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Abstract: Acute myeloid leukemia (AML) is classified into
favorable-risk, intermediate-risk, and poor-risk subtypes.
This study aimed to compare the serum proteomic signa-
tures of the three AML subtypes and identify prognostic
biomarkers for AML. Serum samples from patients with
favorable-risk (n = 14), intermediate-risk (n = 19), and
poor-risk AMLs (n = 18) were used for the analysis of
tandem mass tag (TMT) labeling-based quantitative pro-
teomics. Comparative analysis was performed to identify
differentially expressed proteins (DEPs) between groups.
Prognostic proteins were screened using binary logistics
regression analysis. TMT-MS/MS proteomics analysis iden-
tified 138 DEPs. Fumarate hydratase (FH), isocitrate dehy-
drogenase 2 (IDH2), and enolase 1 (ENO1)were significantly
upregulated in poor-risk patients compared with favorable-
risk patients. ELISA assay confirmed that patients with
poor-risk AMLs had higher levels of IDH2, ENO1, and FH
compared with intermediate-risk AML patients. Logistics
analysis identified that proteins 3-hydroxyacyl-CoA dehy-
drogenase type-2 (HADH, odds ratio (OR) = 1.035, p = 0.010),
glutamine synthetase (GLUL, OR = 1.022, p = 0.039), and
lactotransferrin (LTF, OR = 1.1224, p = 0.016)were associated
with poor prognosis, and proteins ENO1 (OR = 1.154, p =
0.053), FH (OR = 1.043, p = 0.059), and IDH2 (OR = 3.350,
p = 0.055) were associated with AML prognosis. This study
showed that AML patients had elevated levels of FH, IDH2,

ENO1, LTF, and GLUL proteins and might be at high risk of
poor prognosis.
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1 Introduction

Acute myeloid leukemia (AML) is a malignant tumor and
the most common acute leukemia in adults [1]. AML has
high heterogeneity and great differences in genetic muta-
tions, treatment responses, and prognosis although patients
could be classified into favorable-risk, intermediate-risk,
and poor-risk subtypes according to the cytogenetic profile
[2–4]. The prognostic importance of cytogenetic aberrations
has been widely accepted over the past 15 years. However,
its translation into therapy is just beginning, especially for
poor-risk AML patients.

Advance in mining the diagnostic or prognostic bio-
markers for AML has been underway for decades. The
pandemic and development of techniques in microarray,
DNA sequencing, and high-throughput genome sequen-
cing show that there is a significant difference in AML
heterogeneity [5,6]. Molecular testing is a major diag-
nostic work-up for AML and is necessary for classifying
subtypes, predicting prognosis, and making treatment
decisions [4,7,8]. For instance, AMLs with t(8;21)(q22;q22.1),
biallelicmutated CEBPA,mutatedNPM1without FLT3-internal
tandem duplication (ITD, FLT3-ITD), rearrangement in inv(16)
(p13.1q22) or t(16;16)(p13.1;q22) were favorable-risk, and AMLs
with complex karyotype, t(6;9)(p23;q34.1), mutated TP53,
mutated ASXL1, mutated RUNX1, and FLT3-ITDhigh are
poor-risk [4]. Patients with favorable-risk AMLs have a
generally improved overall survival in comparison with
patients with poor-risk AMLs [4,9]. The identification of
mutations and new molecular markers that carry prog-
nostic impact in AML is increasing with the use of mole-
cular profiling [9].
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There is increasing evidence showing that proteomic
analysis can help to form therapeutic schedules and provide
potent prognostic biomarkers [10,11]. Genetic abnormalities
in AML patients have been related to abnormal proteome
and metabolome profiles [12]. Also, the functional pro-
teomic profile of AML might predict prognosis or treatment
responses [13–16]. Kadia et al. showed that patients with
RASmut AMLs had elevated expression of RAS-Raf-MAP
kinase and phosphoinositide 3-kinase (PI3K) [12]. They
showed that RAS mutations may delineate a subset of
AML patients who benefit from cytarabine-based therapy
and who may be amenable to treatment with inhibitors of
RAS and PI3K signaling pathways. Luczak et al. [16] showed
that AML-M2-T0 patients who had detectable expression
levels of Annexin III, L-plastin, and 6-phosphogluconate
dehydrogenase in blood were resistant to treatment.
However, there is less information on the comprehen-
sive proteomic profiling of patients with favorable-risk,
intermediate-risk, and poor-risk AMLs. Also, biomarkers
that have a prognostic impact on AML are badly needed
to improve risk stratification [17].

The objective of this study was to identify and com-
pare the serum proteomic signatures of patients with
favorable-risk, intermediate-risk, and poor-risk AMLs.
In this study, the proteomic landscape and potent serum
prognostic biomarkers for AML, irrespective of cytoge-
netics, were analyzed.

2 Materials and methods

2.1 Subjects and grouping

Fifty-one AML patients were enrolled from the Department
of Hematology, The First Affiliated Hospital of Lanzhou
University, Lanzhou, China, between March 2019 and
June 2020. All patients were diagnosed and introduced
to induction standard chemotherapy according to the
National Comprehensive Cancer Network guidelines (2016
edition) [4]. The inclusion criteria for patients were: newly
diagnosed AMLs and fit to receive chemotherapy. The
exclusion criteria were: acute promyelocytic leukemia
(APL, M3 subtype), patients who lacked the information
of gene mutation, fusion, or karyotype, and patients with
secondary/relapsed AMLs or unfit to receive chemotherapy.
There was no restriction on age and gender. Patients were
categorized as favorable-risk (n = 14), intermediate-risk (n =
19), and poor-risk AMLs (n = 18) according to the cytoge-
netic categories [4]. Favorable cytogenetics were defined as
the presence of t(8;21), inv(16)/t(l6;16), and t(15;17). Poor

cytogenetics were inv(3)/t(3;3), t(6;9), t(9;22), t(v;11q23.3),
-17/abn(17p), 17, and -5/del(5q). The AMLs with t(9:11)
and cytogenetic abnormalities not classified as favorable
or poor were intermediate-risk AMLs. The age, gender,
bone marrow (BM) blast percentage, mutation, white blood
cell (WBC) count, karyotype, and fusion gene were collected.
Gene fusion and mutation of genes (fusion: BCR-ABL1, CBFB-
MYH11,RUNX1-RUNX1T1,AML1-ETO,PML-RARA,ETV6-RUNX1,
MLL-AF4/6, MLLT3-KMT2A, DEK-NUP214, and PML-RARA;
Mutation: CEBPA (biallelic), NPM1, FLT3-ITD, MLL-PTD,
RUNX1, ASLXL1, TP53, TET2, NRAS, C-kit/D816, DNMT3A,
IDH2/R172, KIT, IDH2, WT1, and NOTCH1) were detected
using the nested-PCR combined with Sanger sequencing.
The BM blast percentage was detected using a BM cell mor-
phological image analysis system (Jieda Technology Devel-
opment Co., Ltd, Jiangsu, China). The WBC count was
examined using a blood cell counter (Mindray BC-6800,
Mindray, Shenzhen, China). The karyotype was analyzed
using the CytoVision Image Analysis (Leica Biosystems
Newcastle Ltd, UK). Serum samples were collected from
all participants and used for the tandem mass tag (TMT)-
based quantitative proteomics analysis.

Ethical approval:Anapproval (LDYYLL2019-72)was obtained
from the ethics committee of The First Affiliated Hospital of
Lanzhou University, Lanzhou, China. Consent to participate
was obtained from each individual.

2.1.1 Sample preparation, trypsin digestion, and iTRAQ
labeling

The cellular debris was removed from serum samples by
centrifugation at 12,000g, 4°C for 10 min. The superna-
tant was collected and treated using the Pierce™ Top 12
Abundant Protein Depletion Spin Columns Kit (Thermo
Fisher Scientific, IL, USA) to remove the 12 high-abun-
dance proteins. Protein quantification was performed
using a BCA kit (Beyotime Institute of Biotechnology,
Hangzhou, China) according to the manufacturer’s instruc-
tions. Before digestion, the protein solution was reduced
with dithiothreitol (5mM, at 56°C for 30min) and alkylated
with iodoacetamide (11mM, at room temperature for 15min,
in darkness). Then, the solutions were diluted with tetra-
ethyl ammonium bromide (TEAB; 100mM) to urea concen-
tration less than 2M. Finally, proteins were digested using
two-step digestion with trypsin (Promega, Madison, WI,
USA), 1:50 trypsin-to-protein mass ratio overnight and
1:100 trypsin-to-proteinmass ratio for 4 h. For TMT labeling,
digested peptides were desalted using a Strata X C18 SPE
column (Phenomenex, Torrance, CA, USA), vacuum-dried,
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dissolved in TEAB, and then prepared using labeling
reagents for 2 h at room temperature according to instruc-
tions provided by a TMT kit (Thermo Fisher Scientific).
Samples were dried by vacuum centrifugation.

2.1.2 High-performance liquid chromatography (HPLC)
and tandem mass spectrometry (MS/MS) analysis

The fractionation of tryptic peptides was performed using
high pH reverse-phase HPLC and Agilent 300 Extend
C18 column (5 μm particles, 4.6 mm ID, 250 mm length;
Phenomenex) and was separated with a gradient of
8–32% acetonitrile over 60 min. Peptides were sepa-
rated into 60 fractions and were then combined into 18
fractions. After drying by vacuum centrifugation, pep-
tides were dissolved in 0.1% formic acid (solution A) and
trapped onto a home-made reverse-phase analytical column
(15 cm length, 75 μm inner diameter; Phenomenex). The elu-
tion was performed on an EASY-nLC 1000 UPLC system
(Thermo Fisher Scientific) in a gradient of 9–25% solvent B
(0.1% formic acid in 98% acetonitrile) over 26min, 26–34%
over 8min, 25–38% over 3min, 38–80% over 3min, and
holding at 80% for 3min, at a constant flow rate of
700 nL/min. For LC-MS/MS analysis, peptides were sub-
jected to nanospray ionization (NSI) source followed by
MS/MS in an Orbitrap FusionTM Lumos Tribrid mass spectro-
meter (Thermo Fisher Scientific; 2.0 kV). The scan range of full
mode (MS 1) was 350–1,550m/z at a resolution of 6,000, and
in MS 2 mode, scanning was started at 100m/z at a resolution
of 30,000. Other parameters were: AGC target 5E4, dynamic
exclusion 30 s, and maximum injection time 200ms.

2.1.3 Database search and protein identification

Raw MS/MS data were analyzed using the Maxquant
search engine (v.1.5.2.8). Tandemmass spectra were searched
against the Swiss-Prot Human database (20,317 sequences;
http://www.uniprot.org) concatenated with a reverse decoy
database. The parameters were set as follows: trypsin/P
was specified as cleavage enzyme, 2 missed cleavages
were allowed, the minimum length of peptides was 7,
mass tolerance for precursor ions was 20 ppm in the first
search and 5 ppm in the main search, and mass tolerance
for fragment ions was 0.02 Da, the fixed modification was
Carbamidomethyl, variable modification was used as oxi-
dation on Met, fold discovery rate was adjusted to <1%,
and the minimum score for peptides was set >40. The
differentially expressed proteins (DEPs) between groups
were identified based on the requirements of p value

<0.05 and fold change (FC) ≥1.20 (upregulation) or <0.75
(downregulation). The online Venn diagrams generator
BioVenn (https://www.biovenn.nl/index.php) was used
to create Venn diagrams of DEPs by different comparisons.

2.1.4 Bioinformatics analysis

The properties and classifications of DEPs were annotated
in the Gene Ontology (GO, http://www.geneontology.org)
and Kyoto Encyclopedia of Genes and Genomes (KEGG,
http://www.genome.jp/kegg/) databases. In addition, func-
tional categories associated with DEPs were identified using
the online Database for Annotation, Visualization, and
Integrated Discovery (DAVID, v6.8; https://david.ncifcrf.
gov/). The interactions between proteins were identified in
the STRING database (https://string-db.org/cgi/input.pl).
The protein–protein interaction (PPI) network was visua-
lized using Cytoscape (v 3.8.0; http://apps.cytoscape.org/).
Significant modules in the PPI network were identified using
the MCODE plugin (http://apps.cytoscape.org/apps/mcode)
with the threshold of module score ≥5.0.

2.2 Enzyme-linked immunosorbent assay
(ELISA) assay

A validation cohort of 33 patients with AMLs (5 in favor-
able-risk, 17 in intermediate-risk, and 11 in poor-risk) and
10 patients withmyelodysplastic syndromes, lupus nephritis,
or thrombopenia (Control) was used for the validation of
ELISA assay. The AML patients were recruited according to
the above inclusion and exclusion criteria between June and
August 2019. The exclusion criterion for the control patients
was patients with cancers and other diseases like sepsis,
chronic metabolic syndromes, and cardiovascular diseases.
An approval (LDYYLL2019-80) was obtained from the ethics
committee of The First Affiliated Hospital of Lanzhou
University, Lanzhou, China. Consent to participate was
obtained from each individual.

The serum concentration of six potent prognostic
DEPs, including enolase 1 (ENO1; Cusabio, Wuhan, China;
ng/mL), fumarate hydratase (FH), mitochondrial (Cusabio;
ng/mL), glutamine synthetase (GLUL; Abnova, Taipei,
China; ng/mL), 3-hydroxyacyl-CoA dehydrogenase type-2
(HADH; Cusabio; pg/mL), isocitrate dehydrogenase 2 (IDH2;
Jianglai, Shanghai, China; ng/mL), and lactotransferrin
(LTF; Cusabio; μg/mL), was determined using commercial
ELISA kits according to instructions. Absorbance at 450 nm
was recorded and proteins’ concentrations were calculated
using standard curves.
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2.2.1 Gene expression profiling interactive analysis
(GEPIA) survival verification

The association of potent prognostic protein-encoding
genes with AML prognosis was analyzed using the GEPIA
online tool (http://gepia.cancer-pku.cn/). This web server is
a web-based tool to deliver fast and customizable function-
alities based on The Cancer Genome Atlas (TCGA) data.
Kaplan–Meier survival curves were generated and down-
loaded. GEPIA performs overall survival (OS) analysis based
on gene expression and divides samples into high and low
groups according to the median value of gene expression.
GEPIA uses the Log-rank test for the hypothesis test. The
Cox proportional hazard ratio (HR) and the 95% confidence
interval (CI) were also included in the survival plot.

2.3 Statistical analysis

Data were presented as mean value ± standard deviation
(SD). All data were statistically analyzed using SPSS 22.0
(IBM, Chicago, IL, USA). The non-parametric Kruskal–Wallis
H test (Dunn’s test) was used to analyze the differences
across groups. Counting variable was expressed as fre-
quency and analyzed using the Fisher’s test. Variables
associated with the survival outcomes of patients with
AML were identified using univariate and multivariate
logistics regression analysis. Differences were considered
statistically significant at the threshold of p value < 0.05.

3 Results

3.1 Characteristics of the patients used for
TMT-MS/MS analysis

There was no difference in patients’ age, gender ratio, WBC
count, and BM blast percent among patients with poor-risk,
intermediate-risk, and favorable-risk AMLs (Table 1). Most
patients had AML-M5 (n = 14, 27.45%), AML-M4 (n = 13,
25.49%), and AML-M2 (19.61%, Table 1). Patients with favor-
able-risk AMLs had mutatedWT1, NPM1, IDH2R140, biallelic
mutated CEBPA, and TET2, without FLT3-ITD (Table S1);
patients with poor-risk AMLs had mutated FLT3-ITD,
CEBPA, and ASXL1; and patients with intermediate-risk
AMLs had mutated TET2, ASXL1, DNMT3A, IDH2R172, and
ASXL1 (Table S1).

3.1.1 Analysis of TMT-MS/MS proteomics and DEPs for
patients with AML

TMT-MS/MS proteomic analysis identified that there were
29, 86, and 23 DEPs for the comparisons of poor-risk vs
favorable-risk, poor-risk vs intermediate-risk, and inter-
mediate-risk vs favorable-risk, respectively, including
138 non-overlapping DEPs and 8 common DEPs (GLUL;
AP-1 complex subunit gamma-1, AP1G1; Kinectin, KTN1;
Multimerin-2, MMRN2; serine/cysteine proteinase inhibitor

Table 1: Characteristics of patients with acute myeloid leukemia used for the analysis of TMT-MS/MS and ELISA

Variables TMT-MS/MS cohort (n = 51)

Poor-risk (n = 18) Intermediate-risk (n = 19) Favorable-risk (n = 14) p value

Age (year) 50.00 (12.00–71.00) 50.00 (10.0–66.00) 47.00 (10.00–78.00) 0.708
Gender (male/female) 11/7 8/11 8/6 0.487‡

WBC (109/L) 28.57 (0.67–337.28) 11.62 (0.33–189.37) 15.12 (0.69–123.00) 0.526
BM blast percent (%) 79.50 (29.50–94.00) 80.50 (52.50–94.50) 75.75(49.52–98.50) 0.307

ELISA cohort (n = 43)

Poor-risk (n = 11) Intermediate-risk (n = 17) Favorable-risk (n = 5) Control (n = 10) p value

Age 47.00 (15.00–82.00) 46.00 (10.00–72.00) 47.00 (35.00–64.00) 48.00 (15.00–72.00) 0.822 (0.649Δ)
Gender (male/
female)

7/4 6/11 2/3 6/4 0.964‡

(0.244Δ)
WBC (109/L) 31.05 (2.40–337.28) 12.93 (1.37–131.58) 10.53 (2.34–43.30) 5.51 (2.91–7.56) 0.133 (0.618Δ)
BM blast
percent (%)

65.00 (42.50–95.00) 75.00 (50.00–94.50) 58.75 (44.00–87.50) 3.50 (2.50–9.40) 0.005 (0.618Δ)

BM, bone marrow. ELISA, enzyme-linked immunosorbent assay. TMT-MS/MS, tandem mass tag-based tandem mass spectrometry. WBC,
white blood cells. The ‡ symbol indicates that the p value of this analysis is analyzed by the Chi-square test, and that all other analyses are
performed with the non-parametric Kruskal–Wallis H test (Dunn’s test). The Δ symbol denotes the p value for the comparison across the
first three groups without control.
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clade Gmember 1, SERPING1; CD81 antigen, CD81; Interleukin-
18-binding protein, IL18BP; Adhesion G-protein coupled
receptor G6, ADGRG6; Figure 1a and b). All DEPs are listed
in Table S2.

3.1.2 Functional enrichment analysis for DEPs

Functional enrichment analysis showed that DEPs for
poor-risk vs favorable-risk were associated with six bio-
logical process terms, including “GO:0050829: defense
response to Gram-negative bacterium,” “GO:0072675: osteo-
clast fusion,” and “GO:0045087: innate immune response”;
three molecular function terms, including “GO:1990459:
transferrin receptor binding,” “GO:0043236: laminin binding,”
and “GO:0001530: lipopolysaccharide binding”; and six cel-
lular component terms, including “GO:0070062: extracellular
exosome,” “GO:0035580: specific granule lumen,” and
“GO:0009986: cell surface” (Table S3).

The DEPs for the comparison of poor-risk vs inter-
mediate-risk were associated with 27 biological process
terms, including “GO:0002181: cytoplasmic translation,”
“GO:0006397: mRNA processing,” and “GO:0006888: ER
to Golgi vesicle-mediated transport”; ten molecular func-
tion terms related to the binding of protein, RNA, and
cadherin; and 27 cellular component terms involved in
proteasome, membrane, nucleus, ribosome, and cell body.
The DEPs were associated with four KEGG pathways,
including “hsa03010: Ribosome,” “hsa01230: Biosynthesis
of amino acids,” “hsa05171: Coronavirus disease-COVID-
19,” and “hsa03050: Proteasome” (Table S3).

Besides, DEPs for the comparison of favorable-risk vs
intermediate-risk were associated with two biological
process terms, including “GO:0006869: lipid transport”

and “GO:0010874: regulation of cholesterol efflux”; two
molecular function terms, including “GO:0030246: carbohydrate
binding” and “GO:0070492: oligosaccharide binding”; and
six cellular component terms, including “GO:0070062:
extracellular exosome,” “GO:0005615: extracellular space,”
and “GO:0005801: cis-Golgi network.”

The results of functional enrichment analysis showed
that DEPs were associated with the development of AML
by regulating multiple and various biological processes
and pathways.

3.1.3 PPI network analysis

The PPI network of DEPs is shown in Figure 2, in which
114 DEPs (nodes) and 358 interactions (edges) are included.
Also, 35 GO biological processes (Figure 2a), three KEGG
pathways (Figure 2b), and 42 cellular component terms
(Figure S1) were included in the network. Proteins like
40S ribosomal protein S20 (RPS20), 40S ribosomal protein
SA (RPSA), ENO1, T-complex protein 1 subunit theta (CCT4),
FH, LTF, and IDH2 had interaction degrees of 14, 18, 10, 20,
9, 9, and 6, respectively (Figure 2). Also, HADH had a low
interaction degree of two, with IDH2 and FH, in the PPI
network. ENO1 interacted with FH, IDH2, CCT4, RPSA,
and GLUL (Figure 2a). Following the threshold of score
≥5.0, there are two modules with scores of 12.57 and scores
of 6.00. Module 1, 15 nodes and 88 edges, (Figure 2c) and
module 2, six nodes and 15 edges (Figure 2d). Module 1
consisted of 14 DEPs by poor-risk vs intermediate-risk,
including 26S proteasome non-ATPase regulatory subunit
1 (PSMD1); PSMD12, PSMC4, CCT8, RPSA, RPS6, RPS20, and
60S ribosomal protein L5 (RPL5). These proteins were asso-
ciated with biological processes including “GO:0006413:

Figure 1: The statistics of DEPs in patients with acute myeloid leukemia. (a and b) The statistics diagram and the Venn diagram of the DEPs
by different comparisons, respectively. FR, favorable-risk. IR, intermediate-risk. PR, poor-risk.
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Figure 2: The PPI network of DEPs in patients with acute myeloid leukemia. (a and b) The PPI network of DEPs by different comparisons:
favorable-risk vs intermediate-risk (Cyan), favorable-risk vs poor-risk (Red), and intermediate-risk vs poor-risk (Green), involving biological
processes and pathways, respectively. Black stars indicate six potent proteins: FH, GLUL, LTF, ENO1, HADH, and IDH2. (c and d) The two
modules. Upregulated and downregulated proteins are shown by circles and triangles, respectively. The two significant modules were
identified using the MCODE plugin in Cytoscape (http://apps.cytoscape.org/apps/mcode) with the threshold score ≥5.0.
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translational initiation,” “GO:0019083: viral transcription,”
“GO:0006364: rRNA processing,” “GO:0033209: TNF-
mediated signaling pathway,” and “GO:0002223: stimu-
latory C-type lectin receptor signaling pathway” (Table
S3 and Figure 2).

3.1.4 ELISA assay of AML-related proteins

Among the DEPs, six proteins that had been reported to
be related to the prognosis of AML and other cancers and
had relative higher FC ratios by comparison (Table S2),
including FH (poor-risk vs intermediate-risk, FC = 1.36) [18],
GLUL (poor-risk vs favorable-risk, FC = 2.06) [19], LTF
(poor-risk vs favorable-risk, FC = 3.15) [20], ENO1 (poor-
risk vs intermediate-risk, FC = 1.29) [21], HADH (poor-risk
vs favorable-risk, FC = 1.74) [22], and IDH2 (poor-risk vs

favorable-risk, FC = 2.25) [18,23], were selected as potent
candidates for validation. The ELISA assay confirmed that
the serum levels of FH, LTF, ENO1, HADH, and IDH2 pro-
teins were differentially expressed in patients with inter-
mediate-risk, favorable-risk, and poor-risk AMLs (Figure 3).
Patients with poor-risk AMLs had higher serum contents of
IDH2 (p = 0.0177), ENO1 (p = 0.0343), and FH (p = 0.0080)
compared with patients with favorable-risk AMLs (Figure 3).
The other proteins had insignificant elevations in patients with
intermediate-risk and poor-risk AMLs compared with patients
who had favorable-risk AMLs.

3.1.5 Association with prognosis

Binary logistics analysis showed that three of the six pro-
teins, including HADH, GLUL, and LTF, were associated

Figure 3: The serum contents of six proteins by ELISA assay. ENO1, enolase 1; FH, fumarate hydratase, mitochondrial; GLUL, glutamine
synthetase; HADH, hydroxyacyl-CoA dehydrogenase; IDH2, isocitrate dehydrogenase 2; LTF, lactotransferrin. Differences across groups were
analyzed using the non-parametric Kruskal–Wallis H test (Tukey post-hoc test). Patients with myelodysplastic syndromes, lupus nephritis, or
thrombopenia were enrolled as controls. Data are expressed as scattered plots, and the boxed values indicate median with range (min to max).
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with the survival outcomes in patients with AMLs (HADH:
odds ratio (OR) = 1.035, 95% CI 1.010–1.065, p = 0.010;
GLUL: OR = 1.022; 95% CI 1.003–1.045, p = 0.039; and
LTF: OR = 1.124, 95% CI 1.255–2.585, p = 0.016; Table 2).
Logistics analysis showed that AML patients who had
higher serum levels of HADH, GLUL, and LTF were at a
high risk of poor prognosis. Also, we found that patients
with high levels of IDH2 (OR = 3.350, 95% CI 0.988–4.722,
p = 0.055), ENO1 (OR = 1.154, 95% CI 1.059–4.223, p =
0.053), and FH (OR = 1.043, 95% CI 0.998–1.044, p =
0.059) were at higher risk of poor prognosis compared
with patients with low levels of these proteins (Table 2).

Survival analysis using the GEPIA online tool showed
that patients with high expression levels of the HADH,
ENO1, and FH genes had lower survival percent compared
with patients with low expression levels (HADH: HR = 2.2,
p = 0.0054; ENO1: HR = 2.1, p = 0.0083; and FH: HR = 1.8,
p = 0.034; Figure 4). The other three genes GLUL,
IDH2, and LTF did not correlate with AML prognosis
(Figure 4).

4 Discussion

The identification of molecular markers, including pro-
tein and gene expression andmutations, provide an addi-
tional reference for predicting treatment responses or
prognosis of patients with heterogeneity AMLs [9,12–16].
Our study identified that 138 proteins were differentially
expressed in the serum of patients with favorable-risk,
intermediate-risk, and poor-risk AMLs. Proteins, including
PSMD1, HADH, ENO1, IDH2, LTF, RPSA, RPS20, and GLUL,
were associated with AML development by involving a
variety of biological processes related to cell interaction,

cellular responses, RNA processing, amino acids biosynth-
esis, and metabolism.

Proteins including IDH2, GLUL, LTF, and HADH were
upregulated in patients with poor-risk AMLs compared
with patients with favorable-risk AMLs. Mutations in
the IDH2 gene have been identified in approximately
10% of AML patients [24,25], and there is a controversy
over its association with AML prognosis [24–27]. IDH2
mutation leads to an elevated level of serum 2-hydroxy-
glutarate and induces DNA hypermethylation and the
subsequent stagnation of cellular differentiation [28].
Also, a high level of 2-hydroxyglutarate is significantly
associated with poor OS and disease-free survival in
patients with AMLs [29]. Accordingly, IDH2 mutation
inhibitors, including enasidenib, are proposed for the
treatment of AML with IDH2 mutations [30–32]. Our
TMT-labeling proteomics analysis and ELISA assay con-
firmed that the level of IDH2 protein was upregulated in
patients with poor-risk AMLs compared with favorable-
risk AMLs, irrespective of genetic abnormalities. It was
insignificantly associated with AML prognosis (p = 0.055).
Further validation experiments using larger cohorts might
confirm the association of its upregulation with the prog-
nosis in AML [33].

The FH enzyme catalyzes the reversible hydration of
fumarate to malate in the tricarboxylic acid (TCA) cycle.
FH functions as a tumor suppressor in lyomeioma and
renal kidney cancer [34]. FH mutation results in the accu-
mulation of fumarate and is associated with human can-
cers, including hereditary leiomyomatosis and renal cell
cancer [35–39]. GLUL catalyzes ammonia ligation and
converts glutamate to glutamine. The levels of GLUL, glu-
tamate, and glutamine in AML patients have not been
reported. Elevated glutamate is correlated with a high level
of oncometabolite 2-hydroxyglutarate in AML patients

Table 2: Variables associated with the survival outcomes of acute myeloid leukemia using univariate and multivariate logistics regression
analysis

Variables Univariate Multivariate

β OR 95% CI p β OR 95% CI p

IDH2 0.608 5.000 1.032–7.722 0.046 0.638 3.350 0.988–4.722 0.055
HADH 0.033 1.033 1.008–1.058 0.008 0.035 1.035 1.010–1.065 0.010
GLUL 0.176 1.214 1.013–1.455 0.036 0.274 1.022 1.003–1.045 0.039
ENO1 0.574 1.428 1.070–3.043 0.016 0.667 1.154 1.059–4.223 0.053
FH 0.022 1.022 1.001–1.044 0.038 0.043 1.043 0.998–1.044 0.059
LTF 0.650 1.512 1.223–2.135 0.009 0.627 1.124 1.255–2.585 0.016
WBC count 0.027 1.028 0.987–1.070 0.186
Age 0.002 1.002 0.959–1.047 0.930
Gender 0.143 1.154 0.255–5.223 0.853

95% CI, 95% confident interval. OR, odds ratio.
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with IDH1/2 mutation [40]. Also, the mutation in GLUL
was related to brain malformations in neonates [41].
GLUL deficiency reduced the level of systemic glutamine
and subsequent multi-organ failures or death [42]. ENO1
is a key glycolytic enzyme and is upregulated in mul-
tiple human cancers, including ovarian cancer [43],
hepatocellular carcinoma [44], and gastric cancer [45].
In addition, the potent tumor suppressor role of LTF has
been shown in hepatic steatosis [20] and several human
cancers, including nasopharyngeal carcinoma [46], pros-
tate cancer [47], and clear cell renal cell carcinoma [48].
Nevertheless, there is no information reporting the asso-
ciation of the dysregulation and mutations of these pro-
teins/genes with AML prognosis or responses to treatment.
Our present study initially identified the elevated expres-
sion of FH, GLUL, ENO1, and LTF, in patients with poor-
risk AMLs compared with patients who had intermediate/
favorable-risk AMLs. Also, the ELISA assay showed that
high levels of GLUL (p = 0.039), ENO1 (p = 0.053), LTF (p =

0.016), and FH (p = 0.059) proteins were associated with
poor prognosis in AML patients. Also, online verification
using the GEPIA tool confirmed the significant associa-
tions of FH and ENO1 gene expression with poor prognosis
in AML patients, showing the potential association of them
with AML development.

The PPI network and module analysis identified a
cluster of DEPs associated with ribosomes. Fourteen of
the 15 DEPs in module 1, including RPSA, RPS6, RPS20,
and RPL5, were upregulated in poor-risk AMLs compared
with favorable-risk AMLs. RPSA, RPS6, RPS20, and RPL5
proteins were associated with “GO:0006413: translational
initiation,” “GO:0006364: rRNA processing,” “GO:0019083:
viral transcription,” and “hsa03010: Ribosome.” Also, other
DEPs in module 1, including PSMD1, PSMD12, PSMC4, CCT8,
and CCT4, were associated with biological processes related
to TNF-mediated signaling pathways, cellular amino acid
metabolism, and toxin transport. RPL5 is a tumor suppressor
[49]. The missense mutation of the RPL5 gene might be

Figure 4: Correlation of protein-encoding genes with overall survival in acute myeloid leukemia. Prognosis verification was performed using
the GEPIA online tool, based on the TCGA data (n = 106). The cutoff of high and low expression is the median value of gene expression. The
HR was calculated based on Cox proportional hazard model. The dotted line indicates 95% CI.
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correlated with TP53mut [50]. A low level of RPL5 expression
in multiple myeloma patients was correlated with a higher
relapse rate following bortezomib treatment [51]. PSMD1,
PSMD12, and PSMC4 are three core components of the pro-
teasome. A mutation in PSMD12 has been identified in a
multiplex family with intellectual disability [52]. However,
the association of these genes or proteins with AML has not
been reported yet. The differential expression levels of these
proteins between patients with poor-risk and favorable-risk
AMLs showed that these factorsmight be associatedwith the
development of AML.

This study included two limitations: the lack of a
control group for the MS/MS study and the inconsistency
between the validation and experiment cohorts. The first
limitation prevented the comparison of proteomic differ-
ences between healthy individuals and AML patients
However, six proteins (including GLUL, FH, LTF, ENO1,
HADH, and IDH2) with relative high FC ratios between
patients with poor-risk, favorable-risk, and intermediate-
risk AMLs were identified as potent prognostic proteins in
AML. The inconsistency between the validation and experi-
ment cohorts might affect the ELISA results, but the identi-
fication of common DEPs might indicate that the research
results are reliable.

5 Conclusion

In summary, this present study highlighted a cluster of
proteins that have potent prognostic impacts on AML.
Proteins including FH, ENO1, IDH2, GLUL, LTF, HADH,
and RPL5 that were upregulated in patients with poor-
risk AMLs as compared with favorable/intermediate-risk
AMLs were associated with TCA, glycolysis, and rRNA
processing. The high expression levels of these proteins
might increase the risk of poor prognosis in AML patients.
Further research should focus on research trials with
large cohorts to validate the association of these potent
biomarkers with AML prognosis.
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