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Abstract: This article focuses on deciphering the effect
of myostatin (MSTN) on podocyte apoptosis in membra-
nous nephropathy (MN) and fathoming out its underlying
mechanism. Rats received the intravenous injection of
cationized-bovine serum albumin to induce MN in vivo,
while angiotensin II (Ang II) was exposed to AB8/13 cells
to induce MN model in vitro. The mRNA expression of
MSTN was detected by gRT-PCR. The effects of MSTN
silencing on MN model rats and cells were assessed by
cell counting kit-8 assay, flow cytometry, hematoxylin
and eosin staining, and TUNEL assay. The expressions
of proteins related to apoptosis and Smad3/protein kinase
A (PKA)/NADPH oxidase 4 (NOX4) signaling pathway
were examined by western blot. As a result, MSTN was
highly expressed in MN cell and rat models. Besides,
knockdown of MSTN elevated the MN cell viability and
dwindled apoptosis rate, as well as attenuated kidney
injury in MN rats. Meanwhile, MSTN silencing lessened
the expressions of phosphorylated (p)-Smad3 and Nox4,
while boosting the p-PKA expression in MN rats and cells.
Additionally, Smad3 overexpression reversed the above
effects of MSTN silencing on Ang II-induced podocytes.
In conclusion, MSTN knockdown restrains the podocyte
apoptosis through regulating Smad3/PKA/NOX4 signaling
pathway.
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1 Introduction

Membranous nephropathy (MN) is one of the most common
pathological types of adult nephrotic syndrome [1]. With
diffuse basement membrane thickening, the immune com-
plex primarily composed of immunoglobulin G and com-
plement is deposited under the glomerular basement
membrane (GBM) epithelial cells, which is the main patho-
logical feature of MN [2]. However, the pathogenesis of MN
is still vague. Most scholars believe that MN is the glomer-
ular injury against podocyte membrane antigen mediated
by autoantibodies, which could eventually elicit renal
failure [3]. The duration of MN is lengthy, and renal func-
tion damage often occurs 5-10 years after the onset. As
such, early diagnosis and treatment of MN play an impor-
tant role in preventing or delaying its deterioration [3].
Renal biopsy has long deemed as the gold standard for
the diagnosis of MN, but it is a traumatic operation, which
may lead to serious bleeding complications. In addition to
that, renal biopsy also has some contraindications in
clinic, such as solitary kidney, psychosis, severe hyperten-
sion, etc. [4,5]. These limitations of renal biopsy restrain its
wide application in MN. In view of this, it is of great prac-
tical significance to find safe, rapid and effective non-inva-
sive indicators for MN diagnosis and treatment.
According to the previous study [6], GSE73953 dataset
containing microarray data from MN patients and healthy
controls was analyzed to obtain different expressed genes,
of which the myostatin (MSTN) gene with the highest
expression aroused our great interest. MSTN, located at
2g32.2 in the human genome, is a growth- and differentia-
tion-related factor [7]. The MSTN gene has three putative
transcription initiation sites, and is transcribed as a 3.1-kb
mRNA species that encodes a 375-aa precursor protein [8].
In addition, it is expressed uniquely in the human skeletal
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muscle as a 26 kDa mature glycoprotein and secreted into
the plasma, which binds to the receptor with the systemic
circulation, resulting in a series of biological effects [8,9].
For instance, mature MSTN dimer phosphorylates type I
receptors (ALK4 and ALKS5), can bind to type II receptors
ActRIIB and ActRIIA, and then promote the phosphoryla-
tion of Smad2 and Smad3, while phosphorylated (p)-
Smad2 and p-Smad3 can form complexes with Smad4
and transfer into the nucleus, thereby activating the tran-
scription and expression of atrophy genes by interacting
with DNA and other nuclear factors [10,11]. The current
study shows that the inhibition of MSTN has a good ther-
apeutic effect on chronic kidney disease and the expres-
sion of MSTN may be associated with renal function
[12,13]. However, the detailed role of MSTN in MN requires
further exploration.

It has been proved that MSTN is able to activate
p-Smad3 [14], and high glucose (HG)-induced increase
in p-Smad3 level as well as Smad3-mediated PKA/NOX4
signaling pathway are important causes of podocyte apop-
tosis [15]. Therefore, this study is committed to further
probing into whether MSTN is responsible for advancing
podocyte apoptosis in MN through the Smad3/PKA/NOX4
pathway, and investigating the underlying mechanism of
MSTN in MN.

2 Materials and methods

2.1 Animals and ethics statement

A total of 40 Sprague-Dawley rats (8—-10 weeks) were
purchased from Jiangsu ALF Biotechnology (China) and
housed in cages. The light duration followed a normal
circadian rhythm, room temperature was maintained at
22 + 2°C, and humidity was set at 45-50%, with food and
water supplied ad libitum. All animal experiments were
performed in Xianyang Central Hospital, on the premise
of complying with the guidelines of the China Council on
Animal Care and Use and acquiring the approval from the
Committee of Experimental Animals of Xianyang Central
Hospital (5202008019).

2.2 Bioinformatics assay

GSE73953 dataset was downloaded from the Gene Expression
Omnibus database (https://www.ncbi.nlm.nih.gov/geo/),
which included peripheral blood mononuclear cell
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samples of IgA nephropathy, MN, and healthy controls.
The “limma” R package was used to analyze the samples
of MN (n = 8) and healthy controls (n = 16) in the
GSE73953 dataset, and then the volcano map and heat
map were acquired. The gene functional enrichment and
signaling pathway enrichment of upregulated genes were
analyzed by Gene Ontology (GO, http://geneontology.org/)
and Kyoto Encyclopedia of Genes and Genomes (KEGG,
https://www.kegg.ip/).

2.3 Cell culture

Podocyte cell line AB8/13 (152135, Ximbio, UK) was cul-
tured in RPMI 1640 medium (PM150110, Procell, China)
supplemented with 10% fetal bovine serum (164210-500,
Procell) and 1% penicillin—streptomycin solution (PB180120,
Procell) at 37°C with 5% CO,.

2.4 Cell transfection

Smad3 overexpression plasmid was constructed using
pcDNA3.1 (V79520, Invitrogen, USA). Then, Smad3 over-
expression plasmid, empty vector (negative control, NC),
small interfering RNA (siRNA) targeting MSTN (siMSTN,
siGO00002660A-1-5, Ribobio, China), and siRNA negative
control (siNC, siNO000001-1-5, Ribobio) were transfected
into AB8/13 cells by Lipo6000 transfection reagent (C0526,
Beyotime, China) according to the supplied instruction.
Later, the successful transfection was confirmed by quan-
titative real-time polymerase chain reaction (qRT-PCR)
and western blot.

2.5 Establishment of MN model and
grouping

An in vivo MN rat model was established by the induction
of cationized-bovine serum albumin (c-BSA) with refer-
ence to the previous methods [16]. Briefly, c-BSA (BSA;
23210, Thermo Scientific, USA) was prepared according to
Border’s method [17], and then each rat was intrave-
nously injected with 50 mg/kg of c-BSA that had been
dissolved in 0.5 mL 0.01 M phosphate-buffered saline (PBS;
PB180327, Procell, China) through the tail vein every day for
14 days. Thereafter, c-BSA-induced MN model rats were
injected with 30 pmol/g of short hairpin RNA targeting
MSTN (sh-MSTN, GACTGTACATGCATTAAAATTTT) or shRNA
negative control (sh-NC) lentivirus that were constructed by
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pGLVU6/GFP lentiviral interference vector (C06001, Gene-
pharma, China) via tail vein [18]. All rats were divided into
the four groups: control group (rats received equal volume of
PBS), model group (c-BSA-induced MN model rats), model +
sh-NC group (model rats were injected with sh-NC via tail
vein), and model + sh-MSTN group (model rats were injected
with sh-MSTN via tail vein), with ten rats in each group. Ten
days after c-BSA induction, rats were sacrificed by cervical
dislocation to obtain the kidney tissues.

An in vitro MN cell model was established by stimu-
lating AB8/13 cells with 100 nmol/L of Angiotensin II
(Ang 1I, 4474-91-3, MedChemExpress, China) for 24 h
[19]. All cells were grouped into two parts. The groups
in the first part were as follows: control group (normal
cells), model group (Ang Il-treated cells), model + siNC
group (siNC-transfected cells were treated with Ang II),
and model + siMSTN group (siMSTN-transfected cells
were treated with Ang II). In the second part, there
were four groups: model + siNC + NC, model + siMSTN
+ NC, model + siNC + Smad3, and model + siMSTN +
Smad3 groups. In the model + siNC + NC and model +
siMSTN + NC groups, Ang II was administrated on cells
transfected with siNC/siMSTN and NC, while in the model
+ siNC + Smad3 and model + siMSTN + Smad3 groups,
cells were transfected with siNC/siMSTN and Smad3 over-
expression plasmid, and then exposed to Ang II.

2.6 Hematoxylin and eosin (H&E) staining

The partial kidney tissues of rats were fixed in 4% paraf-
ormaldehyde (AR1068, Bosterbio, USA) at room temperature
overnight, then dehydrated and embedded in paraffin, and
sectioned in serial cross-sections. Next, the 5um thick sec-
tions were successively stained with hematoxylin (H3136,
Sigma-Aldrich, USA) and eosin (E4009, Sigma-Aldrich,
USA). Ultimately, the photomicrograph of the stained sec-
tions was captured under a microscope (x200, x600, Leica
Microsystems, Germany).

2.7 Terminal deoxynucleotidyl transferase-
mediated dUTP nick end labeling
(TUNEL) assay

The apoptotic cells in rat kidney tissues were identified
using TUNEL kit (40306ES20, Qcbio, China) according to
the supplied protocol. In short, rat kidney tissue sections
were immersed in 4% paraformaldehyde and PBS at room
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temperature for 15 min, respectively, and then permeabi-
lized with proteinase K for 10 min. Thereafter, the tissue
sections were incubated with TUNEL reaction buffer at
37°C for 2 h, and then counterstained with WT-1 staining
to visualize podocytes. Eventually, the TUNEL-positive
cells and WT-1-positive cells were visualized by Olympus
CX43 microscope (Japan) at x200 magnification. A total of
50 glomeruli per kidney were calculated.

2.8 QRT-RCR

Total RNA of cells and rat kidney tissues was extracted by
Triquick Reagent (R1100, Solarbio, China), and reversely
transcribed to cDNA using Universal RT-PCR Kit (RP1105,
Solarbio, China) according to the manufacturer’s instructions.
MSTN expression was determined by SYBR Green PCR
Mastermix (SR1110, Solarbio, China) using an ABI7900-HT-
Fast device (Applied Biosystems, USA) in according with
the protocols of manufacturer, with glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH) serving as the endogenous
control. Subsequently, the data calculation was performed
by the 22T method [20]. The sequences of the reverse (R)
and forward (F) primers are listed from 5’ to 3: MSIN, (F)
GGCATGGTAATGATTGTTTCCGTG, (R) TTTACCTGTTTGTGCTG
ATTGCTGC; GAPDH (F) AAATGGTGAAGGTCGGTGTGAAC, (R)
CAACAATCTCCACTTTGCCACTG.

2.9 Cell counting Kit-8 (CCK-8) assay

The 5 x 10> cells per well were inoculated into 96-well
plate. 24 and 48 h post-transfection, 20 pL. CCK-8 reagent
(E606335, Sangon, China) was added to each well and
incubated the cells for an additional 4 h. The final absor-
bance was tested by a microplate reader (VLOOOOD2,
ThermoFisher, USA) at a wavelength of 450 nm.

2.10 Flow cytometry

The cell apoptosis was tested by Annexin V-FITC/propi-
dium iodide (PI) Apoptosis Detection Kit (A211-01, Vazyme,
China). In brief, AB8/13 cells were plated in a six-well plate
and cultured for 48 h. Afterward, the cells were washed
with binding buffer and centrifuged at 1,300 rpm for
3min. Thereafter, the cell pellet was resuspended in
200 pL of binding buffer. Finally, the cells were stained
with 5pL Annexin V-FITC and PI in the dark for 15 min
and detected by a CytoFLEX flow cytometer (Beckman
Coulter, USA).
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2.11 Western blot

The total protein of cells and rat kidney tissues was extracted
with RIPA Lysis Buffer (C500007, Sangon, China), and the
protein concentration was determined using BCA assay kit
(C503021, Sangon, China). An equivalent of 30 pg protein
extract and 5pL marker (PR1910, Solarbio, China) were
resolved on the SDS-PAGE, followed by being transferred
onto PVDF membrane (IPFLO0010, Millipore, USA). Next,
the protein blot was blocked with skim milk, and probed
with primary antibodies, followed by further incubation with
appropriate secondary antibody goat anti-rabbit IgG
(1:2,000, ab7090; abcam, UK). Subsequently, immunor-
eactive bands were detected using an ECL kit (ab133409;
abcam). GAPDH served as an internal control. The pro-
tein bands on X-ray films were quantified with a Tanon
5200 imaging system (Tanon, China). The primary anti-
bodies from abcam and Cell Signaling Technology (CST)
are listed as follows: Bax (1:2,000; Rabbit; ab182733,
21 kDa; abcam), Bcl-2 (1:500; Rabbit; ab194583, 26 kDa;
abcam), Cleaved Caspase 3 (1:1,000; Rabbit; #9661, 17 kDa;
CST), p-Smad3 (1:2,000; Rabbit; ab52903, 48 kDa; abcam),
Smad3 (1:1,000; Rabbit; ab40854, 48 kDa; abcam), p-pro-
tein kinase A (p-PKA, 1:1,000; Rabbit; #5661, 42 kDa; CST),
PKA (1:1,000; Rabbit; #4782, 42 kDa; CST), NADPH oxidase
4 (Nox4, 1:1,000; Rabbit; ab154244, 67 kDa; abcam), and
GAPDH (1:10,000; Rabbit; ab181602, 36 kDa).

2.12 Statistical analysis

Statistical analysis was performed using GraphPad Prism
8.0. The measurement data were expressed as mean +*
standard deviation. One-way analysis of variance was
adopted for multiple group comparisons, and Bonferroni
test was applied for further analyses. Differences with p <
0.05 were considered to be statistically significant.

3 Results

3.1 MSTN was an upregulated gene in MN
and was related to apoptosis

Through the analysis on GSE73953 dataset comprising of
microarray data from MN patients and healthy controls,
we discovered from the volcano map that a large number
of aberrantly expressed genes met the screening conditions
(llogFC| > 1, p < 0.05, Figure 1a). In addition, the heat map
(Figure 1b) displayed the differential genes in peripheral
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blood mononuclear cells from healthy controls (G1 group)
or MN patients (G2 group). Combined the results of these two
figures, it could be observed that MSTN presented the most
obvious upregulation (Figure 1). Meanwhile, the upregulated
genes in GSE73953 were analyzed by KEGG and GO. It
turned out that upregulated genes were closely related to
the biological processes including autophagy (animal) and
apoptosis (Figure 2a). In addition, the gene enrichment
ratio was remarkably increased during the ribonucleopro-
tein complex biogenesis, neutrophil degranulation, ncRNA
metabolic process, and other processes (Figure 2b). Based
on the above results, it could be concluded that MSTN with
upregulated expression in MN may be related to autop-
hagy, apoptosis, and other biological changes. Accord-
ingly, we hereby focused on its effect on apoptosis.

3.2 Silenced MSTN alleviated Ang ll-induced
AB8/13 cell injury via regulating Smad3/
PKA/Nox4 signaling pathway

Next, siMSTN was transfected into AB8/13 cells and then
resulted in the marked decrease in MSTN expression (p <
0.001, Figure Al), which evidenced the specificity of
MSTN knockdown. To assess the function of MSTN in
MN model cells, MSTN expression level was also knocked
down in Ang Il-induced AB8/13 cells. As depicted in
Figure 3a, the expression of MSTN was largely increased
in the model group, while being lessened in model +
siMSTN group, indicating that the knockdown of MSTN
suppressed the Ang Il-induced MSTN expression (p <
0.001). After the modeling, Ang II stimulation promi-
nently reduced the viability yet enhanced the apoptosis
of AB8/13 cells (p < 0.01, Figure 3b-d). Based on the
treatment of Ang II, silenced MSTN evidently increased
the viability and suppressed the apoptosis of AB8/13 cells
(p < 0.05, Figure 3b-d).

Next, the protein expressions related to apoptosis
and Smad3/PKA/Nox4 signaling pathway were detected
to probe how MSTN silencing affected the viability and
apoptosis of AB8/13 cells. Consequently, the increased
expressions of Bax and cleaved Caspase-3 as well as the
decreased expression of Bcl-2 that were induced by Ang II
treatment were all reversely regulated by siMSTN (p < 0.05,
Figure 4a-d). Similarly, lower levels of Nox4 expression
and p-Smad3/Smad3 and higher level of p-PKA/PKA were
observed in the model + siMSTN group than those in the
model group (p < 0.01, Figure 4e—h). The above data illu-
strated that MSTN silencing may alleviate Ang II-induced
podocyte injury through inhibiting the activation of Smad3/
PKA/Nox4 signaling pathway.
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Figure 1: Differentially expressed genes in GSE73953 dataset. (a) Volcano map of differentially expressed genes in GSE73953 dataset. Fold
change represents the degree of gene upregulation or downregulation in the dataset, while the dash-dotted lines are used to distinguish
the genes (|logFC| > 1). p < 0.05. (b) Heat map of differentially expressed genes in GSE73953 dataset. G1 group represents the peripheral
blood mononuclear cells from 16 healthy controls, while G2 group refers to peripheral blood mononuclear cells from eight membranous
nephropathy patients. Each row denotes different samples in G1 and G2 groups, and each column represents differential genes in the G1

and G2 group.

3.3 Smad3 overexpression reversed the
effects of siMSTN on the viability,
apoptosis, and PKA/Nox4 signaling

pathway in AB8/13 cells

To further uncover the interaction between MSTN and
Smad3 in MN model cells, we overexpressed Smad3 in

AB8/13 cells and found that Smad3 overexpression pro-
moted the expressions of p-Smad3 and Smad3 (p < 0.01,
Figure 5a—-d), which illustrated that the transfection was
successful. Additionally, the cell viability was reduced but
the apoptosis rate was induced in the model + siNC +
Smad3 group in comparison with those in the model +
siNC + NC group (p < 0.05, Figure 5e—g). Meanwhile, the
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Figure 2: KEGG and GO analyses of upregulated genes in GSE73953 dataset. (a) KEGG analysis of signaling pathway enrichment in
upregulated genes (https://www.kegg.jp/). (b) GO analysis of upregulated gene functional enrichment (http://geneontology.org/).
Abbreviation: KEGG, Kyoto encyclopedia of genes and genomes; GO, gene ontology.

impacts of MSTN silencing on increasing the cell viability
and decreasing the cell apoptosis were negated by Smad3
overexpression (p < 0.05, Figure 5e-g).

Moreover, the downregulation of Bax and cleaved
Caspase-3 and the upregulation of Bcl-2 induced by
siMSTN was also counteracted by Smad3 overexpression
(p < 0.05, Figure 6a—d). The similar effect was seen with
overexpressed Smad3 on PKA/Nox4 signaling pathway.
In detail, Smad3 overexpression neutralized the effect of
siMSTN and promoted the expression of Nox4 but reduced
p-PKA/PKA level (p < 0.01, Figure 6e-g). To conclude,
overexpressed Smad3 could reverse the effects of siMSTN
on regulating the viability, apoptosis, and PKA/Nox4 sig-
naling pathway in AB8/13 cells.

3.4 MSTN silencing alleviated renal tissue
injury and cell apoptosis in MN model
rats via Smad3/PKA/Nox4 signaling
pathway

As depicted in Figure 7a, there was a high expression of
MSTN in the model group (p < 0.001, Figure 7a), while the
treatment of sh-MSTN diminished the MSTN expression
in model rats (p < 0.001, Figure 7a). The results of H&E
staining assay mirrored that in the kidney tissues of

model rats, the glomerulus was obviously swollen, the
GBM was thickened, the capillary ring was compressed,
the lumen was narrow or even closed, the balloon lumen
became narrow or even adhesion occurred, mesangial cells
and matrix proliferated, part of renal tubular epithelium was
swollen, interstitial collagen fiber deposition was obvious, and
the degree of fibrosis was high, while the renal tissue injury
was dramatically mitigated in the rats of model + sh-MSTN
group (Figure 7b). Concurrently, the number of TUNEL-posi-
tive rat renal cells was increased by a large margin after
modeling (Figure 7c). Moreover, the podocytes stained with
WT-1 were decreased in the model group as compared with
those in the control group (Figure 7c). After the modeling,
these changes in TUNEL-positive cells and WT-1-positive cells
were remarkably reversed by sh-MSTN (Figure 7c).

In addition, sh-MSTN had the reversal effect on the
high expressions of Bax and cleaved Caspase-3 and low
expression of Bcl-2 in the kidney tissues of model rats
(p < 0.05, Figure 8a—d). The enhancement of Nox4 and
p-Smad3/Smad3 levels, together with the inhibition of
p-PKA/PKA level, was observable in model rat kidney
tissues (p < 0.05, Figure 8e—h), whereas sh-MSTN offset
these alterations of protein expression levels (p < 0.05,
Figure 8e-h). All in all, MSTN silencing alleviated renal
tissue injury and cell apoptosis in MN model rats through
blocking Smad3/PKA/Nox4 signaling pathway.
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Figure 3: Effects of siMTSN on the viability and apoptosis of Ang Il-induced AB8/13 cells. AB8/13 cells were treated with Ang Il (100 nmol/L)
to induce MN cell model, followed by the transfection of siNC or siMSTN. (a) Expression of MSTN in the control, model, model + siNC, and
model + siMSTN groups was quantified by qRT-PCR, with GAPDH serving as the internal reference. (b) OD value of AB8/13 cells at 24 and
48 h was assessed by CCK-8 assay. (c and d) AB8/13 cell apoptosis was determined by flow cytometry. All experiments were repeated three
times to obtain average values. The data are presented as the mean + SD of three independent experiments; *%p < 0.01, *#%p < 0.001 vs
Control; “p < 0.05; **p < 0.01; ***p < 0.001 vs Model + siNC. Abbreviation: MN, membranous nephropathy; MSTN, myostatin; Ang I,
angiotensin Il; gRT-PCR, quantitative real-time PCR; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; OD, optical density; CCK-8, cell
counting kit-8; siMSTN, small interfering RNA targeting MSTN; siNC, siRNA negative control.

4 Discussion

MN is a glomerular disease caused by multiple etiologies,
and a decrease in podocyte number is a contributing
factor to the pathogenesis of MN, while podocyte apop-
tosis can lead to podocyte decrease, signifying that podo-
cyte apoptosis is related to the occurrence of MN [21].
Through the bioinformatics analyses, we found the
strong correlation between the upregulated genes in
GSE73953 dataset and apoptosis, and MSTN was the
most apparently upregulated gene. Accordingly, we specu-
lated that MSTN may participate in the pathological process
of MN by regulating podocyte apoptosis. Our experimental
results proved that MSTN silencing hindered the apoptosis

in MN model cells and rats, and alleviated the rat kidney
injury, confirming its potential as a target for the treatment
of MN.

MSTN belongs to the transforming growth factor-p
(TGF-B) superfamily, TGF-B is currently known as the
most predominant factor leading to fibrosis, which is
involved in the regulation of cell growth, glomerular
mesangial cell proliferation, and extracellular matrix for-
mation [22]. Smad protein family is directly involved in
the signal transduction of TGF-B superfamily members
and is the initiating factor in the intracellular signaling
of TGF-B, while activated TGF-$ receptors can regulate
the transcription of substances in the nucleus through
Smad 2, 3, and 4 [23]. It has been proved that negative
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Figure 4: Effects of siMTSN on the protein expressions related to apoptosis and Smad3/PKA/Nox4 signaling pathway in Ang Il-induced AB8/
13 cells. AB8/13 cells were treated with Ang Il (100 nmol/L) to induce MN cell model, followed by the transfection of siNC or siMSTN. (a—d)
Expressions of apoptosis-related proteins (Bax, Bcl-2, and cleaved Caspase-3) in the control, model, model + siNC, and model + siMSTN
groups were examined by western blot. GAPDH acted as the internal reference. (e—h) Expressions of Smad3/PKA/Nox4 signaling pathway-
related proteins (p-Smad3, Smad3, p-PKA, PKA, and Nox4) were determined by western blot, with GAPDH serving as the internal reference.
All experiments were repeated three times to obtain average values. The data are described as the mean + SD of three independent
experiments; #&p < 0.01, ¥¥p < 0.001 vs Control; *p < 0.05; **p < 0.01; ***p < 0.001 vs Model + siNC. Abbreviation: MN, membranous
nephropathy; MSTN, myostatin; Ang Il, angiotensin Il; p-PKA, phosphorylated-protein kinase A; Nox4, NADPH oxidase 4; GAPDH, glycer-
aldehyde-3-phosphate dehydrogenase; siMSTN, small interfering RNA targeting MSTN; siNC, siRNA negative control.

auto-regulation of MSTN expression is mediated by Smad3
[24], and long noncoding RNA TSI could inhibit renal
fibrogenesis through negatively regulating the TGF-B/
Smad3 pathway [25]. In this study, we found that the
protein expression of p-Smad3 was activated in model
cells, while MSTN silencing inhibited the activation of p-
Smad3, which was consistent to the results in the study
by Retamales et al. [14]. Therefore, MSTN silencing may
repress the podocyte apoptosis in MN model via regulating
Smad3 and its downstream pathways, while this mechanism
has never been revealed before.

It has been elucidated that TGF-f is one of the targets
of cyclic adenosine monophosphate (cCAMP)/PKA/cAMP-
responsive element binding protein (CREB) signaling pathway
[26]. As previously documented, upregulation of cAMP
inhibits fibroblast proliferation, blocks the transforma-
tion of Angll/TGF-B1-induced fibroblast to myofibroblasts,
and reduces extracellular matrix deposition [27]. PKA is
the key downstream target of cAMP, and activated PKA
can phosphorylate serine 133 (Ser133) of CREB [28]. Besides,
p-CREB can competitively bind to CREB binding protein with
the Smad complex, leading to the decrease in the level of
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Figure 5: Effects of overexpressed Smad3 on the viability and apoptosis of MN model cells. AB8/13 cells were treated with Ang Il (100 nmol/L) to
induce MN cell model, followed by the transfection of siNC or siMSTN and NC or Smad3 overexpression plasmid. (a—d) Protein expressions of p-
Smad3 and Smad3 as well as p-Smad3/Smad3 ratio were detected by western blot. GAPDH functioned as the internal reference. (e) CCK-8 assay was
employed to measure the cell viability after the transfection and modeling. (f and g) Flow cytometry was applied to test the apoptosis of AB8/13 cells
after the transfection and modeling. All experiments were repeated three times to obtain average values. The data are exhibited as the mean + SD of
three independent experiments; p < 0.05, #&p < 0.01, **%p < 0.001 vs Model + siNC + NC; *p < 0.05; **p < 0.01; *"*p < 0.001 vs Model + SIMSTN +
NG; “"p < 0.01, *"p < 0.001 vs Model + siNC + Smad3. Abbreviation: MN, membranous nephropathy; MSTN, myostatin; GAPDH, glyceraldehyde-3-
phosphate dehydrogenase; CCK-8, cell counting kit-8; siMSTN, small interfering RNA targeting MSTN; siNC, siRNA negative control.
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Figure 6: Effects of overexpressed Smad3 on the protein expressions related to apoptosis and PKA/Nox4 signaling pathway in MN model
cells. AB8/13 cells were treated with Ang Il (100 nmol/L) to induce MN cell model, followed by the transfection of siNC or siMSTN and NC or
Smad3 overexpression plasmid. (a—d) Expressions of apoptosis-related proteins in the model + siNC + NC, model + siMSTN + NC, model +
siNC + Smad3, and model + siMSTN + Smad3 groups were determined by western blot, with GAPDH serving as the internal reference. (e-g)
After the transfection, the PKA/Nox4 signaling pathway-related protein expressions were detected by western blot, with GAPDH acting as
the internal reference. All experiments were repeated three times to obtain average values. The data are displayed as the mean + SD of three
independent experiments; p < 0.05, %¥p < 0.01, **%p < 0.001 vs Model + siNC + NC; *p < 0.05; **p < 0.01; *"*p < 0.001 vs Model + siMSTN
+NC; "p<0.05,""p < 0.01, """p < 0.001 vs Model + siNC + Smad3. Abbreviation: MN, membranous nephropathy; MSTN, myostatin; p-PKA,
phosphorylated-protein kinase A; Nox4, NADPH oxidase 4; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; siMSTN, small interfering

RNA targeting MSTN; siNC, siRNA negative control.

p-Smad3 [29,30]. In addition, NOX is a kind of NADPH oxi-
dase homolog that consists of seven different subunits (Nox1,
NOX2, NOX3, NOX4, NOX5, Duox1, and Duox 2), which is an
important inducer of oxidative stress [31]. In rat podocytes,
NOX4 is mainly located in the mitochondria, and the mito-
chondrial membrane potential is signally depolarized by the
TGF-B1-mediated upregulation of NOX4. TGF-B1 can cause an

increase in NOX4 expression, ROS generation, loss of mito-
chondrial membrane potential, and caspase-3 activation,
while these effects of TGF-1 can be offset by knockdown
of either Smad2 or Smad3 [32]. Also, the study of Guo et al.
mentioned that Smad3 could upregulate the expression of
Nox4 and suppress PKA activity to regulate the podocyte
apoptosis triggered by HG [15]. Similar to the previous
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Figure 8: Effects of sh-MSTN on the apoptosis and expressions of Smad3/PKA/Nox4 signaling pathway-related proteins in MN model rats.
MN model rats were induced by c-BSA and then subjected to injection with 30 pmol/g of sh-MSTN or sh-NC. (a—d) Expression levels of the
apoptosis-related proteins in rat renal tissues were examined by western blot, with GAPDH acting as the internal reference. (e-h) Western
blot was also performed to measure the expressions of Smad3/PKA/Nox4 signaling pathway-related proteins in rat renal tissues, with
GAPDH functioning as the internal reference. All experiments were repeated three times to obtain average values. The data are presented as
the mean + SD of three independent experiments; ®p < 0.05, p < 0.01, ¥*#p < 0.001 vs Control; *p < 0.05, **p < 0.01, ***p < 0.001 vs
Model + sh-NC. Abbreviation: MN, membranous nephropathy; MSTN, myostatin; p-PKA, phosphorylated-protein kinase A; Nox4, NADPH
oxidase 4; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; sh-MSTN, short hairpin RNA targeting MSTN; sh-NC, shRNA negative control.

literature, our research revealed that knockdown of MSTN
reduced the expression of Nox4 but augmented p-PKA/PKA
level in both MN cells and rat models, whereas Smad3 over-
expression reversed its function and contributed to the upre-
gulation of Nox4 and the decline of p-PKA/PKA. These
results implied that the MSTN knockdown exerted its anti-
apoptotic effect through the Smad3/PKA/Nox4 pathway.
Notably, our study was the first to elucidate the association
between MSTN and Smad3/PKA/Nox4 signaling pathway in
the progression of MN.

Besides, the occurrence of apoptosis is usually regu-
lated by Bcl-2 and Bax inside the mitochondria, in which
Bcl-2 can prevent the release of cytochrome c into the
cytosol to inhibit apoptosis, whereas the effect of Bax is
exactly the opposite [33]. Caspase-3 is the final executor
in the process of apoptosis, and its activation can directly
lead to cell apoptosis [34]. The results of western blot
in the present study demonstrated that Bax and cleaved
Caspase-3 expressions were upregulated, while the expres-
sion of Bcl-2 was downregulated in Ang-II-stimulated
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podocytes, suggesting the promotion of apoptosis in
model cells. Moreover, MSTN knockdown hindered the
apoptosis by reversely regulating these protein expres-
sions, and Smad3 upregulation was able to countervail
its effect.

Collectively, MSTN silencing mitigates the podocyte
apoptosis in MN models by modulating Smad3/PKA/
Nox4 pathway, hinting its potential as an indicator in
molecular targeted therapy of MN. Nevertheless, only
one podocyte cell line was selected in this article, and
more podocyte cell lines will be chosen in our future
study.
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Figure Al: Effects of siMTSN on the expression of MTSN in AB8/13
cells. #&p < 0.001 vs. control + siNC. Abbreviation: MSTN, myos-
tatin; siMSTN, small interfering RNA targeting MSTN; siNC, siRNA
negative control.
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