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Abstract: Locally advanced breast cancer patients have
a poor prognosis; however, the relationship between
potential targets and the response to treatment is still
unclear. The gene expression profiles of breast cancer
patients with stages from IIB to IIIC were downloaded
from The Cancer Genome Atlas. We applied weighted
gene co-expression network analysis and differentially
expressed gene analysis to identify the primary genes
involved in treatment response. The disease-free survival
between low- and high-expression groups was analyzed
using Kaplan–Meier analysis. Gene set enrichment ana-
lysis was applied to identify hub genes-related pathways.
Additionally, the CIBERSORT algorithm was employed to
evaluate the correlation between the hub gene expression
and immune cell types. A total of 16 genes were identified
to be related to radiotherapy response, and low expres-
sion of SVOPL, EDAR, GSTA1, and ABCA13 was associated
with poor overall survival and progression-free survival
in breast cancer cases. Correlation analysis revealed that
the four genes negatively related to some specific immune
cell types. The four genes were downregulated in H group
compared with the L group. Four hub genes associated
with the immune cell infiltration of breast cancer were

identified; these genes might be used as a promising bio-
marker to test the treatment in breast cancer patients.

Keywords: WGCNA, breast cancer, immune cell infiltra-
tions, GSEA

1 Introduction

Breast cancer is the most prevalent malignant tumor
among women and is the primary cause of most cancer-
related deaths in women [1,2]. In recent years, breast
cancer survival rates and prognosis have improved due
to novel therapeutic options, new surgical techniques,
and a better understanding of this disease [3,4]. Poor
molecular typing, such as HR receptor-negative, HER-2
positive, or locally advanced breast cancer, is the main
factor affecting the prognosis of breast cancer patients
[5]. Currently, radiotherapy and chemotherapy are com-
monly used for locally advanced patients. Radiotherapy
is the standard treatment in patients with breast cancer
with positive axillary lymph nodes [6]. Although chemor-
adiotherapy has some advantages in treating breast cancer,
there will still be heterogeneity in the efficacy of radiation
therapy, which seriously influences the quality of life and
clinical efficacy of patients [7,8]. Besides, the drug resis-
tance of chemoradiotherapy remains the major cause of
the failure of cancer treatment [9]. Thus, investigating the
potential targets to evaluate chemoradiotherapy response in
breast cancer will be important for personalized therapeutic
methods.

Chemoradiotherapy not only destructs cancer cells
but also activates the immune system. It has been demon-
strated that chemoradiotherapy could exhibit an immunosti-
mulating effect via decreasing the accumulation of infiltrating
regulation of T cells, increasing the level of tumor-associated
M1 macrophages, and increasing NK cell cytotoxicity [10,11].
Previous reports also have demonstrated that radioresistance
decreased the efficacy of radiotherapy via modulation of
the tumor microenvironment [12,13]. However, the potential
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biomarkers and molecular mechanisms of drug resistance in
breast cancer are still unclear.

In recent years, high throughput RNA-SEQ technolo-
gies have been widely applied in disease mechanism
research [14]. Weighted gene co-expression network ana-
lysis (WGCNA) is a systematic method to describe the
correlation patterns among genes via calculating gene
connectivity [15]. WGCNA also could form modules and
cluster genes by assessing the relationship between hub
modules and external clinical features [15]. Therefore, it
is often applied to identify specific modules and potential
biomarkers [16,17]. In the present study, we integrated
WGCNA and differentially expressed gene (DEG) analyses
to identify potential prognostic biomarkers of patients
with breast cancer undergoing chemoradiotherapy. Besides,
the relationship between infiltrating immune cells and
prognostic biomarkers was assessed. This research will pro-
vide a better understanding of prognostic biomarkers for
breast cancer and help improve prediction accuracy.

2 Methods and materials

2.1 Collection of raw data

We downloaded the clinical data and corresponding gene
expression profiles of patients with breast cancer from
The Cancer Genome Atlas (TCGA) database (https://portal.
gdc.cancer.gov/). Breast cancer patients with stages from
IIB to IIIC were included in this study; all patients
were treated with radiation treatment or therapy, and
the patients were categorized into low-risk and high-risk
groups based on the response of their primary tumor to
radiation treatment or therapy. The patients with cancer
recurrence after radiation treatment or therapy within 5
years were defined as a high-risk group (H), whereas those
Disease-free survival (DFS) time over 5 years were defined
as a low-risk group (L). The propensity score matching
(PSM) was performed using SPSS 25.0 software (IBM,
USA). In this study, age, race, T and N stages, estrogen
receptor and progesterone receptor status were set according
to clinical data of patients after initial screening, and PSM
was performed with a matching tolerance of 0.01 to reduce
the statistical bias of high- and low-risk groups caused by
differences in enrollment conditions.

2.2 Construction of WGCNA network

The gene co-expression network was constructed using
the WGCNA R package [15]. The “pickSoftThreshold”

function of the WGCNA package was used to assess the
value of the powers. A topological overlap matrix (TOM)
was generated by transforming the adjacency matrix. The
co-expressed gene modules were identified using the
dynamic tree cut, and a hierarchical clustering method
based on the dissimilarity of the TOM was utilized to
visualize the cluster dendrogram of genes. Mode mem-
bership and gene significance were calculated for each
module. The major functional modules with the highest
correlation genes were extracted.

2.3 Identification of DEGs

The batch effects were removed by using the “sva” R
package. The “limma” package was employed to perform
DEG screening. ∣log FC∣ ≥ 0.5 and p < 0.05 were used as
the screening parameters to identify the DEGs. The dis-
tribution of each gene was visualized by a volcano plot
and generated using the ggplot2 package of R software.

2.4 Identification of hub genes and survival
analysis

The overlapping genes between co-expression genes and
DEGs were obtained by a Venn tool. The “Survival” R
package was applied to carry out univariate and multi-
variate Cox regression analyses in breast cancer cases to
assess the prognostic value of overlapping genes. p-value
<0.05 was considered significant. We used the “timeROC”
R package to draw a time-dependent ROC curve to assess
the predictive value of the prognostic signature. The “surv-
miner” R package was applied to further analyze the sur-
vival probability of low- and high-expression groups.

2.5 Gene set enrichment analysis (GSEA)

We used GSEA 4.0.3 software to perform the GSEA for the
hub genes. First, the mRNA expression profiles were
divided into two groups (low- and high-expression levels of
hub genes) based on themedian expression level of hub genes.
Then, the C2 KEGG gene sets (c2.cp.KEGG.v7.4.symbols.gmt) of
the Molecular Signature Database were applied to perform the
enriched functions and pathway analysis in the low- and high-
expressiongroups. Pathwayswithp<0.05 anda false discovery
rate <0.05 were considered to be significantly enriched.
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2.6 Assessment of immune cell infiltration

The gene expression profiles were uploaded to the CIBER-
SORT website. Then, the 22 types of immune cell infiltration
matrix were obtained based on p < 0.05. The “ggplot2”
package of R software was used to visualize the differences
in immune cell infiltration between L and H groups. The
correlation of 22 kinds of immune cells was analyzed by
using the “complot” package of R software.

2.7 Correlation analysis between infiltrating
immune cell and hub biomarkers

The Spearman correlation between infiltrating immune
cell and diagnostic biomarkers was analyzed using the
“ggstatsplot” package of R software, and the results were
visualized by the “ggplot2” package.

2.8 Immunohistochemistry

We collected 10 patients with locally advanced breast
cancer who had relapsed within 5 years and five patients
who had not relapsed over 5 years from The Affiliated
Huaian No. 1 People’s Hospital of Nanjing Medical University
to further verify the results of key gene expression. This study
was conducted in accordance with the Declaration of Helsinki
(as revised in 2013) andwas approved by the Ethics Committee
of The Affiliated Huaian No. 1 People’s Hospital of Nanjing
Medical University. Immunohistochemistry was performed as
described based on a previous study [18]. The primary antibo-
dies (rabbit anti-SVOPL, anti-EDAR, anti-GSTA1, and anti-
ABCA13) were purchased from Abcam (Cambridge, UK).

Ethical statement: The authors are accountable for all aspects
of the work in ensuring that questions related to the accuracy
or integrity of any part of the work are appropriately investi-
gated and resolved. This study was conducted in accordance
with the Declaration of Helsinki (as revised in 2013) and was
approved by the Ethics Committee of The Affiliated Huaian
No. 1 People’s Hospital of Nanjing Medical University.

3 Results

3.1 Clinical characteristics of patients

As shown in Table A1, there were no significant differ-
ences in age, AJCC pathologic stage, AJCC pathologic T,

AJCC pathologic M, Race, ER, and PR receptor status
between the H and L groups (p > 0.05). There was a
significant difference in Person neoplasm cancer status
between the H and L groups (p < 0.001).

3.2 WGCNA identified potential genes
associated with chemoradiotherapy
resistance in breast cancer patients

A total of 16,079 genes collected from 62 samples of TCGA
were applied to construct a dendrogram (Figure 1a). We
identified 21 modules based on average dynamic tree clip-
ping and hierarchical clustering (Figure 1b). These mod-
ules were visualized in Figure 1c, the dark-red (r = 0.38,
p = 4.2 × 10−13) and grey (r = 0.34, p = 1.8 × 10−3)modules
were most correlated with the radiotherapy response of
patients and selected for the next investigation.

3.3 Identification of hub genes in the TCGA
cohort

A total of 243 DEGs were identified from the gene expres-
sion profiles of breast cancer patients, which contains 99
downregulated genes and 144 upregulated genes (Figure
2a). Then, 16 interaction genes were obtained by both
DEGs andWGCNA (Figure 2b and c). Moreover, univariate
cox analysis indicated that only four of them (SVOPL,
EDAR, GSTA1, and ABCA13) were associated with the
overall survival (OS) of breast cancer patients (Figure
2d). The multivariate cox analysis indicated that SVOPL
was an independent prognostic risk factor for breast
cancer patients (Figure 2e).

3.4 ROC and Kaplan–Meier analyses of
prognostic biomarkers

As shown in Figure 3a, the ROC curves of SVOPL, EDAR,
GSTA1, and ABCA13 showed their probability as valuable
genes with AUC of 0.787, 0.809, 0.737, and 0.738, respec-
tively, which indicates the four hub genes had a good
predictive value.

Besides, we also investigated the prognostic value of
hub genes. As shown in Figure 3b–e, the lower expres-
sion of ABCA13, EDAR, GSTA1, and SVOPL were asso-
ciated with poorer OS (p < 0.05). As shown in Figure
4a–d, the lower expression of ABCA13, EDAR, GSTA1,
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Figure 1: Construction of co-expression modules. (a) Clustering dendrogram of 62 samples. (b) In the cluster dendrogram of genes in the
TCGA database, all genes were clustered in 21 modules. (c) Module–trait relationship of two traits and 21 modules.

4  Ruipeng Zhao et al.



Figure 2: Identification of chemoradiotherapy resistance-related genes in breast cancer. (a) The volcano diagram of DEGs. (b) Identification
of hub genes in co-expression network and DEG network. (c) The heat map of 16 hub genes expression between low-risk and high-risk
groups. The survival of breast cancer patients was performed by (d) univariate and (e) multivariate cox regression analysis.
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Figure 3: ROC and Kaplan–Meier analyses of prognostic biomarkers of patients with breast cancer undergoing chemoradiotherapy. (a) ROC
curves were applied to assess the predictive ability of the hub genes in breast cancer. Kaplan–Meier OS analysis of (b) ABCA13, (c) EDAR, (d)
GSTA1, and (e) SVOPL in breast cancer.
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and SVOPL was associated with poorer progression-free
survival (PFS) (p < 0.05). As shown in Figure A1, the
ABCA13, EDAR, GSTA1, and SVOPL expression showed
no significant correlation with N stage, T stage, and
tumor stage (p > 0.05).

3.5 GSEA identified hub genes-related
pathways

Single-gene GSEA was performed to explore how hub
genes are involved in the underlyingmechanisms of radio-
therapy response in breast cancer patients. As shown in
Figure 5a, the glioma, Wnt signaling pathways, renal cell
carcinoma, VEGF signaling pathway, basal cell carcinoma,

small cell lung cancer, melanogenesis, and ERBB signaling
pathway were significantly enriched in the ABCA13 high-
expressed phenotype. Natural killer cell-mediated cyto-
toxicity, JAK-STAT signaling pathway, small cell lung
cancer, chemokine signaling pathway, B-cell receptor sig-
naling pathway, acute myeloid leukemia, apoptosis, cyto-
kine, and cytokine receptor interaction, and nonsmall cell
lung cancer were significantly enriched in the EDAR high-
expressed phenotype (Figure 5b). Wnt signaling pathway,
pathways in cancer, glioma, regulation of actin cytoske-
leton, tight junction, and basal cell carcinoma were signifi-
cantly enriched in the GSTA1 high-expressed phenotype
(Figure 5c). Adherens junction, cysteine and methionine
metabolism, and glycosphingolipid biosynthesis lacto and
neolacto series were significantly enriched in the SVOPL
high expressed phenotype (Figure 5d).

Figure 4: Kaplan–Meier progression-free survival (PFS) analysis of (a) ABCA13, (b) EDAR, (c) GSTA1, and (d) SVOPL in breast cancer.

Identification of targets in breast cancer  7



3.6 Analysis of immune infiltrating cells

As shown in Figure 6a and b, the CIBERSORT algorithm
indicated that there were significant differences in naïve
B cells, T-cell CD4 memory resting, M0macrophages, and
M1 macrophages between L and H groups (p < 0.05).
Besides, the correlation heatmap indicated M1 macro-
phages was positively correlated with naïve B cells, CD8
T cells, and CD4 memory-activated T cells, T follicular

helper cells, and dendritic cell resting, whereas M1 macro-
phages were negatively correlated with T-cell CD4memory
resting, activated NK cells, and M0 macrophages. M0
Macrophages were negatively correlated with naïve B
cells, plasma cells, CD8 T cells, monocytes, M1 macro-
phages, M2 macrophages, dendritic cells resting, and
mast cell resting. T-cell CD4 memory resting was nega-
tively correlated with CD8 T cells, T follicular helper
cells, and M1 macrophages (Figure 6c).

Figure 5: Single-gene GSEA of hub genes. GSEA of (a) ABCA13, (b) EDAR, (c) GSTA1, and (d) SVOPL.
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Figure 6: Assessment of immune cell infiltration. (a) Histogram of a score of immune cells between L and H groups. (b) Heatmap of immune
cells between L and H groups. (c) The correlation heatmap indicated immune cells. *p < 0.05, **p < 0.01, ***p < 0.001.
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3.7 Correlation analysis between SVOPL,
EDAR, GSTA1, ABCA13 expression and
tumor immunity in breast cancer

According to the results of correlation analysis, ABCA13
exhibited a negative correlation with T-cell CD4 memory
resting (r = −0.309, p = 0.014), and macrophages M2 (r =
−0.257, p = 0.043 (Figure 7a)). EDAR showed a positive
correlation with dendritic cells resting (r = 0.304, p = 0.016),
T follicular helper cells (r = 0.292, p = 0.021), and M1
macrophages (r = 0.253, p = 0.046) and exhibited a nega-
tive correlation with M2 macrophages (r = −0.252, p =
0.047 (Figure 7b)). GSTA1 displayed a positive correlation

with memory B cells (r = 0.375, p = 0.002), and CD4 naïve
T cells (r = 0.297, p = 0.019 (Figure 7c)). SVOPL showed a
positive correlationwith CD8 T cells (r = 0.368, p = 0.003), M1
macrophages (r = 0.350, p = 0.005), and T follicular helper
cells (r = 0.263, p = 0.038) and showed a negative correlation
with gamma delta T cells (r = −0.285, p = 0.024) and T-cell
CD4 memory resting (r = −0.263, p = 0.038 (Figure 7d)).

In addition, the ABCA13, EDAR, GSTA1, and SVOPL
expression was positively correlated with six immune
checkpoint genes including CD274, CTLA4, TIGIT, LAG3,
PDCD1, and PDCD1LG2 (p < 0.05, Figure 8a–d). These find-
ings implied that ABCA13, EDAR, GSTA1, and SVOPL may
be involved in tumor immunity.

Figure 7: Correlation analysis between infiltrating immune cells and diagnostic biomarkers. The bar diagram showed the correlation
between (a) ABCA13, (b) EDAR, (c) GSTA1, (d) SVOPL, and infiltrating immune cells.
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3.8 Validation of SVOPL, EDAR, GSTA1, and
ABCA13 expression by
immunohistochemistry

To further confirm the above results, immunohistochem-
istry was performed to detect the SVOPL, EDAR, GSTA1,
and ABCA13 levels in H and L groups. As shown in Figure
9a and b, compared to the H group, the SVOPL, EDAR,
GSTA1, and ABCA13 levels was higher in the L group
(p < 0.001).

4 Discussion

Chemoradiotherapy is one of the mainstream therapies in
tumor treatment, which has a good therapeutic effect on
many kinds of cancer [19,20]. However, resistance to che-
moradiotherapy is the main obstacle in the treatment of
tumors [21,22]. Besides, ionizing radiation also causes the
generation of oxygen radicals and DNA damage repair
[23]. Previous reports have revealed that subsequent
immune responses could greatly influence the efficacy

of chemoradiotherapy [24,25]. Chemoradiotherapy also
reconfigures the immunological tumor microenvironment
that impacts the differential radiosensitivity of malignant
cells [26,27]. Although high throughput RNA–SEQ technol-
ogies have been used in the research of breast cancer,
the underlying mechanism by which chemoradiotherapy
influences the tumor immune microenvironment is still
undefined. Besides, the molecular mechanism associated
with the chemoradiotherapy response in breast cancer
cases is still unclear. There is also a lack of reliable and
effective biomarkers to predict the prognosis of breast
cancer cases.

In the present study, we identified 16 differentially
co-expressed genes via DEG and WGCNA analyses. Sub-
sequently, Cox regression analysis identified four prog-
nosis-related biomarkers, including SVOPL, EDAR, GSTA1,
and ABCA13. Some of these are reported as being dysregu-
lated in cancer, including breast cancer. For example, EDAR
is a death receptor and plays an important role in the devel-
opment of teeth, cutaneous glands, and hair follicle [28].
Activated ectodysplasin A receptor (EDAR) signaling
pathway causes mammary gland tumorigenesis in mice [29].
Decreased glutathione S-transferase A1 (GSTA1) expression is

Figure 8: The involvement of ABCA13, EDAR, GSTA1, and SVOPL genes in tumor immunity of breast cancer. The co-expression heatmap
presented the correlation between (a) ABCA13, (b) EDAR, (c) GSTA1, and (d) SVOPL expression and eight typical immune checkpoint genes.
*p < 0.05, **p < 0.01, and ***p < 0.001.
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associated with increased breast cancer mainly among
them current smokers and lower consumption of vegeta-
bles [30]. It has been reported that functional variation of
GSTA1 is involved in the development of radiation-
induced fibrosis in patients with breast cancer [31].
ATP-binding cassette protein A13 (ABCA13) contributes
to the risk of neurological disorders and showed to be

a potential regulator of progression and response to
the chemotherapy of mammary gland cancer [32]. The
previous report has indicated allelic switching of SVOPL
during colorectal cancer tumorigenesis [33].

Immune cell infiltration plays an important role in
tumor control, and radiotherapy has been indicated to
have a great impact on immune responses [34]. Tumor cells

Figure 9: Representative immunohistochemistry images of ABCA13, EDAR, GSTA1, and SVOPL in H and L groups (a). The immunoreacivity
scores of ABCA13, EDAR, GSTA1, and SVOPL in H and L groups (b). ***p < 0.001.
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can impact immune cell infiltration after radiotherapy,
resulting in radioresistant [35]. Therefore, the CIBERSORT
was applied to assess the score of 22 kinds of immune cells
between the L and H groups. The infiltration of naive B cells
and M1 macrophages decreased, while the infiltration of T-
cell CD4 memory resting and M0 macrophages increased,
probably revealing associations with the occurrence and
progress of chemoradiotherapy resistance. We also found
that ABCA13 was negatively correlated with T-cell CD4
memory resting andM2macrophages. EDAR showed a posi-
tive correlation to dendritic cell resting, T follicular helper
cells, and M1 macrophages and a negative correlation with
M2 macrophages. GSTA1 displayed a positive correlation
with memory B cells and CD4 naïve T cells. Previous studies
have revealed that activation of B cells contributes to the
anti-tumor response in amousemodel of breast cancer [36].
Tumor-infiltrating B cells induce the generation of humoral
immune response and help to produce anti-tumor immu-
nity in breast cancer [37]. Inhibition of naive CD4 T cell
recruitment into cancer cells might be a promising strategy
in breast cancer [38]. Tumor-associated macrophages play
a vital role in drug resistance, growth, and progression of
breast tumors [39,40]. However, their findings require
further experimental evidence to prove the complex inter-
actions between immune cell infiltrations and biomarkers
in breast cancer.

In conclusion, we identified that SVOPL, EDAR, GSTA1,
and ABCA13 are potential prognostic biomarkers of patients
with breast cancer undergoing chemoradiotherapy. Our
results also indicated that chemoradiotherapy resistance
of breast cancer may be associated with the tumor immune
cell infiltration, especially M1 macrophages, T-cell CD4
memory resting, and M2 macrophages.
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Appendix

Figure A1: Association between ABCA13, EDAR, GSTA1, and SVOPL expression and tumor stage of breast patients.
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Table A1:

Characteristic High risk group Low risk group p

n 36 26
ER, n (%) 0.432
Negative 15 (25%) 8 (13.3%)
Positive 19 (31.7%) 18 (30%)
PR, n (%) 0.394
Negative 18 (30%) 10 (16.7%)
Positive 16 (26.7%) 16 (26.7%)
Person neoplasm cancer status,
n (%)

<0.001

TUMOR FREE 5 (8.3%) 25 (41.7%)
WITH TUMOR 29 (48.3%) 1 (1.7%)
AJCC pathologic stage, n (%) 0.197
Stage IIB 11 (17.7%) 12 (19.4%)
Stage III 2 (3.2%) 0 (0%)
Stage IIIA 11 (17.7%) 11 (17.7%)
Stage IIIB 5 (8.1%) 1 (1.6%)
Stage IIIC 7 (11.3%) 2 (3.2%)
AJCC pathologic T, n (%) 0.705
T1 1 (1.6%) 1 (1.6%)
T1c 1 (1.6%) 0 (0%)
T2 17 (27.4%) 16 (25.8%)
T3 11 (17.7%) 8 (12.9%)
T4 1 (1.6%) 0 (0%)
T4b 4 (6.5%) 1 (1.6%)
T4d 1 (1.6%) 0 (0%)
AJCC pathologic M, n (%) 0.450
M0 30 (48.4%) 24 (38.7%)
MX 6 (9.7%) 2 (3.2%)
Race, n (%) 0.688
asian 2 (3.3%) 3 (5%)
black or african american 7 (11.7%) 4 (6.7%)
white 25 (41.7%) 19 (31.7%)
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