cell viability was assessed using CCK-8 assay. (d) Apoptotic cells were stained with Annexin V-FITC/PI and apoptosis rate was

*hk

analyzed by flow cytometry. = p <0.001 vs Control; ***p < 0.001 vs OGD/R;

AAA

p <0.001vs OGD/R + DHA + NC. BMVECs, brain microvascular endothelial

cells; DHA, dihydroartemisinin; VWF, von Willebrand factor; OGD/R, oxygen-glucose deprivation/reoxygenation; qRT-PCR, quantitative real-time
reverse transcription polymerase chain reaction; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; CCK-8, cell counting kit 8; NC, negative control.

membrane of autophagic vesicles to form a complex and
trigger the autophagic program [40]. In this study, we
observed that P62 and ATF5 expressions were reduced,
while ATG7 and Beclinl expressions as well as LC3-II/LC3-
I ratio were elevated in the cortex of I/R rats and OGD/R-
exposed BMVECs, manifesting that reperfusion-induced
excessive autophagy may be the pathological mechanism
of BBB dysfunction; however, DHA treatment reversed the
above effects of OGD/R. In addition, the following cell func-
tion assays identified that DHA improved viability and
suppressed apoptosis of OGD/R-induced BMVECs. Based
on the above findings, it is suggested that DHA may miti-
gate the damage of BMVECs and maintain the integrity of
BBB through inhibiting autophagy. Nevertheless, whether
the molecular mechanism of DHA in these processes is
related to VWF has not been anatomized in any study.

SIRT1, as a NAD"-dependent deacetylase, is generated
through FOXO03 deacetylation, and plays an important role
in inhibiting apoptosis, resisting oxidative stress, and delaying
cellular senescence [41]. The study by Wang et al. found that
piceatannol diminishes oxidative stress in cerebral I/R mice by
activating the SIRTI/FOXO1 signaling pathway, thereby alle-
viating brain damage [42]. Moreover, SIRT1/FOXO1 signaling
pathway has been identified as a promising target to prevent
VWF-mediated arterial thrombosis [43]. Therefore, we pre-
sumed that DHA plays a protective role in cerebral I/R injury
by regulating VWEF/SIRT1/FOXO01 axis. In order to validate our
speculation, we transfected VWF-overexpressing plasmid into
BMVECs to carried out recue assays. Interestingly, VWF over-
expression neutralized the effect of DHA on the viability, apop-
tosis, and autophagy of BMVECs as well as on the expressions
of tight junction proteins. More importantly, we found that
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Figure 3: DHA increased tight junction proteins and inhibited autophagy in OGD/R-treated BMVECs via VWF/SIRT1/FOXO1 axis. BMVECs isolated from
newborn SD rats were transfected with VWF-overexpressing plasmids or control plasmids. OGD/R exposure was conducted on the cells with or
without transfection, followed by 24 h 25 pM DHA treatment. (a-d) Relative protein levels of Occludin, Claudin-5, and ZO-1in BMVECs were measured
by Western blot. GAPDH was used as the loading control. (e-i) Relative protein levels of SIRT1, FOXO1, LC3I, LC3II, and P62 in BMVECs were detected
via Western blot. GAPDH was used as the loading control. (j-m) Relative protein levels of ATF5, ATG7, and Beclin1 in BMVECs were measured by

Western blot. GAPDH was used as the loading control.
OGD/R + DHA + NC. ATF5, transcription factor 5; ATG7, autophagy-related

b <0.01, " p < 0.001 vs Control; *'p < 0.01, **"p < 0.001 vs OGD/R; “"p < 0.01,

AAA

p <0.001vs
gene 7; BMVECs, brain microvascular endothelial cells; DHA, dihydroar-

temisinin; VWF, von Willebrand factor; OGD/R, oxygen-glucose deprivation/reoxygenation; ZO-1, zonula occludens 1; LC3, microtubule associated
protein 1 light chain 3 alpha; SIRT1, sirtuin1; FOXO1, forkhead box O1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; NC, negative control.

SIRT1 and FOXO1 expressions were enhanced in OGD/R-
induced BMVECs after DHA treatment, which was counter-
acted by VWF overexpression. Although the present findings
evidenced that significant effects of DHA treatment can be
attenuated by VWF overexpression, whether DHA directly
interacts with VWF has not been fully testified. According to
a recent study, DHA modulates the E26 transformation-specific

(ETS) related gene (ERG) binding with the -56 ETS-binding
motif on the human VWF promoter, signifying that DHA
decreases VWF expression by the transcription factor ERG [23].

However, on one hand, the singularity of subjects in
the in vitro experiments is a shortcoming of this study,
which will be improved in the next phase of the study.
On the other hand, the metabolism of DHA occurs by
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conjugation with the UDP-glucuronosyltransferase system
[44], with an average half-life of 1-2 h [45]. As the degrada-
tion of DHA in vivo is dependent on its half-life period [24],
and animals in this study were subjected to 24 h of reper-
fusion and 14 days of recovery, it might be necessary to
increase the administration times during the treatment.

5 Conclusion

To conclude, we provide the first evidence that DHA may
reduce BBB damage by inhibiting VWF and activating
SIRT1/FOXO01 signaling pathway, thereby ameliorating cer-
ebral I/R injury in rats.
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