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Abstract: Pyroptosis is a recently identified form of pro-
grammed cell death; however, its role in lung adenocar-
cinoma (LUAD) remains unclear. Therefore, we set out to
explore the prognostic potential of pyroptosis-related
genes in LUAD. The pyroptosis-related risk score (PRRS)
was developed by least absolute shrinkage and selection
operator Cox regression and multivariate Cox regression.
We found that PRRS was an independent prognostic factor
for LUAD. LUAD patients in the high-PRRS group showed a
significantly shorter overall survival (OS) and enriched in
cell proliferation-related pathways. Then pathway enrich-
ment analyses, mutation profile, tumor microenvironment,
and drug sensitivity analysis were further studied in PRRS
stratified LUAD patients. Tumor purity (TP) analyses
revealed that L-PRRS LUAD patients had a lower TP,
and patients in L-TP + L-PRRS subgroup had the most
prolonged OS. Mutation analyses suggested that the
L-PRRS LUAD patients had a lower tumor mutation
burden (TMB), and patients in H-TMB + L-PRRS sub-
group had the most prolonged OS. Drug sensitivity ana-
lyses showed that PRRS was significantly negatively
correlated with the sensitivity of cisplatin, besarotene,
etc., while it was significantly positively correlated with

the sensitivity of kin001-135. Eventually, a nomogram
was constructed based on PRRS and clinical characters
of LUAD. Overall, the pyroptosis-related signature is helpful
for prognostic prediction and in guiding treatment for LUAD
patients.
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microenvironment, tumor mutation burden, drug sensi-
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1 Introduction

Lung cancer (LC) is the leading cause of death among
all cancer types, with an estimated 1.8 million deaths
annually, which means one in five cancer-related deaths
results from it. It is the most common cancer in males and
is primarily distributed in Eastern Europe, Eastern Asia,
and Southern Europe [1]. LC can be classified into two
types: small cell lung carcinoma (SCLC) and non-small-
cell lung carcinoma (NSCLC), with a percentage of 15 and
85%, respectively [2]. NSCLC can be further subtyped as
squamous-cell carcinoma, adenocarcinoma, and large-cell
carcinoma, among which lung adenocarcinoma (LUAD) is
the most common, comprising about 40% of all LC [3]. In
addition to surgical resection and radiotherapy, systemic
treatments for NSCLC include traditional chemotherapy
(cytotoxic agents), targeted therapies (tyrosine-kinase
inhibitors or TKIs) and immunotherapy (immune check-
point inhibitors or ICIs) [4,5]. Although great success
has been achieved in the clinical application of TKIs
and CTLA-4/PD-1/PD-L1 blockers, resistance remains the
major challenge. Studies have shown that only 14–45%
of patients exhibited significant pathological response
when ICI therapy is applied [2,6]. Therefore, indicators
that can predict responses to immunotherapy would
greatly benefit the effective treatment of NSCLC. Nowa-
days, the incoming new concept precision medicine has
also called for the need to subtype cancer according to
molecular features. However, current biomarkers showing
the response to ICIs are PD-L1 expression in tumor tissues
and tumor mutational burden (TMB), which have inherent
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shortcomings [7]. Not all patients with a PD-L1 expression
proportion higher than the 50% cutoff showed a response
to anti-PD-1/PD-L1 antibodies, and some patients below
that cutoff expression responded to the treatment [8–10].
Besides, differential expressions within a single lesion also
contribute to the discordance between PD-L1 expression
and treatment response [11]. Despite NSCLC patients with
high TMB being associated with better response to ICIs
[12], TMB cannot well predict the overall survival (OS) after
ICIs treatment [7]. Hence, new biomarkers that indicate
response to ICI treatment and predict prognosis are urgently
needed.

Pyroptosis, defined as gasdermin-mediated pro-inflam-
matory programmed death [13,14], is emerging as a hot
topic and has drawn researchers’ interest worldwide. Dif-
ferent from apoptosis or necrosis, pyroptosis has its unique
mechanism and characteristics. In the canonical pathway,
it begins with the assembly of inflammasome, which takes
place after pattern recognition receptors recognize signals
from bacteria, viruses, etc. [15]. Subsequently, gasdermins
are cleaved by caspases or granzymes. The N-terminal por-
eforming domain is separated from the C-terminal repressor
domain and functions by forming pores in the cell mem-
brane, leading to the release of inflammation mediators,
including IL-1β and IL-18, and cell death [16]. Accumulating
studies have recognized the two-sided role of pyroptosis
in tumorigenesis and cancer progression. Gasdermin D
(GSDMD) was found to be up-regulated in NSCLC and pro-
mote tumor growth [17]. Besides, both paclitaxel and cis-
platin can induce pyroptosis [18], and cisplatin-sensitive
NSCLC cells had higher expression of inflammasome
components than cisplatin-resistant cells [19]. Moreover,
pyroptosis is closely linked with anti-cancer immunity
and immunotherapy response [20,21]. Synergistic effects
were observed when giving ICIs and gasdermin treatment
simultaneously [22].

Given the above facts, it is reasonable to speculate
that pyroptosis-related genes (PRGs) might have prog-
nostic values and indicate drug resistance. Over the
years, there is a growing body of literature that investi-
gated the application potential of PRGs and constructed
different forms of pyroptosis-related risk score (PRRS) in
various types of cancer [23–29]. Thanks to high-throughput
sequencing, microarray, and establishment of public data-
sets, it is possible to make a thorough bioinformatics ana-
lysis based on the combination of previous data. Therefore,
our study aims to utilize data from TCGA and GEO to screen
PRGs that are associated with the prognosis of LUAD
patients and construct a risk score based on the expression

of those genes. Then we analyze the association of the risk
score with prognosis, tumor microenvironment (TME),
TMB, and drug sensitivity, attempting to broaden the
clinical application of the risk score. Eventually, we
established a nomogram based on PRRS and clinical
characters that can effectively predict the prognosis of
LUAD patients.

2 Materials and methods

2.1 Data acquisition and processing

The LUAD projects of the TCGA (TCGA_LUAD), GSE31210,
GSE41271, GSE42127, GSE68465, and GSE72094 datasets
were obtained from public databases and were processed
as described in our previous study [30]. Briefly, normal-
ized RNA-seq data (HTSeq-FPKM) of the TCGA-LUAD
cohort were used for analyses with no further transforma-
tion and normalization. The gene expression data (series
matrix file) downloaded from the GEO database were
normalized (if required) by the normalizeBetweenArrays
function of the “limma” package in R. The mutation data
of the TCGA_LUAD cohort were downloaded, processed,
and visualized as reported in Song’s study [31]. All data-
sets used in this work were downloaded from public data-
bases, and an extra ethical approval was not necessary.

2.2 Development of PRRS

The COX regression analysis was used to identify the
PRGs that were significantly related to the prognosis of
patients, and patients were divided into C1 and C2 clus-
ters by the consistent cluster analysis according to their
expression levels. Patients from the TCGA_LUAD cohort
were divided into two clusters, and the “limma” package
in R software was used for differential expression ana-
lysis between them (log FC ≥ 1, FDR ≤ 0.05). Univariate
Cox regression analysis was performed for these differen-
tially expressed genes to generate genes associated with
prognosis (p < 0.01). The above generated genes were
input into the least absolute contraction and selection
operator (LASSO) regression mode, which generated 14
key genes, and their corresponding coefficients were
obtained by multi-variate cox analysis. A new score for
each patient was calculated by the formula as follows:
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score =∑i Coefficient(Gene i) Expression(Gene i). To facil-
itate comparison across different LUAD cohorts, the PRRS
was calculated with the formula as follows: PRRS =
(score-Min)/absolute (Max) [32,33]. The TCGA_LUAD
cohort was used as the training set, and GSE31210,
GSE41271, GSE42127, GSE68465, and GSE72094 cohorts
were used as the validation sets.

2.3 Enrichment analysis

In the TCGA_LUAD cohort, a total of 128 differentially
expressed genes were identified between high-PRRS
(H-PRRS) and low-PRRS (L-PRRS) subgroups. Gene onto-
logy (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis of the 128 genes in the TCGA_LUAD cohort
were performed by the “clusterProfiler,” “org.Hs.eg.db,”
“DOSE,” and “enrichplot” packages in R software [34].
Gene Set Enrichment Analysis (GSEA) of PRRS-based clas-
sification of LUAD patients was performed by “c2.cp.kegg.-
symbols.gmt” package in R software [32].

2.4 Immune profile and mutation profile
analysis

TME score of patients from the TCGA_LUAD cohort was
calculated using the “estimate” package in R software.
The infiltration ratio of 22 types of immune cells in TME
was calculated by the CIBERSORT algorithm in R software
[35]. The TMB and the mutant-allele tumor heterogeneity
score were calculated by the package “maftools” in R
software [36].

2.5 Drug sensitivity analysis

Immunotherapy data of patients in the TCGA_LUAD cohort
were downloaded from The Cancer Immunome Atlas
(https://tcia.at/). Drug sensitivity analysis was performed
by the “prrophetic” package in R software.

2.6 Development and evaluation of the
nomogram

Univariate and multivariate Cox regression analyses were
performed using the “survival” package in R. The nomogram

was performed using the “rsm” package in R. Calibration
curve was used to evaluate the accuracy of the nomogram.

2.7 Statistical analysis

The data were analyzed by R software (version 4.1.0). The
“limma” package was used for differential expression
analysis between the two clusters. The “limma,” “sur-
vival,” and “ConsensusClusterPlus” packages were used
for the consistent cluster analysis. The univariate Cox
regression analysis was performed by the “survival” package.
The LASSO regressionmodel was developed by “glmnet” and
“survival” packages. Survival analysis was executed by
“survival” and “survminer” packages. ROC curves were
drawn by “survival,” “survminer,” “timeROC,” and “rms”
packages. The C-index value was calculated by “dplyr,”
“survival” “rms,” and “pec” packages. The nomogram
was drawn by “survival,” “regplot,” “survminer,” “time-
ROC,” and “rms” packages. A value of p < 0.05 was consid-
ered to be statistically significant (*, p < 0.05; **, p < 0.01;
***, p < 0.001).

3 Results

3.1 The construction and predictive analysis
of pyroptosis-related LUAD subtypes

According to Hu’s study [37], we screened 52 PRGs in the
TCGA_LUAD dataset (Figure S1; Table S1) and found that
17 genes were down-regulated and 26 genes were up-
regulated in tumor tissues compared to normal tissues
(Figure S1; Table S2; p < 0.05). This result revealed that
the expression of PRGs was dysregulated in LUAD. Sub-
sequently, we performed a consistent cluster analysis
using 52 PRGs on patients from the TCGA_LUAD cohort.
To confirm that PRG can effectively distinguish patients,
we increased the clustering variable (k) from 2 to 10. The
results showed that at k = 2, the intragroup correlations
were low, indicating that cases could be well split into
two categories (Figure 1a–c). According to the PRGs,
patients from TCGA_LUAD, GSE31210, and GSE41271 cohorts
were divided into two clusters, respectively. Kaplan–Meier
(KM) analysis suggested that patients in the C2 cluster had a
more prolonged OS time in all three cohorts (Figure 1d and
f). These results suggested that the expression level of PRGs
was closely related to the prognosis of LUAD patients.
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3.2 Construction and validation of PRRS

Patients from the TCGA_LUAD cohort were used as the
training set to develop the pyroptosis-related risk models.
First, patients were classified into C1 and C2 clusters
according to PRGs. Second, we performed differential
gene analysis on the two clusters and generated 567 dif-
ferentially expressed genes (log FC > 1; FDR < 0.05).
Third, we carried out a univariate Cox regression analysis
on the 567 genes and identified 125 genes with significant
prognostic correlation (p < 0.01). Finally, the 125 genes
were put into a LASSO regression model and obtained 14
crucial genes and their corresponding coefficients (Figure
2a and b). The score of each patient in a cohort was
calculated by the following formula: score = 0.0247 *
SLC16A1 + 0.0355 * ARL14 − 0.0081 * CFTR + 0.0251 *
CDKN3 − 0.0026 * SERPIND1 + 0.052 * IGFBP1 − 0.0351 *
CA4 − 0.0443 * P2RY13 − 0.0708 * C6 − 0.0462 * ZNF493 +
0.0753 * PKP2 + 0.0982 * DKK1 − 0.0466 * MS4A1 + 0.0319

* KYNU. The PRRS of patients was calculated as reported
in Section 2.

Patients were equally assigned to H-PRRS and L-PRRS
groups (Figure 2c and d). KM analysis showed that patients
from the L-PRRS had significantly longer OS (Figure 3a).
The AUC values of PRRS in the TCGA_LUAD dataset were
0.769 for 1 year, 0.741 for 2 years, and 0.706 for 3 years
(Figure 3g). In the five external validation datasets
(GSE31210, GSE41271, GSE42127, GSE68465, and GSE72094
cohorts), patients were equally divided into H-PRRS and
L-PRRS groups based on the value of PRRS in each cohort.
In all of the five validation cohorts, patients from the
L-PRRS groups had significantly longer OS than that in
the H-PRRS groups, which was highly consistent with the
training cohort (Figure 3b–f). The area under curve (AUC)
values of PRRS in the GSE31210 cohort were 0.699 for 1 year,
0.695 for 2 years, and 0.592 for 3 years; were 0.671 for 1 year,
0.674 for 2 years, and 0.64 for 3 years in the GSE41271
cohort; were 0.747 for 1 year, 0.731 for 2 years, and 0.662

Figure 1: Classification and prognosis of LUAD according to the PRGs. (a) Two clusters were generated by unsupervised consensus
clustering. (b and c) Consensus clustering cumulative distribution function (CDF) and relative change in area under the CDF curve (k from 2
to 10). (d–f) KM analysis showed that patients in the C2 cluster had a longer OS in the TCGA_LUAD (d), GSE31210 (e), and GSE41271 (f)
cohorts.
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for 3 years in the GSE42127 cohort; were 0.682 for 1 year,
0.662 for 2 years, and 0.653 for 3 years in the GSE68465
cohort, and were 0.769 for 1 year, 0.741 for 2 years, and
0.706 for 3 years in the GSE72094 cohort (Figure 3h–l).
The calibration curves confirmed that the PRRS could
reasonably predict the prognosis of patients in both the
training and validation cohorts (Figure 3m–r). The principal
component analysis (PCA) results showed that PRRS could
effectively distinguish H-PRRS and lL-PRRS patients in both
the training and validation datasets (Figure 3s–x). The
aforementioned results confirmed that PRRS was an excel-
lent prognostic indicator of LUAD.

To investigate the potential molecular mechanism of
prognosis difference between H-PRRS and L-PRRS sub-
groups, we performed GSEA using the TCGA_LUAD data-
set. The results suggested that the H-PRRS subgroup was
enriched in cell cycle, DNA replication, proteasome, spli-
ceosome, and steroid hormone biosynthesis pathways.

In contrast the L-PRRS subgroup was enriched in allo-
graft rejection, asthma, intestinal immune network for
IgA production, systemic lupus erythematosus, and viral
myocarditis pathways (Figure 4a and b). We obtained 128
differentially expressed genes (log FC > 1; FDR < 0.05) from
H-PRRS and L-PRRS groups using the “limma” package,
and performed GO and KEGG analysis. GO and KEGG
analysis results suggested that the above differentially
expressed genes were mainly enriched in humoral immune
response-related pathways, and regulated humoral response
(Figure 4c and d).

3.3 TME landscape of PRRS-based
classification

TME provides a favorable environment for tumor progres-
sion and is closely related to the treatment and prognosis

Figure 2: Construction of PRRS using TCGA_LUAD dataset. (a and b) LASSO Cox regression model was constructed from 125 prognosis-
related genes. The 14 crucial genes were generated by the best-fit profile. (c) Distribution and cutoff value of the PRRS. (d) OS and survival
status of patients in H-PRRS and L-PRRS groups. (e) Expression heatmap of the 14 crucial genes in the TCGA_LUAD dataset.
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Figure 3: Evaluation of the effectiveness of PRRS in the training and verification datasets. (a–f) KM survival curves of OS in training (a) and
validation (b–f) datasets. (g–l) ROC curves evaluate the effectiveness of PRRS in training (g) and validation (h–l) datasets. (m–r) Calibration
curves for evaluating the accuracy of PRRS in training (m) and validation (n–r) datasets. (s–x) PCA results of patients from the training (s)
and validation (t–x) datasets according to PRRS.
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Figure 4: Enrichment analysis of PRRS-based LUAD groups. (a and b) GSEA of the H-PRRS and L-PRRS groups in the TCGA_LUAD cohort.
(c and d) GO and KEGG enrichment analysis of 128 differentially expressed genes between the H-PRRS and L-PRRS groups in the TCGA_LUAD
cohort.
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of various tumors [38]. Tumor purity can act as a power-
ful prognostic indicator for various carcinomas [39–41].
In the TCGA_LUAD cohort, we found that the stromal
score or the immune score of patients in the H-PRRS
subgroup was significantly lower than that in the L-
PRRS subgroup, while the tumor purity was the opposite
(Figure 5a and b). We noticed that in the TCGA_LUAD,
GSE41271, GSE42127, and GSE72094 cohorts, the infiltra-
tion ratios of immune cells such as aDCs, B cells, iDCs,
mast cells, neutrophils, T helper cells, and TIL signifi-
cantly reduced in the H-PRRS subgroup (Figure S1a–d).
In addition, correlation analysis confirmed that T cells
CD4 memory resting/activated, macrophages M0/M1,
dendritic cells resting/activated, and B cells memory
were significantly co-expressed with most of the 14 crucial
genes (Figure S2).

In the above four datasets, we also identified that the
function of HLA and type II IFN response was significantly
down-regulated in the HPRRS subgroup (Figure S3a–d).
In the four datasets, KM analysis showed that the OS of
patients in the low tumor purity (L-TP) group was signifi-
cantly longer than that in the high tumor purity (H-TP)
group (Figure 5c, e, g, and i). In the four cohorts, we com-
prehensively analyzed PRRS and tumor purity and found
that patients in L-TP + L-PRRS group had the best prog-
nosis, and patients in H-TP + H-PRRS group had the worst
prognosis (Figure 5d, f, h, and j). The above results sug-
gested that PRRS was closely related to tumor purity and
patient prognosis.

3.4 Tumor mutation burden (TMB) of
PRRS-based classification

Previous studies have shown that TMB can be used as a
predictor of immunotherapy response in NSCLC [42–44].
We further studied the mutation profile of PRRS-stratified
LUAD patients. In the TCGA_LUAD cohort, we observed
that the L-PRRS group had a lower TMB, and patients
exhibited different mutation signatures between the two
subgroups (Figure 6a–c). The top five genes with the
highest mutant frequency in the L-PRRS group were
TP53 (40%), TTN (39%), MUC16 (39%), CSMD3 (32%),
and RYR2 (32%); whereas, those in the H-PRRS group
were TP53 (56%), TTN (51%), MUC16 (42%), CSMD3 (47%),
and RYR2 (39%) (Figure 6a and b). KM analysis showed that
the OS of patients in H-TMB group was longer than that of

patients in the L-TMB group, and patients in the H-TMB +
L-PRRS group had the best prognosis (Figure 6d and e).

3.5 Guidance of PRRS in LUAD therapy

As negative regulators of T cell immunity, CTLA-4 and
PD-1 have become immunotherapeutic targets for NSCLC.
CTLA-4 and PD-1 negatively regulate T cell activity at
different stages of immune response, respectively [45]. We
obtained the clinical data of LUAD patients treated with
CTLA-4 or/and PD-1 from The Cancer Immunome Atlas
(TCIA) database.We found patients in the L-PRRS subgroup
could benefit more from immunotherapy (Figure 7a–d). In
addition, we also analyzed the correlation between the sen-
sitivity of 23 drugs and PRRS. As shown in Figure 8, the
sensitivity of 22 drugs was negatively correlated with PPRS,
such as cisplatin, bexarotene, and methotrexate, while the
sensitivity of KIN001-135 was positively correlated with
PRRS (|R| ≥ 0.4; p < 0.001). The statistical results suggested
that patients in the L-PRRS subgroup had higher sensitivity
to 22 drugs, such as cisplatin, bexarotene, and metho-
trexate, and lower sensitivity to KIN001-135 (p < 0.001;
Figure S4).

3.6 Establishment of a nomogram based on
PRRS and clinical characters

Univariate and multivariate Cox regression analyses were
presented on the TCGA_LUAD dataset, and PRRS, stage,
and tumor purity were recognized as independent
risk factors for LUAD (Figure 9a and b). We plotted
the C-index curves of the above characters, and the
found PRRS had the most immense value, indicating
that it had the highest prognostic accuracy for LUAD
prognosis (Figure 9c). We also drew 1-, 2-, and 3-year
ROC curves using PRRS and clinical features, and
found that the PRRS + clinical group always had the
biggest AUC (Figure 9d and f). Finally, we plotted the
nomogram using the above features for LUAD to develop a
nomogram to quantitatively establish the 1-, 2- and 3-year
survival rates (Figure 9g). TheAUC values of PRRS in the
TCGA_LUAD cohort were 0.785 for 1 year, 0.753 for 2 years,
and 0.738 for 3 years (Figure 9h). In addition, the calibra-
tion curves of patients at 1, 2, and 3 years confirmed the
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Figure 5: Tumor purity combined with PRRS to evaluate the prognosis of LUAD patients. (a) The immune, stromal, and ESTIMATE scores of
the L-PRRS group were higher than the H-PRRS group (p < 0.01). (b) The tumor purity of the L-PRRS group was lower than the H-PRRS group
(p < 0.001). (c, e, g, i) In the TCGA_LUAD (c), GSE41271 (e), GSE42127 (g), and GSE72094 (i) cohorts, patients in the L-TP groups had a longer
OS than the H-TP group (p ≤ 0.01). (d, f, h, j) In the TCGA_LUAD (d), GSE41271 (f), GSE42127 (h), and GSE72094 (j) cohorts, patients in the
L-TP + L-PRRS groups had the best prognosis, while the H-TP + H-PRRS had the worst prognosis. **, p < 0.01; ***, p < 0.001; L-TP: low tumor
purity; H-TP: high tumor purity; L-PRRS: low PRRS; H-PRRS: high PRRS.
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accurateness of the nomogram (Figure 9i). Thus, nomogram
was the best model to predict the prognosis of LUAD com-
pared with single risk factor.

4 Discussion

Pyroptosis, a novel type of programmed cell death, was
first discovered in 1992 [46] but did not catch researchers’
attention until recent years. Pyroptosis is characterized
by gasdermin cleavage, pore formation, cell swelling,
and subsequent release of inflammatory mediators [20].
There is a growing body of literature that recognizes the

two-sided role of pyroptosis in tumorigenesis and cancer
progression [47]. On the one hand, pyroptosis is accom-
panied by IL-1β and IL-18 release, which could mediate
tumor-promoting inflammation [48,49]. Gao et al. found
that GSDMD was significantly up-regulated in NSCLC and
that knockdown of GSDMD mitigated cell proliferation
and tumor growth in xenograft mouse models [17]. On the
other hand, pyroptosis inhibits tumor progression and
stimulates anti-cancer immunity [50]. Previous research
studies show that GSDMD is required for CD8+ T cell cyto-
toxicity toward LC cells [51], and GSDME represses tumor
growth in vivo [52]. Considering the pivotal role that pyr-
optosis plays in cancer progression, we suppose that PRGs
might have predictive value and be associated with drug

Figure 6: Mutation signatures of PRRS-based LUAD patients. (a and b) Waterfall plots of mutation genes in L-PRRS (a) and H-PRRS (b)
subgroups from the TCGA_LUAD cohort. (c) TMB of the H-PRRS group was significantly higher than the L-PRRS group. (d) In the TCGA_LUAD
cohorts, patients in the H-TMB groups had a longer OS than the L-TMB group. (e) In the TCGA_LUAD cohorts, patients in the H-TMB + L-PRRS
group had the best prognosis. L-TMB: low TMB; H-TMB: high TMB; L-PRRS: low PRRS; H-PRRS: high PRRS.

10  Zhengsong Jiang et al.



resistance in LUAD. Nevertheless, relevant research stu-
dies are relatively scarce. Hence, we set out to investigate
the predictive potential of PRGs and construct a PRRS for
clinical application.

First, we performed cluster analysis using the expres-
sion profile of 52 PRGs and split the patients from TCGA_
LUAD, GSE31210, and GSE41271 cohorts into two clusters,
respectively. In all cohorts, patients in C2 had a better prog-
nosis than those in C1, confirming the predictive potential of
PRGs. Then we tried to construct a PRRS more stable than
cluster analysis. A total of 567 differentially expressed genes
were discovered after comparing the two clusters of the
TCGA_LUAD cohort. Further, univariate Cox regression
analysis and LASSO regression model extracted 14 crucial
genes, and incorporated into the formula to obtain
the PRRS.

Among the 14 genes, some have been shown to par-
ticipate in LC progression or have prognostic potential.
ARL14, an ADP ribosylation factor family member, was
up-regulated in NSCLC tissue samples, indicating poor
survival [53]. ARL14 could promote LUAD cell prolifera-
tion, and knockdown of ARL14 induced a dormant state
in cancer cells [54]. The cystic fibrosis transmembrane
conductance regulator (CFTR) was down-regulated in

NSCLC tissues compared with paired normal tissues [55].
High CFTR was correlated with better survival in NSCLC
patients, and knockdown of CFTR enhanced cell migra-
tion, invasion in vitro, and metastasis in vivo [56]. High
expression of cyclin-dependent kinase inhibitor 3 (CDKN3)
was observed in LC cell lines and was associated with poor
survival of LUAD patients [57]. Combretastain A4 (CA4)was
a tumor suppressor which inhibited NSCLC cell prolifera-
tion and tumor growth in xenograft mouse models [58].
Plakophilin 2 (PKP2) was up-regulated in LUAD tissues
and LC cells, and its high expression indicated worse prog-
nosis for LUAD patients. Mechanistically, PKP2 promoted
LC cell proliferation and invasion via enhancing epithe-
lial–mesenchymal transition (EMT) and focal adhesion
[59]. Moreover, PKP2 contributed to LC radioresistance
and its high expression was associated with worse sur-
vival in LC patients after radiotherapy [60]. The dickkopf
WNT signaling pathway inhibitor 1 (DKK1) also exhibited
tumor-promoting phenotype in LC. It was up-regulated in
NSCLC tissues compared with normal lung tissues and
could promote migration, invasion, and EMT in LC cells.
Patients with DKK1-positive tumors had shorter disease-
free survival than those with negative tumors [61,62].
Notably, the knockdown of DKK1 sensitized NSCLC cell
lines to cisplatin treatment, indicating that DKK1 partly
contributed to the intrinsic cisplatin resistance [63].
A study revealed that kynureninase (KYNU) expression
was positively correlated with CD8+ tumor infiltrating
lymphocytes and PD-L1 cell positivity. Higher expres-
sion of KYNU was associated with worse OS in LUAD
patients [64]. Therefore, our PRRS seems reliable since
many of the 14 genes play an active role in LC progres-
sion and have prognostic value alone.

Afterward, we investigated the association of PRRS
with patient survival, TME, TMB, and drug sensitivity.
In both the training and validation cohorts, patients in
the L-PRRS groups had significantly longer OS than those
in the H-PRRS groups, confirming the predictive value of
PRRS in LUAD. Tumor purity reflects the tumor cell con-
tent in the tissue and is a prognostic indicator in various
cancers [39–41]. Our result revealed that tumor purity of
patients in the H-PRRS group was significantly higher
than that in the L-PRRS group. Tumor purity can predict
prognosis of LUAD patients alone or combined with
PRRS. Besides, the infiltration ratios of immune cells
such as aDCs, B cells, iDCs, mast cells, neutrophils, T
helper cells, and TIL were significantly reduced in the
H-PRRS group, suggesting that PRRS is associated with
TME in LUAD. TMB is a biomarker for predicting the clinical
benefit from immunotherapy response, and higher TMB
was associated with prolonged OS after immunotherapy

Figure 7: Guidance of PRRS in LUAD immunotherapy. (a–d) LUAD
patients in the L-PRRS will benefit more from CTLA4 and, or PD1
inhibitor treatment.
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Figure 8: Screening of potential drugs for LUAD patients. Correlation analysis between the sensitivity of 23 drugs and PRRS.
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Figure 9: Development and verification of nomogram. (a and b) Univariate and multivariate regression analyses of the correlation between
PRRS and clinical characteristics regarding OS in the TCGA-LUAD cohort. (c) C-index curves of PRRS and clinical features.
(d–f) Time-dependent ROC analyses of PRRS and, or clinical features regarding the OS and survival status in the TCGA_LUAD cohort. (g)
Nomogram is based on gender, age, tumor purity, TMB, PRRS, and stage. (h) Time-dependent ROC analyses of the nomogram regarding the
OS and survival status in the TCGA_LUAD cohort. (i) Calibration curves of the nomogram between predicted and observed 3-, 5- and 10-year
OS in the TCGA_LUAD cohort.
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[7,42,44,65]. Our results showed that patients in the H-PRRS
group had a higher TMB, suggesting that this group is likely
to have survival better after immunotherapy. After ana-
lyzing the IPS score acquired from TCIA database, we found
that patients in the L-PRRS group had higher IPS than those
in the H-PRRS group, suggesting that the L-PRRS group
might exhibit a better response to immune checkpoint
blockers [66]. Previous research showed that applying gas-
dermin could sensitize breast cancer cells to anti-PD1
therapy, which supports our results [22].

The underlying mechanism behind the association
between pyroptosis and immunotherapy can be rather
complex. On the one hand, pyroptosis can secrete IL-1β
and IL-18 to trigger inflammatory responses and recrui-
ting immune cells, which might enhance the anti-tumor
effects of immunotherapy [67]. In addition, pyroptosis
also plays a role in the activation and functioning of
immune cells. For instance, the expression of GSDMD is
higher in activated CD8+ T cells than in naïve T cells, and
GSDMD is essential in the cytolytic ability of CD8+ T cells
[68]. On the other hand, pyroptosis is accompanied by
the release of inflammatory mediators, such as IL-1 and
IL-18, which might facilitate cancer development and
progression [48,49]. Moreover, chimeric antigen receptor
(CAR) T cell therapy can induce pyroptosis in target cells,
and subsequent cytokine release can induce severe adverse
reactions after CART therapy [21,69].

Interestingly, PRRS was also associated with the sen-
sitivity of 23 drugs, including cisplatin and other targeted
therapies. This is not surprising since chemotherapy
drugs like cisplatin can induce pyroptosis in GSDME-
high cancer cells and GSDME-deficient mice showed
fewer adverse effects induced by chemotherapy [70].
Taken together, PRRS is a powerful predictor of prog-
nosis, immunotherapy response, and drug sensitivity,
which might be suitable for clinical application. Even-
tually, we built a nomogram based on gender, age, tumor
purity, TMB, PRRS, and stage, which was accurate for
predicting LUAD prognosis.

Pyroptosis-related prognostic signatures have been
constructed in various tumors, including glioma, breast
cancer, gastric cancer, LC, hepatocellular carcinoma, cer-
vical cancer, etc. [23,25,29,71–78]. However, the PRRS
seems more reliable since we included more PRGs (52
genes) as the input than the other studies. Besides, we
used a combination of univariate Cox regression analysis
and LASSO regression model to obtain the PRRS, which
can solve the problem of multicollinearity among the
PRGs and simplify the risk score. In addition, we found
that many of the PRGs included in the PRRS play an
active role in LC progression and have their prognostic

value through literature search, which has been stated
earlier. Moreover, the PRRS can not only predict prognosis,
but also guide therapeutic options in LUAD management.

5 Conclusion

In summary, this study constructed a PRRS which incor-
porated the expression of 14 PRGs and validated the
predictive value of the risk score. Further investigation
demonstrated the association between PRRS and TME,
immunotherapy response and drug sensitivity, suggesting
its potential for clinical application. Finally, a nomogram
was constructed based on gender, age, tumor purity, TMB,
PRRS, and stage, which achieved good accuracy in pre-
dicting prognosis.
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