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Abstract: The classical theory of repulsive central force problem on the standard (flat) Euclidean plane can

be generalized to surfaces by reformulating the basic underlying physical principles by means of differential

geometry. The aim of the present paper is to compute the Morse index of the circular periodic orbits in the case

of repulsive power-law potentials of the Riemannian distance on revolution’s surfaces.
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1 Description of the problem and main results

Central-force dynamics and orbitalmotion are fundamental topics in advancedmechanics. In particular, Newto-

nian mechanics on non-flat spaces can be naturally formulated within the framework of Riemannian geometry.

A mechanical system is described by a triple (M, g,V), whereM is a smooth manifold representing the configu-

ration space, g is a Riemannian metric that determines the kinetic energy, and V is the potential function.

In Physics and Classical Mechanics, many interactions are modeled by using potentials depending on the

distance alone, such as when one studies systems of many particles interacting with each other or when one

considers a single particle that interactswith a source. Thus, it seems natural to investigate systems onmanifolds

M whose potential is a function of the distance from a point.

For attractive central force problem, the Keplerian problem is a classical model. In the last decades, several

authors provided a generalization of the gravitational Keplerian potential in the constant curvature case, start-

ing with the well-knownmanuscript of Harin & Kozlov [1]. Some generalizations can be found in refs. [2–4] and

references therein. Inspired by the approach in ref. [5], in ref. [6] we compute the Morse index of the circular

orbits under some attractive power-law potentials of the Riemannian distance on revolution’s surfaces by using

the normal form provided in ref. [7].

But some classical repulsive central force problems are excluded, for example, the dynamics of electrons

with the same charge. Therefore, in the rest of the paper, we aim to compute the Morse index of the circular

periodic orbits in the case of repulsive power-law potentials of the Riemannian distance on revolution’s sur-

faces which are conformal to the flat one, namely, the sphere and hyperbolic plane. The computation of the
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Morse index can be reduced to the calculation of the Maslov index associated with the periodic orbit of the

corresponding linear Hamiltonian system. For detailed accounts of the Maslov index and its applications to

stability problem, we refer the reader to refs. [8–21], among others.

In polar coordinates 𝜉, 𝜃 and up to rescaling time and normalizing the radial variable, we end up consider-

ing the following Lagrangian function

L𝛼(𝜉, 𝜗, 𝜉̇, 𝜗̇) =
1

2
p(𝜉 )

[
𝜉̇2 + 𝜉2𝜗̇2

]
+ q(𝜉 ).

Here p denotes the conformal factor and q the potential. For the sphere and the hyperbolic plane with constant

curvature metrics the conformal factors potentials are

– (Sphere case)

p(𝜉 ):= 2

(1+ 𝜉2 )2
, q(𝜉 ):= − arctan𝛼 𝜉. (1.1)

– (Hyperbolic plane case)

p(𝜉 ):= 2

(1− 𝜉2 )2
, q(𝜉 ):= − ln𝛼

(
1+ 𝜉

1− 𝜉

)
. (1.2)

(Here 𝛼 is non-vanishing and 𝜉 is non-negative). T-periodic solutions of the associated Euler–Lagrange equation

can be seen as critical points of the Lagrangian action function

A(x) =
T

∫
0

L
(
𝜉(t), 𝜗(t), 𝜉′(t), 𝜗′(t)

)
dt,

where x = (𝜉, 𝜗), T > 0 denotes the prime period of the orbit and A is defined on the Hilbert space of the H1

loops (of period T) in the punctured plane. We let x be a T-periodic circular orbit, i.e. a solution of the form

x(t) = (𝜉0, 𝜃0 + t𝜔) for t ∈ [0, T∕𝜔]. Denoting by m−(x) the Morse index of the critical point x, our results read

as follows.

Theorem 1. (Sphere Case). Let p and q be as in (1.1), and let x denote a circular solution. Then the Morse index

of x is given by

m−(x) =

⎧⎪⎪⎨⎪⎪⎩

1 if (𝜉0, 𝛼 ) ∈ Ω−
1,0
,

2 if (𝜉0, 𝛼 ) ∈ Ω+
1
∪Ω0

1
∪Ω+

2
∪Ω0

2
,

2k + 1 if (𝜉0, 𝛼 ) ∈ Ω−
1,k

∪Ω−
2,k
, k = 1, 2,…

Here,Ω+
1
andΩ0

1
are defined in (3.6),Ω−

1,k
in (3.7),Ω+

2
andΩ0

2
in (3.8), andΩ−

2,k
in (3.9). The regions are illustrated

in Figure 1.

Theorem 2. (Hyperbolic plane Case). Let p and q be as in (1.2), and let x denote a circular solution. Then the

Morse index of x is given by

m−(x) =
⎧⎪⎨⎪⎩
2k if (𝜉0, 𝛼 ) ∈ Ω+

3,k
∪Ω0

3,k
,

2k + 1 if (𝜉0, 𝛼 ) ∈ Ω−
3,k
,

for k = 1, 2,… ,

whereΩ±
3,k

andΩ0

3,k
are defined in (3.11). These regions are illustrated in Figure 2.

For Euclidean case we have the following result.
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Theorem 3. Let p(𝜉) = 1, q(𝜉) = −𝜉𝛼 and let x be a circular solution. Then the Morse index of x is given by

m−(x) =
⎧⎪⎨⎪⎩
2 if 0 < 𝛼 ≤ 2,

2k + 1 if k2 − 2 < 𝛼 ≤ (k + 1)2 − 2 for k ≥ 2.

Figure 1: (Sphere case) The subregions of Ω1, Ω2 corresponding to the jumps of the Morse index. (a) (Sphere case 𝛼 positive) In this

figure are displayed the subregions of the 𝜉O𝛼-regionΩ1 := (0, 1) × (0,+∞) labeled by the Morse index of the corresponding circular

orbit. (b) (Sphere case 𝛼 negative) In this figure are displayed the subregions of the 𝜉O𝛼-regionΩ2 := (1,+∞) × (−∞, 0) labeled by the

Morse index of the corresponding circular orbit.

Figure 2: (Hyperbolic plane case) In the figure we represent

the subregions of theΩ3 corresponding to the jumps of the Morse

index.
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2 Central force problem on constant curvature surfaces

We start by considering the configuration space (ℝ2, g ) equipped with polar coordinates (r, 𝜗), where g is a

conformally flat metric and we denote by 𝕊2
R
(resp. ℍ2

R
) the sphere (resp. the pseudo-sphere) of radius R. The

conformal factor is given by

𝜇R(r):=
⎧⎪⎨⎪⎩

2R2

R2 + r2
for 𝕊2

R
,

2R2

R2 − r2
for ℍ2

R
.

In terms of the curvature 𝜅, the conformal factor can be written at once as

𝜇R(r) =
2

1+ 𝜅r2
, where 𝜅 =

⎧⎪⎨⎪⎩
1∕R2 for the sphere,

−1∕R2 for the pseudo− sphere.

We now take the origin as the center of the central force andwe consider the simplemechanical system (M, g,V)

whereM:= ℝ2∖{(0, 0)} and V :M → ℝ is a power law potential energy (independent on 𝜗) depending only on

the Riemannian distance from the origin. By a direct integration of the conformal factor, we get that the distance

of the point P(r, 𝜗) to the origin is

dR(r) =
⎧⎪⎨⎪⎩
2R arctan(r∕R) for 𝕊2

R
,

R ln
(
R+ r

R− r

)
for ℍ2

R
.

Given 𝛼 ∈ ℝ∗, we let

V𝛼 :M → ℝ defined by V𝛼(r, 𝜗) = m [dR(r)]
𝛼, m ∈ (0,+∞)

and we consider the Lagrangian L̃𝛼 of the mechanical system (M, g,V𝛼) on the state space TM given by

L̃𝛼(r, 𝜗, 𝑣r, 𝑣𝜗 ) =
1

2
𝜇2
R
(r)(𝑣2

r
+ r2𝑣2

𝜗
)− V𝛼(r, 𝜗).

By introducing the change of variables 𝜉 := r∕R, the Lagrangian function can be rewritten as follows:

L̃𝛼(𝜉, 𝜗, 𝑣𝜉, 𝑣𝜗 ):=
⎧⎪⎨⎪⎩

2R2

(1+ 𝜉2 )2

[
𝑣2
𝜉
+ 𝜉2𝑣2

𝜗

]
−m

[
2R arctan 𝜉

]𝛼
for 𝕊2

R
,

2R2

(1− 𝜉2 )2

[
𝑣2
𝜉
+ 𝜉2𝑣2

𝜗

]
−m

[
R ln

(
1+ 𝜉

1− 𝜉

)]𝛼
for ℍ2

R
.

Now, computing L̃𝛼 along a smooth curve and rescaling time by setting

t:=
⎧⎪⎨⎪⎩

(
m 2𝛼−1 R𝛼−2

)−1∕2
𝜏 in the case of 𝕊2

R
,(

m 2−1 R𝛼−2
)−1∕2

𝜏 in the case of ℍ2
R
,

and denoting by ⋅ the 𝜏 derivative as well, we get that L̃𝛼 = C𝛼 L𝛼 where

L𝛼(𝜉, 𝜗, 𝜉̇, 𝜗̇):=
⎧⎪⎨⎪⎩

1

(1+ 𝜉2 )2
[
𝜉̇2 + 𝜉2𝜗̇2

]
− arctan𝛼 𝜉 in the case of 𝕊2

R
,

1

(1− 𝜉2 )2
[
𝜉̇2 + 𝜉2𝜗̇2

]
− ln𝛼

(
1+ 𝜉

1− 𝜉

)
in the case of ℍ2

R
,

and C𝛼 :=mR𝛼2𝛼 (resp. C :=mR𝛼) in the case of 𝕊2
R
(resp. ℍ2

R
).
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2.1 Euler–Lagrange equation and Sturm-Liouville problem

We let p±(𝜉 ):= 2(1± 𝜉2 )−2, q+(𝜉) := − arctan𝛼𝜉 and q−(𝜉 ):= − ln𝛼
(
1+𝜉
1−𝜉

)
.

Notation 2.1. In shorthand notation, with abuse of notation, we use p(𝜉) for denoting either p+(𝜉) or p−(𝜉) and

q(𝜉) for denoting either q+(𝜉) or q−(𝜉). Furthermore, we denote by p
′ (resp. q′) the 𝜉 derivative of p (resp. q).

Now we can consider the Lagrangian L𝛼 instead of L̃𝛼 which is given by

L𝛼(𝜉, 𝜗, 𝜉̇, 𝜗̇) =
1

2
p(𝜉 )

[
𝜉̇2 + 𝜉2𝜗̇2

]
+ q(𝜉 ),

and by a direct calculation we get that the associated Euler–Lagrangian equation is

⎧⎪⎨⎪⎩
d

d𝜏
( p 𝜉̇ ) = 1

2
p′(𝜉̇2 + 𝜉2𝜗̇2 )+ p 𝜉𝜗̇2 + q′ on [0, T],

d

d𝜏
( p 𝜉2𝜗̇) = 0.

(2.1)

A special class of solutions of the Euler–Lagrange equation is provided by the circular solutions pointwise

defined by x(t) =
(
𝜉0, 𝜗(t)

)
, where by the first equation of (2.1), we immediately get

𝜗̇2 = −2q′
( p 𝜉2 )′

||||𝜉=𝜉0 .
Notation 2.2. We set

p0:= p(𝜉0 ), p′
0
:= p′(𝜉0 ), p′′

0
:= p′′(𝜉0 ), (2.2)

q0:= q(𝜉0 ), q′
0
:= q′(𝜉0 ), q′′

0
:= q′′(𝜉0 ),

𝜂0:= p0 𝜉
2
0
, 𝜂′

0
:=

(
p0 𝜉

2
0

)′ = p′
0
𝜉2
0
+ 2p0 𝜉0, 𝜗̇2

0
= −2q′

0
𝜂′−1

0
.

So, the period T is given by

T = 2𝜋 𝜔0, where 𝜔0:=
√

𝜂′
0

−2q′
0

.

By linearizing along x we get the Sturm-Liouville equation given by

− d

d𝜏

(
Pẏ+ Qy

)
+ QTẏ+ Ry = 0 on [0, T],

where

P =
[
p0 0

0 𝜂0

]
, Q =

[
0 0

𝜁0 0

]
, where 𝜁0:=

⎧⎪⎨⎪⎩
√
−2q′

0
𝜂′
0
, if 𝜂′

0
≥ 0

−
√
−2q′

0
𝜂′
0
, if 𝜂′

0
< 0

and finally

R =
[
R11 0

0 0

]
for R11:= 𝜂′

0
⋅
[
q′
0

𝜂′
0

]′
.

We set B =
[

P−1 −P−1 Q
−QTP−1 QTP−1Q− R

]
. By a direct computation, we get
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P−1 =
[
p−1
0

0

0 𝜂−1
0

]
, P−1Q =

[
0 0

𝜂−1
0

⋅ 𝜁0 0

]
,

QTP−1Q =
[
𝜂−1
0

⋅ 𝜁 2
0

0

0 0

]
, QTP−1Q− R =

[
𝜂−1
0

⋅ 𝜁 2
0
− 𝜂′

0
⋅ (q′

0
∕𝜂′

0
)′ 0

0 0

]
.

We observe that

𝜂−1
0
𝜁 2
0
= −2 q′

0

(
ln 𝜂0

)′
, 𝜂−1

0
𝜁0 =

√
2 q′

0

(
𝜂−1
0

)′
, and 𝜂−1

0
𝜁 2
0
− R11 = −2q′

0

𝜂′
0

𝜂0
− 𝜂′

0

(
q′
0

𝜂′
0

)′
.

In conclusion, we get

B =

⎡⎢⎢⎢⎢⎢⎢⎣

p−1
0

0 0 0

0 𝜂−1
0

−𝜂−1
0

⋅ 𝜁0 0

0 −𝜂−1
0

⋅ 𝜁0 −2q′
0

𝜂′
0

𝜂0
− 𝜂′

0

(
q′
0

𝜂′
0

)′
0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
, and JB =

⎡⎢⎢⎢⎢⎢⎢⎣

0 𝜂−1
0

⋅ 𝜁0 2q′
0

𝜂′
0

𝜂0
+ 𝜂′

0

(
q′
0

𝜂′
0

)′
0

0 0 0 0

p−1
0

0 0 0

0 𝜂−1
0

−𝜂−1
0

⋅ 𝜁0 0

⎤⎥⎥⎥⎥⎥⎥⎦
,

where J:=
[
0 −I2
I2 0

]
denotes the standard complex structure.

Notation 2.3. We let

a:= p−1
0
, b:= 𝜂−1

0
⋅ 𝜁0, c:= 𝜂−1

0
, d:= 2q′

0

𝜂′
0

𝜂0
+ 𝜂′

0

(
q′
0

𝜂′
0

)′
. (2.3)

Bearing this notation in mind the linear autonomous Hamiltonian system z′(t) = JBz(t) reads as

ż(t) = Az(t) t ∈ [0, T]

where

A =

⎡⎢⎢⎢⎢⎢⎣

0 b d 0

0 0 0 0

a 0 0 0

0 c −b 0

⎤⎥⎥⎥⎥⎥⎦
.

Then we introduce the following formula to compute the Morse index.

Lemma 2.4. Let x =
(
𝜉0, 𝜗(t)

)
be a circular T-periodic solution of the Euler–Lagrange equation. Then, the Morse

index of x is given by

m−(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2k if d < 0 and cd + b2 ≥ 0,

2k + 1 if d < 0 and cd + b2 < 0,

0 if

⎧⎪⎪⎨⎪⎪⎩

d = 0, b = 0 and c > 0,

d = 0 and b ≠ 0,

d > 0 and cd + b2 > 0,

where k ∈ ℕ is given by k ⋅ 2𝜋 <
√
−ad ⋅ T ≤ (k + 1) ⋅ 2𝜋.

Proof. It is referred to [6, Theorem 1]. □
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3 Computations of Morse index for circular orbits

This section is devoted to compute the Morse index of the circular orbits on the sphere, pseudo-sphere and

Euclidean plane. We start by recalling that, in this case, the Lagrangian of the problem is given by

L(𝜉, 𝜗, 𝜉̇, 𝜗̇) = 1

2
p(𝜉 )

[
𝜉̇2 + 𝜉2𝜗̇2

]
+ q(𝜉 ).

3.1 Circular orbits on the sphere

In this case p(𝜉 ) = 2

(1+𝜉2 )2 and q(𝜉 ) = − arctan𝛼 𝜉. In shorthand notation, we set F(𝜉) := arctan 𝜉. Bearing in

mind the notation given in Equation (2.2), we get

p0 = 2
(
1+ 𝜉2

0

)−2
, p′

0
= −8𝜉0

(
1+ 𝜉2

0

)−3
, p′′

0
= 8

(
5𝜉2

0
− 1

)(
1+ 𝜉2

0

)−4
,

q0, = −F𝛼(𝜉0 ), q′
0
= −𝛼 ⋅ F𝛼−1(𝜉0 )(1+ 𝜉2

0
)−1, q′′

0
= −𝛼(𝛼 − 1)F𝛼−2(𝜉0 )+ 2𝛼𝜉0F

𝛼−1(𝜉0 )(
1+ 𝜉2

0

)2 ,

𝜂0 = 2𝜉2
0

(
1+ 𝜉2

0

)−2
, 𝜂′

0
= 4𝜉0

(
1− 𝜉2

0

)(
1+ 𝜉2

0

)−3
, 𝜗̇2

0
=

𝛼F𝛼−1(𝜉0 )(1+ 𝜉2
0
)2

2𝜉0
(
1− 𝜉2

0

) .

In order for the (RHS) of 𝜗̇2
0
to be positive, we have to impose the following restriction on 𝜉0:

𝜉0 ∈
⎧⎪⎨⎪⎩
(0, 1) if 𝛼 > 0,

(1,+∞) if 𝛼 < 0.
(3.1)

By a direct computation, we get

a =
(
1+ 𝜉2

0

)2
2

, b =
2
(
1− 𝜉2

0

)
𝜉0

⋅

√
𝛼F𝛼−1(𝜉0 )

2𝜉0
(
1− 𝜉2

0

) ,
c =

(
1+ 𝜉2

0

)2
2𝜉2

0

, d =
−𝛼F𝛼−2(𝜉0 )

{(
3𝜉4

0
− 2𝜉2

0
+ 3

)
⋅ F(𝜉0 )+ (𝛼 − 1)𝜉0

(
1− 𝜉2

0

)}
𝜉0

(
1+ 𝜉2

0

)2(
1− 𝜉2

0

) .

(3.2)

In order to determine the Morse index, we have to discuss the sign of d according to 𝛼 and 𝜉0.

3.1.1 First case: 𝜶 positive

Since in this case 𝜉0 ∈ (0, 1), then we get that the sign of d is minus the sign of

f1(𝜉 ) = (3𝜉4 − 2𝜉2 + 3) ⋅ arctan 𝜉 + (𝛼 − 1)𝜉(1− 𝜉2 ). (3.3)

We let

Ω1:= (0, 1) × (0,+∞)

and it is easy to check that f1(𝜉) > 0 for all (𝜉, 𝛼) ∈ Ω1 and consequently there always holds d < 0 inΩ1.

Next we need to determine the sign of b2 + cd. Taking into account Equation (3.2) and after some algebraic

manipulations, we have

b2 + cd =
𝛼F𝛼−2(𝜉0 )

{(
𝜉4
0
− 6𝜉2

0
+ 1

)
⋅ F(𝜉0 )− (𝛼 − 1)𝜉0

(
1− 𝜉2

0

)}
2𝜉3

0

(
1− 𝜉2

0

) . (3.4)
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We observe that, since F(𝜉0) is strictly positive and 1− 𝜉2
0
> 0, then the sign of b2 + cd coincides with that of(

𝜉4
0
− 6𝜉2

0
+ 1

)
⋅ F(𝜉0 )− (𝛼 − 1)𝜉0

(
1− 𝜉2

0

)
. Let

f2(𝜉 ) = (𝜉4 − 6𝜉2 + 1) arctan 𝜉 − (𝛼 − 1)𝜉(1− 𝜉2 ). (3.5)

According to the sign of f2(𝜉) we can splitΩ1 into the following three subregions

Ω+
1
:= {(𝜉, 𝛼 ) ∈ Ω1 | f2(𝜉 ) > 0} =

{
(𝜉, 𝛼 ) ∈ Ω1

|||| 0 < 𝛼 < 1+ (𝜉4 − 6𝜉2 + 1) arctan 𝜉

𝜉(1− 𝜉2 )

}
,

Ω−
1
:= {(𝜉, 𝛼 ) ∈ Ω1 | f2(𝜉 ) < 0} =

{
(𝜉, 𝛼 ) ∈ Ω1

|||| 𝛼 > 1+ (𝜉4 − 6𝜉2 + 1) arctan 𝜉

𝜉(1− 𝜉2 )

}
,

Ω0

1
:= {(𝜉, 𝛼 ) ∈ Ω1 | f2(𝜉 ) = 0} =

{
(𝜉, 𝛼 ) ∈ Ω1

|||| 𝛼 = 1+ (𝜉4 − 6𝜉2 + 1) arctan 𝜉

𝜉(1− 𝜉2 )

}
. (3.6)

By this discussion, we finally get that

b2 + cd is

⎧⎪⎨⎪⎩
positive for (𝜉, 𝛼 ) ∈ Ω+

1
,

negative for (𝜉, 𝛼 ) ∈ Ω−
1
.

In this case for computing the Morse index, we need to calculate the integer k defined by k ⋅ 2𝜋 <
√
−ad T ≤

(k + 1) ⋅ 2𝜋. Since

T = 2𝜋

𝜗̇
= 2𝜋

√
2𝜉0

(
1− 𝜉2

0

)
𝛼F𝛼−1(𝜉0 )(1+ 𝜉2

0
)2

and using Equation (3.2), we get

√
−ad ⋅ T = 2𝜋 f3(𝜉 ), where f3(𝜉 ):=

√
(3𝜉4 − 2𝜉2 + 3) ⋅ arctan 𝜉 + (𝛼 − 1)𝜉(1− 𝜉2 )

arctan 𝜉 ⋅ (1+ 𝜉2 )2
.

Indeed, we can check that for every k ∈ ℕ there exists (𝜉, 𝛼) ∈ Ω1 such that k < f3(𝜉) ≤ k + 1. Therefore,

for every k ∈ ℕ we define

Ω±
1,k
:=

{
(𝜉, 𝛼 ) ∈ Ω±

1
| k < f3(𝜉 ) ≤ k + 1

}
,

Ω0

1,k
:=

{
(𝜉, 𝛼 ) ∈ Ω0

1
| k < f3(𝜉 ) ≤ k + 1

}
.

(3.7)

For example, by a direct computation, we infer that

k = 0 ⟺ 0 < 𝛼 ≤ 1− 2(1− 𝜉2 ) arctan 𝜉

𝜉
.

So, denoting these regions as follows

Ω±
1,0
:=

{
(𝜉, 𝛼 ) ∈ Ω±

1

|||| 0 < 𝛼 ≤ 1− 2(1− 𝜉2 ) arctan 𝜉

𝜉

}
,

Ω0

1,0
:=

{
(𝜉, 𝛼 ) ∈ Ω0

1

|||| 0 < 𝛼 ≤ 1− 2(1− 𝜉2 ) arctan 𝜉

𝜉

}
.

we finally get that for any (𝜉, 𝛼 ) ∈ Ω±
1,0

⋃Ω0

1,0
, we have k = 0.

Similarly, direct computations show that

k = 1 ⟺ 1− 2(1− 𝜉2 ) arctan 𝜉

𝜉
< 𝛼 ≤ 1+ (𝜉4 + 10𝜉2 + 1) arctan 𝜉

𝜉(1− 𝜉2 )
,

k = 2 ⟺ 1+ (𝜉4 + 10𝜉2 + 1) arctan 𝜉

𝜉(1− 𝜉2 )
< 𝛼 ≤ 1+ (6𝜉4 + 20𝜉2 + 6) arctan 𝜉

𝜉(1− 𝜉2 )
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Figure 3: (Sphere case 𝛼 positive) The subregions of the 𝜉O𝛼-regionΩ1 := (0, 1) × (0,+∞) labeled by the Morse index of the

corresponding circular orbit.

and so on. Figure 3 are displayed all indices in these involved regions.

By invoking Lemma 2.4 we finally get

m−(x) =
⎧⎪⎨⎪⎩
2 if (𝜉0, 𝛼 ) ∈ Ω+

1

⋃
Ω0

1
,

2k + 1 if (𝜉0, 𝛼 ) ∈ Ω−
1,k
, k = 0, 1,…

3.1.2 Second case: 𝜶 negative

In this case, by taking into account the restrictions provided at Equation (3.1), we have 𝜉0 ∈ (1,+∞) and con-

sequently 1− 𝜉2
0
< 0. Arguing precisely as before, we need to establish the signs of d and b2 + cd as well as the

value of k. Since all expressions are precisely as before with the only difference about the range of 𝜉 and 𝛼.

We let

Ω2:= (1,+∞) × (−∞, 0).

and we start observing that the sign of f1(𝜉) defined in (3.3) for (𝜉, 𝛼) ∈ Ω2 is opposite to that of d. Precisely as

before, we can check that f1(𝜉) > 0 and consequently d < 0 for all (𝜉, 𝛼) ∈ Ω2.

Next we need to determine the sign of b2 + cd. By Equation (3.4) the sign of b2 + cd coincides with that of

f2(𝜉) defined at Equation (3.5) for (𝜉, 𝛼) ∈ Ω2. Then by an algebraic manipulation we have

Ω+
2
:= {(𝜉, 𝛼 ) ∈ Ω2 | f2(𝜉 ) > 0} =

{
(𝜉, 𝛼 ) ∈ Ω2

||||𝛼 > 1+ (𝜉4 − 6𝜉2 + 1) ⋅ arctan 𝜉

𝜉(1− 𝜉2 )

}
,

Ω−
2
:= {(𝜉, 𝛼 ) ∈ Ω2 | f2(𝜉 ) < 0} =

{
(𝜉, 𝛼 ) ∈ Ω2

||||𝛼 < 1+ (𝜉4 − 6𝜉2 + 1) ⋅ arctan 𝜉

𝜉(1− 𝜉2 )

}
,

Ω0

2
:= {(𝜉, 𝛼 ) ∈ Ω2 | f2(𝜉 ) = 0} =

{
(𝜉, 𝛼 ) ∈ Ω2

||||𝛼 = 1+ (𝜉4 − 6𝜉2 + 1) ⋅ arctan 𝜉

𝜉(1− 𝜉2 )

}
. (3.8)
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Figure 4: (Sphere case 𝛼 negative) The subregions of the 𝜉O𝛼-regionΩ1 := (1,+∞) × (−∞, 0) labeled by the Morse index of the

corresponding circular orbit.

So, there holds that

cd + b2 is

⎧⎪⎪⎨⎪⎪⎩

positive for (𝜉, 𝛼 ) ∈ Ω+
2
,

negative for (𝜉, 𝛼 ) ∈ Ω−
2
,

zero for (𝜉, 𝛼 ) ∈ Ω0

2
.

Firstly, we can check that f3(𝜉) > 1 holds for all (𝜉, 𝛼) ∈ Ω2 and for every k ∈ ℕ+ there exists (𝜉, 𝛼) ∈ Ω2 such

that k < f3(𝜉) ≤ k + 1. Moreover, it is straightforward to check that

k = 1 ⟺ 1+ (𝜉4 + 10𝜉2 + 1) arctan 𝜉

𝜉(1− 𝜉2 )
≤ 𝛼 < 0,

k = 2 ⟺ 1+ (6𝜉4 + 20𝜉2 + 6) arctan 𝜉

𝜉(1− 𝜉2 )
≤ 𝛼 < 1+ (𝜉4 + 10𝜉2 + 1) arctan 𝜉

𝜉(1− 𝜉2 )

and so on. Some simple computations show that k = 1 for all (𝜉, 𝛼 ) ∈ Ω+
2
∪Ω0

2
. Now we define the following

planar regions

Ω−
2,k
:=

{
(𝜉, 𝛼 ) ∈ Ω−

2
|k < f3(𝜉 ) ≤ k + 1

}
. (3.9)

Therefore, by invoking Lemma 2.4, we get

m−(x) =
⎧⎪⎨⎪⎩
2 if (𝜉, 𝛼 ) ∈ Ω+

2

⋃
Ω0

2
,

2k + 1 if (𝜉, 𝛼 ) ∈ Ω−
2,k
, k = 1, 2,…

It is shown in Figure 4.

We finally are in position to summarize the involved discussion in the following conclusive result for the

sphere.
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Theorem 3.1. Under the above notations, the indices of a circular orbit on sphere are given by

m−(x) =

⎧⎪⎪⎨⎪⎪⎩

1 if (𝜉, 𝛼 ) ∈ Ω−
1,0
,

2 if (𝜉0, 𝛼 ) ∈ Ω+
1

⋃
Ω0

1
∪Ω+

2

⋃
Ω0

2
,

2k + 1 if (𝜉0, 𝛼 ) ∈ Ω−
1,k

⋃
Ω−

2,k
, k = 1, 2,… .

A direct consequence of Theorem 3.1 concerns the Morse index of the circular orbits in one physically

interesting cases: 𝛼 = 2 corresponding to a elastic like potential.

Corollary 3.2. For 𝛼 = 2, then we get m−(x) = 3.

3.2 Circular orbits on the hyperbolic plane

This subsection is devoted to compute the Morse index for circular orbits on the pseudo-sphere. In this case

p(𝜉 ) = 2

(1− 𝜉2 )2
and q(𝜉 ) = − ln𝛼

(
1+ 𝜉

1− 𝜉

)
𝜉 ∈ (0, 1).

We let

G(𝜉 ):= ln

(
1+ 𝜉

1− 𝜉

)
and G′(𝜉 ):= dG

d𝜉
(𝜉 ).

By a direct computations we have

p′(𝜉 ) = 8𝜉

(1− 𝜉2 )3
, p′′(𝜉 ) = 8+ 40𝜉2

(1− 𝜉2 )4
,

q′(𝜉 ) = −2𝛼 ⋅ G𝛼−1(𝜉 )
1− 𝜉2

, q′′(𝜉 ) = −4𝛼(𝛼 − 1)G𝛼−2(𝜉 )+ 4𝛼𝜉G𝛼−1(𝜉 )
(1− 𝜉2 )2

.

Notation 3.3. Abusing notation, let us now introduce the following notation similar to that of Equation (2.2), we

have

p0 =
2(

1− 𝜉2
0

)2 , p′
0
= 8𝜉0(

1− 𝜉2
0

)3 , p′′
0
=

8+ 40𝜉2
0(

1− 𝜉2
0

)4 ,
q0 = −G𝛼(𝜉0 ), q′

0
= −2𝛼G𝛼−1(𝜉0 )

1− 𝜉2
0

, q′′
0
= −4𝛼(𝛼 − 1)G𝛼−2(𝜉0 )+ 4𝛼𝜉0G

𝛼−1(𝜉0 )(
1− 𝜉2

0

)2 ,

𝜂0 =
2𝜉2

0(
1− 𝜉2

0

)2 , 𝜂′
0
=

4𝜉3
0
+ 4𝜉0(

1− 𝜉2
0

)3 , 𝜗̇2 =
𝛼G𝛼−1(𝜉0 )(1− 𝜉2

0
)2

𝜉0
(
1+ 𝜉2

0

) .

Since the (RHS) of the equation defining 𝜗̇2 should be positive, we only restrict to the case

𝛼 > 0.

By a straightforward computation, we get

𝜁0 =
4𝜉0

(
1+ 𝜉2

0

)
(
1− 𝜉2

0

)2 ⋅

√
𝛼G𝛼−1(𝜉0 )

𝜉0
(
1+ 𝜉2

0

) , 1

2
𝜂′′
0
=

6𝜉4
0
+ 16𝜉2

0
+ 2(

1− 𝜉2
0

)4 , 2q′
0

𝜂′
0

𝜂0
=

−8𝛼G𝛼−1(𝜉0 )(1+ 𝜉2
0
)

𝜉0
(
1− 𝜉2

0

)2 ,

𝜂′
0
⋅
[
q′
0

𝜂′
0

]′
=

2𝛼G𝛼−2(𝜉0 )
[(
𝜉4
0
+ 6𝜉2

0
+ 1

)
⋅ G(𝜉0 )− 2(𝛼 − 1)𝜉0

(
1+ 𝜉2

0

)]
𝜉0

(
1− 𝜉2

0

)2(
1+ 𝜉2

0

) .
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Then we have

a = p−1
0

=
(
1− 𝜉2

0

)2
2

, b = 𝜂−1
0
𝜁0 =

2
(
1+ 𝜉2

0

)
𝜉0

⋅

√
𝛼G𝛼−1(𝜉0 )

𝜉0
(
1+ 𝜉2

0

) , c = 𝜂−1
0

=
(
1− 𝜉2

0

)2
2𝜉2

0

,

d = 2q′
0
(ln 𝜂0 )

′ + 𝜂′
0

(
q′
0

𝜂′
0

)′
=

−2𝛼G𝛼−2(𝜉0 )
{(
3𝜉4

0
+ 2𝜉2

0
+ 3

)
⋅ G(𝜉0 )+ 2(𝛼 − 1)𝜉0

(
1+ 𝜉2

0

)}
𝜉0

(
1− 𝜉2

0

)2(
1+ 𝜉2

0

) . (3.10)

Similar to the sphere case, we start determining the sign of d ranging in the parameter region

Ω3:= (0, 1) × (0,∞).

By the explicit computation of d given at Equation (3.10), we infer that the sign of d is minus the sign of(
3𝜉4

0
+ 2𝜉2

0
+ 3

)
⋅ G(𝜉0 )+ 2(𝛼 − 1)𝜉0

(
1+ 𝜉2

0

)
. We let

g1(𝜉 ) = (3𝜉4 + 2𝜉2 + 3) ⋅ ln
(
1+ 𝜉

1− 𝜉

)
+ 2(𝛼 − 1)𝜉(1+ 𝜉2 ) (𝜉, 𝛼 ) ∈ Ω3.

We can check that g1(𝜉) > 0 and consequently there holds d < 0 for all (𝜉, 𝛼) ∈ Ω3.

Next we have to study the sign of b2 + cd. By Equation (3.10) and by a direct computation, we get

b2 + cd =
𝛼G𝛼−2(𝜉0 )

{(
𝜉4
0
+ 6𝜉2

0
+ 1

)
⋅ G(𝜉0 )− 2(𝛼 − 1)𝜉0

(
1+ 𝜉2

0

)}
𝜉3
0

(
1+ 𝜉2

0

) .

Now, we observe that since 𝛼 > 0 and G(𝜉0) > 0, then the sign of b2 + cd is equal to the sign of the function

g2(𝜉 ):= (𝜉4 + 6𝜉2 + 1) ln

(
1+ 𝜉

1− 𝜉

)
− 2(𝛼 − 1)𝜉(1+ 𝜉2 ).

So we have following three subregions ofΩ3 according to the sign of g2(𝜉).

Figure 5: (Hyperbolic case 𝛼 positive) In this figure are displayed the subregions of the 𝜉O𝛼-regionΩ1 := (0, 1) × (0,+∞) labeled

by the Morse index of the corresponding circular orbit.
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Ω+
3
:= {(𝜉, 𝛼 ) ∈ Ω3 | g2(𝜉 ) > 0} =

{
(𝜉, 𝛼 ) ∈ Ω3

||||𝛼 < 1+ (𝜉4 + 6𝜉2 + 1) ⋅ ln((1+ 𝜉 )∕(1− 𝜉 ))

2𝜉(1− 𝜉2 )

}
,

Ω−
3
:= {(𝜉, 𝛼 ) ∈ Ω3 | g2(𝜉 ) < 0} =

{
(𝜉, 𝛼 ) ∈ Ω3

||||𝛼 > 1+ (𝜉4 + 6𝜉2 + 1) ⋅ ln((1+ 𝜉 )∕(1− 𝜉 ))

2𝜉(1− 𝜉2 )

}
,

Ω0

3
:= {(𝜉, 𝛼 ) ∈ Ω3 | g2(𝜉 ) = 0} =

{
(𝜉, 𝛼 ) ∈ Ω3

||||𝛼 = 1+ (𝜉4 + 6𝜉2 + 1) ⋅ ln((1+ 𝜉 )∕(1− 𝜉 ))

2𝜉(1− 𝜉2 )

}
.

So, there holds that

cd + b2 is

⎧⎪⎪⎨⎪⎪⎩

positive for (𝜉, 𝛼 ) ∈ Ω+
3
,

negative for (𝜉, 𝛼 ) ∈ Ω−
3
,

zero for (𝜉, 𝛼 ) ∈ Ω0

3
.

In order to compute the index by Lemma 2.4 we have to determine the value of k. Recall that the value of k

is determined by k ⋅ 2𝜋 <
√
−adT ≤ (k + 1) ⋅ 2𝜋. Indeed, we have

T = 2𝜋

𝜗̇
= 2𝜋

√
𝜉0

(
1+ 𝜉2

0

)
𝛼G𝛼−1(𝜉0 )(1− 𝜉2

0
)2
.

Moreover, by Equation (3.10) we have

√
−ad =

√
𝛼G𝛼−2(𝜉0 )(3𝜉

4
0
+ 2𝜉2

0
+ 3) ⋅ G(𝜉0 )+ 2(𝛼 − 1)𝜉0

(
1+ 𝜉2

0

)
𝜉0

(
1+ 𝜉2

0

) .

Therefore, √
−ad ⋅ T = 2𝜋 ⋅

√(
3𝜉4

0
+ 2𝜉2

0
+ 3

)
⋅ G(𝜉0 )+ 2(𝛼 − 1)𝜉0

(
1+ 𝜉2

0

)
G(𝜉0 )(1− 𝜉2

0
)2

.

Let

g3(𝜉 ):=

√√√√√√ (3𝜉4 + 2𝜉2 + 3) ⋅ ln
(
1+𝜉
1−𝜉

)
+ 2(𝛼 − 1)𝜉(1+ 𝜉2 )

(1− 𝜉2 )2 ln
(
1+𝜉
1−𝜉

) .

Direct computations show that

k = 0 ⟺ 0 < g3(𝜉 ) ≤ 1 ⟺ 0 < 𝛼 ≤ 1− 1+ 𝜉2

𝜉
⋅ ln

1+ 𝜉

1− 𝜉
.

But it is impossible since the right-hand side of above inequality is negative for 𝜉 ∈ (0, 1).Moreover,we can check

that for every fixed 𝛼 and k ∈ ℕ+ there exists (𝜉, 𝛼 ) ∈ Ω+
3
such that k < g3(𝜉) ≤ k + 1. Then we can define the

subregions

Ω±
3,k
:=

{
(𝜉, 𝛼 ) ∈ Ω±

3
| k < g3(𝜉 ) ≤ k + 1

}
, Ω0

3,k
:=

{
(𝜉, 𝛼 ) ∈ Ω0

3
| k < g3(𝜉 ) ≤ k + 1

}
. (3.11)

All these subregions are displayed in Figure 5. Invoking Lemma 2.4, then we have the following result.

Theorem 3.4. Under the above notations, the Morse index of the circular orbit on the hyperbolic plane is given by

m−(x) =
⎧⎪⎨⎪⎩
2k if (𝜉, 𝛼 ) ∈ Ω+

3,k
∪Ω0

3,k
,

2k + 1 if (𝜉, 𝛼 ) ∈ Ω−
3,k
,

k = 1, 2,…
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As direct consequence of Theorem 3.4, in the special case of 𝛼 = 2 we get the following result.

Corollary 3.5. For 𝛼 = 2, the Morse index of the circular solution is given by

m−(x) = 2k if (𝜉0, 2) ∈ Ω+
3,k
, k = 2, 3,…

3.3 Euclidean case

The last case is provided by the Euclidean one. We start letting

p(𝜉 ) = 1, q(𝜉 ) = −𝜉𝛼,

and by a direct computation, we get

p′(𝜉 ) = p′′(𝜉 ) = 0, q′(𝜉 ) = −𝛼𝜉𝛼−1, q′′(𝜉 ) = −𝛼(𝛼 − 1)𝜉𝛼−2.

By Equation (2.2), we get

p0 = 1, p′
0
= 0, p′′

0
= 0, (3.12)

q0 = −𝜉𝛼
0
, q′

0
= −𝛼𝜉𝛼−1

0
, q′′

0
= −𝛼(𝛼 − 1)𝜉𝛼−2

0
,

𝜂0 = 𝜉2
0
, 𝜂′

0
= 2𝜉0, 𝜗̇2 = 𝛼𝜉𝛼−2

0
.

Since the (RHS) of the equation defining 𝜗̇2 should be positive, we only consider the case

𝛼 > 0.

By a direct computation, we get

𝜁0 = 2𝜉0 ⋅
√
𝛼𝜉𝛼−2

0
, 2q′

0
(ln 𝜂0 )

′ = −4𝛼𝜉𝛼−2
0

, 𝜂′
0
⋅
[
q′
0

𝜂′
0

]′
= −𝛼(𝛼 − 2)𝜉𝛼−2

0
.

By this, we get that the four constants appearing at Equation (2.3) are the following

a = 1, b = 2

𝜉0

√
𝛼𝜉𝛼−2

0
, (3.13)

c = 1

𝜉2
0

, d = −𝛼(𝛼 + 2)𝜉𝛼−2
0

.

Now, we observe that d < 0 for all 𝛼 > 0 and 𝜉0 > 0.

Next we need to determine the sign of the term b
2 + cd. By a direct computing we get

b2 + cd = −𝛼(𝛼 − 2)𝜉𝛼−4
0

is

⎧⎪⎪⎨⎪⎪⎩

negative if 𝛼 > 2,

0 if 𝛼 = 2,

positive if 0 < 𝛼 < 2.

By taking into account Equations (3.12) and (3.13) we finally get

T = 2𝜋

𝜗̇
= 2𝜋

√
1

𝛼𝜉𝛼−2
0

,
√
−ad =

√
𝛼(𝛼 + 2)𝜉𝛼−2

0
.

Therefore √
−ad ⋅ T = 2𝜋 ⋅

√
𝛼 + 2
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and we get that k ≥ 1. Indeed, for every k ∈ ℕ+ there exists 𝛼 > 0 such that k <
√
𝛼 + 2 ≤ k + 1. For example,

there hold

k = 1 ⟺ 0 < 𝛼 ≤ 2, k = 2 ⟺ 2 < 𝛼 ≤ 7, k = 3 ⟺ 7 < 𝛼 ≤ 14

and so on.

Then we have the following result.

Theorem 3.6. Under the above notations, the Morse index of a circular orbit in the Euclidean plane is given by

m−(x) =
⎧⎪⎨⎪⎩
2 if 0 < 𝛼 ≤ 2,

2k + 1 if k2 − 2 < 𝛼 ≤ (k + 1)2 − 2 for k ≥ 2.

By Theorem 3.6 we have the following direct corollary.

Corollary 3.7. For 𝛼 = 2, we get

m−(x) = 2.
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