Home Stochastic simulation of electron transport in a strong electrical field in low-dimensional heterostructures
Article
Licensed
Unlicensed Requires Authentication

Stochastic simulation of electron transport in a strong electrical field in low-dimensional heterostructures

  • Evgeniya Kablukova EMAIL logo , Karl K. Sabelfeld ORCID logo , Dmitry Protasov and Konstantin Zhuravlev
Published/Copyright: November 1, 2023

Abstract

In this paper we develop a stochastic simulation algorithm for electron transport in a DA-pHEMT heterostructure. Mathematical formulation of the problem of electron gas transport in the heterostructure in the form of a coupled system of Poisson, Schrödinger and kinetic Boltzmann equations is given. A Monte Carlo model of electron transport in DA-pHEMT heterostructures which accounts for multivalley parabolic band structure, as well as relevant formulas for calculating electron scattering rates and scattering phase functions on polar optical, intervalley phonons and on impurities are developed. The results of a computational experiment involving the solution of the system of Poisson–Schrödinger–Boltzmann equations for the AlGaAs/GaAs/InGaAs/GaAs/AlGaAs heterostructure are presented. The distribution of electrons by energy subband in the main and satellite valleys and the field dependences of the electron drift velocity in each valley are calculated. It was discovered that there is no spatial transfer of electrons into wide-gap AlGaAs layers due to high barriers created by modulated-doped impurities. A comparative analysis of the electron drift velocities in the studied DA-pHEMT heterostructures and in the unstrained layer of the InGaAs is given.

Award Identifier / Grant number: 19-11-00019

Award Identifier / Grant number: FWGW-2022-0055

Funding statement: Evgeniya Kablukova and Karl K. Sabelfeld greatly acknowledge the support of the Russian Science Foundation, Grant 19-11-00019, in the part of the development of stochastic simulation algorithm, and the support of the Mathematical Center in Akademgorodok under the agreement No. 075-15-2022-281 with the Ministry of Science and Higher Education of the Russian Federation, in the part of computer implementation. Dmitry Protasiov and Konstantin Zhuravlev acknowledge support within the State Assignments from the Ministry of Science and Higher Education of the Russian Federation to the Rzhanov Institute of Semiconductor Physics (FWGW-2022-0055) in the part of experimental studies.

References

[1] K. K. Abgaryan and D. L. Reviznikov, Numerical simulation of the distribution of charge carrier in nanosized semiconductor heterostructures with account for polarization effects, Comput. Math. Math. Phys. 56 (2016), no. 1, 161–172. 10.1134/S0965542516010048Search in Google Scholar

[2] A. Barabi, N. Ross, A. Wolfman, O. Shaham and E. Socher, A +27 dBm Psat 27 dB Gain W-band power amplifier in 0.1 μm GaAs, 2018 IEEE/MTT-S International Microwave Symposium - IMS 2018, IEEE Press, Piscataway (2018), 1345–1347. 10.1109/MWSYM.2018.8439854Search in Google Scholar

[3] J. L. Birman, M. Lax and R. Loudon, Intervalley-scattering selection rules in III-V semiconductors, Phys. Rev. 145 (1966), 10.1103/PhysRev.145.620. 10.1103/PhysRev.145.620Search in Google Scholar

[4] J. S. Blakemore, Semiconducting and other major properties of gallium arsenide, J. Appl. Phy. 53 (1982), R123–R181. 10.1063/1.331665Search in Google Scholar

[5] D. Danzilio, Advanced GaAs integration for single chip mmWave frontends, Microw. J. 61 (2018), no. 5, 148–156. Search in Google Scholar

[6] W. Fawcett, A. D. Boardman and S. Swain, Monte Carlo determination of electron transport properties in gallium arsenide, J. Phys. Chem. Solids 31 (1970), 1963–1990. 10.1016/0022-3697(70)90001-6Search in Google Scholar

[7] P. Harrison and A. Valavanis, Quantum Wells, Wires and Dots. Theoretical and Computational Physics of Semiconductor Nanostructures, Wiley, London, 2016. 10.1002/9781118923337Search in Google Scholar

[8] C.-K. Huang and N. Goldsman, 2-D Self-consistent solution of Schrödinger equation, Boltzmann transport equation, Poisson and current-continuity equation for MOSFET, Simulation of Semiconductor Processes and Devices 2001, Springer, Vienna (2012), 148–151. 10.1007/978-3-7091-6244-6_33Search in Google Scholar

[9] K. Inoue and T. Matsuno, Electron mobilities in modulation-doped A l x G a 1 - x A s / G a A s and pseudomorphic A l x G a 1 - x A s / I n y G a 1 - y A s quantum-well structures, Phys. Rev. B 47 (1993), 3771–3778. 10.1103/PhysRevB.47.3771Search in Google Scholar PubMed

[10] V. M. Ivashenko and V. V. Mitin, Simulation of Kinetic Phenomena in Semiconductors. Monte Carlo Method, Naukova Dumka, Kiev, 1990. Search in Google Scholar

[11] L. John, P. Neininger, C. Friesicke, A. Tessmann, A. Leuther, M. Schlechtweg and T. Zwick, A 280-310 GHz I n A l A s / I n G a A s mHEMT power amplifier MMIC with 6.7-8.3 dBm output power, IEEE Microw. Wireless Compon. Lett. 29 (2019), no. 2, 143–145. 10.1109/LMWC.2018.2885916Search in Google Scholar

[12] E. Kablukova, K. Sabelfeld, D. Y. Protasov and K. S. Zhuravlev, Drift velocity in GaN semiconductors: Monte Carlo simulation and comparison with experimental measurements, Monte Carlo Methods Appl. 26 (2020), no. 4, 263–271. 10.1515/mcma-2020-2077Search in Google Scholar

[13] N. N. Kalitkin, Numerical Methods, “Nauka”, Moscow, 1978. Search in Google Scholar

[14] R. Khoie, A self-consistent numerical method for simulation of quantum transport in high electron mobility transistor; Part 1: The Boltzmann–Poisson–Schrodinger solver, Math. Probl. Eng. 2 (1996), no. 3, 205–218. 10.1155/S1024123X96000324Search in Google Scholar

[15] M. A. Littlejohn, J. R. Hauser and T. H. Glisson, Velocityfield characteristics of GaAs with Γ 6 c - L 6 c - X 6 c conductionband ordering, J. Appl. Phys. 48 (1977), 10.1063/1.323516. 10.1063/1.323516Search in Google Scholar

[16] W. T. Masselink, Real-space-transfer of electrons in InGaAs/InAlAs heterostructures, Appl. Phys. Lett. 67 (1995), 801–803. 10.1063/1.115448Search in Google Scholar

[17] X. Mei, W. Yoshida, M. Lange, J. Lee, J. Zhou, P.-H. Liu, K. Leong, A. Zamora, J. Padilla, S. Sarkozy, R. Lai and W. R. Deal, First demonstration of amplification at 1 THz using 25-nm InP high electron mobility transistor process, IEEE Electron Device Lett. 36 (2015), no. 4, 327–329. 10.1109/LED.2015.2407193Search in Google Scholar

[18] G. A. Mikhailov and A. V. Voitishek, Numerical Statistical Simulation. Monte Carlo Methods, Akademiya, Moscow, 2006. Search in Google Scholar

[19] S. V. Obukhov, Ab initio theory of electron-phonon processes in semiconductor crystals, Ph.D. thesis, Tomsk, 2015. Search in Google Scholar

[20] A. B. Pashkovskii, S. A. Bogdanov, A. K. Bakarov, A. B. Grigorenko, K. S. Zhuravlev, V. G. Lapin, V. M. Lukashin, I. A. Rogachev, E. V. Tereshkin and S. V. Shcherbakov, Millimeter-wave donor-acceptor-doped DpHEMT, IEEE Trans. Electron Devices 68 (2021), 53–56. 10.1109/TED.2020.3038373Search in Google Scholar

[21] J. Pozhela, K. Pozhela, R. Raguotis and V. Jucene, Transport of electrons in a GaAs quantum well in strong electric fields, Phys. Technol. Semiconductors 43 (2009), no. 9, 1217–1221. 10.1134/S1063782609090140Search in Google Scholar

[22] D. Y. Protasov, D. V. Gulyaev, A. K. Bakarov, A. I. Toropov, E. V. Erofeev and K. S. Zhuravlev, Increasing saturated electron-drift velocity in donor-acceptor doped pHEMT heterostructures, Tech. Phys. Lett. 44 (2018), no. 3, 2600–2621. 10.1134/S1063785018030240Search in Google Scholar

[23] D. Y. Protasov and K. S. Zhuravlev, The influence of impurity profiles on mobility of two-dimensional electron gas in AlGaAs/InGaAs/GaAs heterostructures modulation-doped by donors and acceptors, Solid State Electron. 129 (2017), 66–72. 10.1016/j.sse.2016.12.013Search in Google Scholar

[24] T. R. Raddo, S. Rommel, B. Cimoli, C. Vagionas, D. P. Galacho, E. Pikasis, E. Grivas, K. Ntontin, M. Katsikis, D. Kritharidis, E. Ruggeri, I. Spaleniak, M. Dubov, D. Klonidis, G. Kalfas, S. Sales, N. Pleros and I. T. Monroy, Transition technologies towards 6G networks, J. Wireless Com. Netw. 2021 (2021), 10.1186/s13638-021-01973-9. 10.1186/s13638-021-01973-9Search in Google Scholar

[25] B. Romanczyk, S. Wienecke, M. Guidry, H. Li, E. Ahmadi, X. Zheng, S. Keller and U. K. Mishra, Demonstration of constant 8W/mm power density at 10, 30, and 94 GHz in state-of-the-art millimeter-wave N polar GaN MISHEMTs, IEEE Trans. Electron Devices 65 (2018), 45–50. 10.1109/TED.2017.2770087Search in Google Scholar

[26] E. D. Siggia and P. G. Kwok, Properties of electrons in semiconductor inversion layers with many occupied electric subbands. I. Screening and impurity scattering, Phys. Rev. B 2 (1970), no. 4, 1024–1036. 10.1103/PhysRevB.2.1024Search in Google Scholar

[27] I.-H. Tan, G. L. Snider, L. D. Chang and E. L. Hu, A self-consistent solution of Schrödinger–Poisson equations using a nonuniform mesh, J. Appl. Phys. 68 (1990), no. 8, 4071–4076. 10.1063/1.346245Search in Google Scholar

[28] Y. Tang, K. Shinohara, D. Regan, A. Corrion, D. Brown, J. Wong, A. Schmitz, H. Fung, S. Kim and M. Micovic, Ultrahigh-speed GaN high-electron-mobility transistors with fT / fmax of 454/444 GHz, IEEE Electron Device Lett. 36 (2015), no. 6, 549–551. 10.1109/LED.2015.2421311Search in Google Scholar

[29] H. Tanimoto, N. Yasuda, K. Taniguchi and C. Hamaguchi, Monte Carlo study of hot transport in quantum wells, Jpn. J. Appl. Phys. 27 (1988), 10.1143/JJAP.27.563. 10.1143/JJAP.27.563Search in Google Scholar

[30] J. L. Thobel, L. Baudry, P. Bourel, F. Dessenne and M. Charef, Monte Carlo modeling of highfield transport in III-V heterostructures, J. Appl. Phys. 74 (1993), 6274–6280. 10.1063/1.355145Search in Google Scholar

[31] T. Tokumitsu, M. Kubota, K. Sakai and T. Kawai, Application of GaAs device technology to millimeter-waves, SEI Tech. Rev. 79 (2014), 57–65. Search in Google Scholar

[32] K. Tomizawa, Numerical Simulation of Submicron Semiconductor Devices, Artech House, Japan, 1993. Search in Google Scholar

[33] N. Z. Vagidov, Z. S. Gribnikov and V. M. Ivashchenko, Simulation of electron transport in real heterostructure space G a A s / A l x G a 1 - x A s (for small and large values of x), Phys. Tech. Semiconductors 24 (1990), no. 6, 1087–1094. Search in Google Scholar

[34] D. Vasileska, K. Raleva and S. M. Goodnick, Monte Carlo device simulations, Applications of Monte Carlo Method in Science and Engineering, InTech Open, London (2011), 385–430. 10.5772/16190Search in Google Scholar

[35] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965. Search in Google Scholar

[36] J. H. Wilkinson and C. Reinsch, Handbook for Automatic Computation. Vol. II, Grundlehren Math. Wiss. 186, Springer, New York, 1971. Search in Google Scholar

[37] Z. Yarar, B. Ozdemir and M. Ozdemir, Mobility of electrons in a A l G a N / G a N QW: Effect of temperature, applied field, surface roughness and well width, Phys. Stat. Sol. (B) 242 (2005), no. 14, 2872–2884. 10.1002/pssb.200540093Search in Google Scholar

[38] New Semiconductor Materials. Biology systems. Characteristics and Properties. http://www.matprop.ru. Cited August 16, 2023. Search in Google Scholar

Received: 2023-04-12
Revised: 2023-09-23
Accepted: 2023-09-29
Published Online: 2023-11-01
Published in Print: 2023-12-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/mcma-2023-2019/html
Scroll to top button