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Abstract: The classical theory of repulsive central force problem on the standard (flat) Euclidean plane can
be generalized to surfaces by reformulating the basic underlying physical principles by means of differential
geometry. The aim of the present paper is to compute the Morse index of the circular periodic orbits in the case
of repulsive power-law potentials of the Riemannian distance on revolution’s surfaces.
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1 Description of the problem and main results

Central-force dynamics and orbital motion are fundamental topics in advanced mechanics. In particular, Newto-
nian mechanics on non-flat spaces can be naturally formulated within the framework of Riemannian geometry.
A mechanical system is described by a triple (M, g, V), where M is a smooth manifold representing the configu-
ration space, g is a Riemannian metric that determines the kinetic energy, and V is the potential function.

In Physics and Classical Mechanics, many interactions are modeled by using potentials depending on the
distance alone, such as when one studies systems of many particles interacting with each other or when one
considers a single particle that interacts with a source. Thus, it seems natural to investigate systems on manifolds
M whose potential is a function of the distance from a point.

For attractive central force problem, the Keplerian problem is a classical model. In the last decades, several
authors provided a generalization of the gravitational Keplerian potential in the constant curvature case, start-
ing with the well-known manuscript of Harin & Kozlov [1]. Some generalizations can be found in refs. [2—-4] and
references therein. Inspired by the approach in ref. [5], in ref. [6] we compute the Morse index of the circular
orbits under some attractive power-law potentials of the Riemannian distance on revolution’s surfaces by using
the normal form provided in ref. [7].

But some classical repulsive central force problems are excluded, for example, the dynamics of electrons
with the same charge. Therefore, in the rest of the paper, we aim to compute the Morse index of the circular
periodic orbits in the case of repulsive power-law potentials of the Riemannian distance on revolution’s sur-
faces which are conformal to the flat one, namely, the sphere and hyperbolic plane. The computation of the
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Morse index can be reduced to the calculation of the Maslov index associated with the periodic orbit of the
corresponding linear Hamiltonian system. For detailed accounts of the Maslov index and its applications to
stability problem, we refer the reader to refs. [8—21], among others.

In polar coordinates &, 8 and up to rescaling time and normalizing the radial variable, we end up consider-
ing the following Lagrangian function

L,(6.9.6,8) = TpO[E + 8] +q(&),

Here p denotes the conformal factor and g the potential. For the sphere and the hyperbolic plane with constant
curvature metrics the conformal factors potentials are
—  (Sphere case)

pé):= ﬁ q(&): = —arctan® &. 1.1
— (Hyperbolic plane case)
2 a1+
p(&):= - ap q(&):=—1In (1—5)' (1.2)

(Here a is non-vanishing and & is non-negative). T-periodic solutions of the associated Euler—Lagrange equation
can be seen as critical points of the Lagrangian action function

T

Alx) = / L(&@®),9(0), &' (D), 9'(1)) dt,

0

where x = (£,9), T > 0 denotes the prime period of the orbit and A is defined on the Hilbert space of the H'
loops (of period T) in the punctured plane. We let x be a T-periodic circular orbit, i.e. a solution of the form
x(t) = (&, 0, + tw) for t € [0, T/w]. Denoting by m~(x) the Morse index of the critical point x, our results read
as follows.

Theorem 1. (Sphere Case). Let p and q be as in (1.1), and let x denote a circular solution. Then the Morse index
of x is given by

1 if (&, a) € QT

1,0°
m=(x) =12 if (&, ) eQUQlUQ U,
2k +1 if (&.0) €QUQ,,. k=12, ...

Here, Qf and Qf are defined in (3.6), Q; L 3.7, Q; and Qg in (3.8), and QZ i N (3.9). The regions are illustrated
in Figure 1.

Theorem 2. (Hyperbolic plane Case). Let p and q be as in (1.2), and let x denote a circular solution. Then the
Morse index of x is given by

2k if (&), 0) € QF, U QS

m(x) = 3k’ fork=1,2,...,

2k +1 if (&, @) € Q.

where Q;-"k and Qg’k are defined in (3.11). These regions are illustrated in Figure 2.
For Euclidean case we have the following result.
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Theorem 3. Let p(&) =1, q(&) = —&” and let x be a circular solution. Then the Morse index of x is given by

2 if0<a<2,
m (x) =
2k+1  ifKE-2<a<(k+1?%*-2 for k>2
O o
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Figure 1: (Sphere case) The subregions of Q,, €, corresponding to the jumps of the Morse index. (a) (Sphere case a positive) In this
figure are displayed the subregions of the EOTx—region Q,:=(0,1) X (0,+4o00) labeled by the Morse index of the corresponding circular
orbit. (b) (Sphere case a negative) In this figure are displayed the subregions of the EO?x-region Q,:=(1,400) X (—0o0,0)labeled by the
Morse index of the corresponding circular orbit.

é: Figure 2: (Hyperbolic plane case) In the figure we represent
the subregions of the €2, corresponding to the jumps of the Morse
index.
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2 Central force problem on constant curvature surfaces

We start by considering the configuration space (R?, g) equipped with polar coordinates (r, 8), where g is a
conformally flat metric and we denote by sz (resp. I]-I]f?) the sphere (resp. the pseudo-sphere) of radius R. The
conformal factor is given by

2R? 9

N b for S,
up(r):= IR )
B_7 for Hy.

In terms of the curvature «, the conformal factor can be written at once as

1/R? for the sphere,

ugp(r) = , Where «=

2
2
I+wr —1/R?>  for the pseudo — sphere.
We now take the origin as the center of the central force and we consider the simple mechanical system (M, g, V)
where M: = R?\{(0,0)} and V: M — R is a power law potential energy (independent on §) depending only on
the Riemannian distance from the origin. By a direct integration of the conformal factor, we get that the distance
of the point P(r, 9) to the origin is

2R arctan(r/R) for SZ,

R+r>

dp(r) =
R ln<
R

— for HZ.
Given a € R*, we let
VyiM - R defined by V,(r,9) = m[dg(r)]*, m € (0, +o0)
and we consider the Lagrangian fa of the mechanical system (M, g, V,) on the state space TM given by

L(r.8,v, vy) = %Mﬁ(r)(uf +1705) = V, (r, 9).

By introducing the change of variables £ :=r /R, the Lagrangian function can be rewritten as follows:

2R? .

79 ) a+ ey [vé + ézufg] — m|[2R arctan &| for S2,
al\Ss ’U§’U19 = > .

o g [t €] - mR 1n(1i§)] for 2,

Now, computing fa along a smooth curve and rescaling time by setting

(m2et Ra—z)‘l/ “T  inthe case of S2,
=

(m27! R"‘Z)_l/ 2 in the case of M3,

and denoting by - the = derivative as well, we get that f,, = C, L, where

1

o |agepld tEY] —arcan” ¢ in the case of S2,
La(és 197 57 19):= . .
@ [62+ &9 —In” (ig) in the case of H2,

and C, :=mR*2% (resp. C:=mR") in the case of S% (resp. H2).
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2.1 Euler-Lagrange equation and Sturm-Liouville problem

Welet p,(£):=2(1 % £2)72, ¢, (&) := — arctan®é and q_(£): = — lno‘(%)

Notation 2.1. In shorthand notation, with abuse of notation, we use p(£) for denoting either p_ (£) or p_(&) and
q(&) for denoting either g, (&) or q_(&). Furthermore, we denote by p’ (resp. ¢') the & derivative of p (resp. ¢).

Now we can consider the Lagrangian L, instead of Za which is given by
LL(6.9.6,8) = Zp@[& + £ + q(&),
and by a direct calculation we get that the associated Euler—Lagrangian equation is
Lopo=lp@sedmrped+q¢ oo,
ddr 2 (VA0
A ey =
i (p&9) =o.

A special class of solutions of the Euler—Lagrange equation is provided by the circular solutions pointwise
defined by x(t) = (&, 9(t)), where by the first equation of (2.1), we immediately get

2 _ -2q
(P& leg,
Notation 2.2. We set
Po:= p(&), Po:= P'(&), o= 0" (&), 22
0o = q(&)), a5 = q (&), 45 = q" (&),
Ho: = Po &2, = (po &)’ = P&l +2py & 82 = —2q) 0.

So, the period T is given by

7”
T=2rw,, where = 1/—".

By linearizing along x we get the Sturm-Liouville equation given by

- L (py+0y) +Qy+Ry=0 on [0,7],
where
[p, 0 0 0 \/=24.nl, if mh =0
P= Py ] Q= [ ], where {;:= %o o and finally
[ 0 7o G 0 —\/—2q,n). if ny <0
-Rn 0 [Q’ ],
R= for Ry=nl-|2].
o 0] = Ly
p1 -P71Q
We set B = . By a direct computation, we get
_QTP—l QTP_lo —R
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-1
~ p 0 _ 0 0
e N R e :
0 My My 'K:O 0

’1—1 . 4'2 0 n—l . CZ _ nl . (q//rll)l 0
TP—l — 0 0 , TP—l —R= 0 0 0 0/ %o .
Q'PQ l . 0] Q"o [ S

We observe that

/!
_ ’ _ N _ ’7 q,
My & = =24, (Inmg) My &= zq:)(”ol)’ and My &g — Ry = =245 ° ’16<9>
Mo

In conclusion, we get

-1 N4
P 0 0 0 _ My 9
0 ) ] 0 ’70 L. gO zqo o + ’70 0
0 770 _’10 é,O 0 ]10
b= 0 —ng'-¢ —quno /(% , of and JB=) 0 0 0 o
0 0 Mo 7’](’) pal 1] 0 0
0 0 0 0 0 nt —ny" - & 0
0 -
where J: = I denotes the standard complex structure.
2
Notation 2.3. We let
R N | I ) ) My qo
a=p,;, b=n-8, c=n, d= Zqo +7 W) 2.3
Mo 0

Bearing this notation in mind the linear autonomous Hamiltonian system z’(t) = JBz(t) reads as

Z(t) = Az(t) te[0,T]

where
0 b d O
0 0 0
A= .
a 0 0 0
0 c =b O

Then we introduce the following formula to compute the Morse index.

Lemma 2.4. Letx = (50, 8(t)) be a circular T-periodic solution of the Euler—Lagrange equation. Then, the Morse
index of x is given by

2k if d<0andcd+b*>0,
2k+1 if d<O0andcd+ b <0,
m~(x) =< d=0,b=0andc>0,
0 if Jd=0andb+#0,

d> 0 and cd + b* > 0,
wherek € Nisgivenby k -2x < \/—ad-T < (k+1) - 2.

Proof. 1tisreferred to [6, Theorem 1]. O
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3 Computations of Morse index for circular orbits

This section is devoted to compute the Morse index of the circular orbits on the sphere, pseudo-sphere and
Euclidean plane. We start by recalling that, in this case, the Lagrangian of the problem is given by

IE9.6.8) = 2pO[E + £ +q0).

3.1 Circular orbits on the sphere

In this case p(§) = @ and q(¢) = —arctan® £. In shorthand notation, we set F(§) := arctan . Bearing in

mind the notation given in Equation (2.2), we get

=204 p=-sa(eE) g =86 -)0+8)”
- - —ala = DF*HE) + 206, F ()
y = _Fa( ), I — —q - Fa 1( )(1 + 2) 1, "o a(a 1)F (50) + 0 o ,
9o o 9 a ) o 9, i+ 53)2
- S AFTTNE)U+E)
m=20+8)" n=1a1-8)a+g)” H="T 00ra
26 (1~ 50)

In order for the (RHS) of S% to be positive, we have to impose the following restriction on &;:

0,1 if @ >0,
& € 3.1

1, +00) ifa <0.

By a direct computation, we get

az(”ifé)z p— 20=6) [ aFlg)
2 & 26(1- &)

(3.2)
2
_WHE) e (36 - 25 43) F) + (- DG (1-¢f) )
2, &(1+¢5) (1-&)

In order to determine the Morse index, we have to discuss the sign of d according to a and &;.
3.1.1 First case:  positive
Since in this case &, € (0, 1), then we get that the sign of d is minus the sign of

fi(&) = (BE* — 2£% + 3) - arctan & + (a — DEQL — £2). (33)

We let
Q:=(0,1) X (0, 4+00)

and it is easy to check that f;(§) > 0 for all (£, ) € Q, and consequently there always holds d < 0in ;.
Next we need to determine the sign of b* + cd. Taking into account Equation (3.2) and after some algebraic
manipulations, we have

aF (&) { (& — 622 +1) - F(&) — (@ =D& (1- &)}

. 3.4
283(1- &) G4

b*+cd =
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We observe that, since F(&,) is strictly positive and 1 — 5(2) > 0, then the sign of b + cd coincides with that of
(& —6&2+1) - F(&) — (@ — 1)&y(1— &2). Let

£,(&) = (&* — 6E2 + 1) arctan & — (a — 1)E(1 — &2). (3.5)

According to the sign of f,(£) we can split Q, into the following three subregions

Q= {E.meQ | (&) >0} = {(f,a) e lo<a<tis &= 6§z1+_1é§‘;‘:tan 5},
Qi=uaMe9uﬁ@ww}=@ameﬂla>1+@L”§;2$m“ﬂu
sﬁ:uameguﬁ@ﬁm}=&amegla=1+@“”§;g§m“ﬂu 356)
By this discussion, we finally get that
positive for (£,a)€Qf,

b +cd is
negative for ()€ Ql_ .

In this case for computing the Morse index, we need to calculate the integer k defined by k - 27 < \/—ad T <
(k+1) - 2x. Since

_ 2 _ 28,(1-¢&3)
r= 9 ad \/aF"_l(fo)(l + &)

and using Equation (3.2), we get

(384 — 2E%2 + 3) - arctan & + (a — DEA — £2)
arctan & - (1 + &%) '

—ad - T =2rx f5(&), where f3(&):= \/

Indeed, we can check that for every k € N there exists (£, a) € €2, such that k < f5(&) < k + 1. Therefore,
for every k € N we define
Qf = {0 €Q] | k< f(§) <k+1},
6 . (3.7
Q= {(g,a) €Q’ | k< fi(&) < k+1}.

For example, by a direct computation, we infer that

2(1 — £2) arctan &
e

k=0=0<a<l-

So, denoting these regions as follows

Qfo:: {(f,a)eﬂf 0<a$1_2(1—§2);1rctém§},
Q= {(f,a)EQf 0<a$1_2(1—§2);rctan§}.

we finally get that for any (£, ) € Q| Q] ;, we have k = 0.
Similarly, direct computations show that

k=ls1-

2(1 — &%) arctan & 1 (&* +10£% + 1) arctan &
g o= Ty

(&* 4+ 10&2 + 1) arctan & (6&* + 20&2 + 6) arctan &
E1-¢&% s1-¢%

k=2=1+ <a<l+
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Figure 3: (Sphere case a positive) The subregions of the é/OTJz—region €Q,:=(0,1) X (0,+o0) labeled by the Morse index of the

corresponding circular orbit.

and so on. Figure 3 are displayed all indices in these involved regions.

By invoking Lemma 2.4 we finally get

m(x) =

if (&, 0) € Q) (@,

2%k +1 if (6. 0) €Qp,, k=0,1,...

3.1.2 Second case: @ negative

In this case, by taking into account the restrictions provided at Equation (3.1), we have &, € (1, +o0) and con-
sequently 1 — 53 < 0. Arguing precisely as before, we need to establish the signs of d and b* + cd as well as the
value of k. Since all expressions are precisely as before with the only difference about the range of £ and a.

We let

Q,:=(1,4+00) X (=00, 0).

and we start observing that the sign of f;(£) defined in (3.3) for (£, @) € €, is opposite to that of d. Precisely as
before, we can check that f;(£) > 0 and consequently d < 0 for all (£, &) € €Q,.

Next we need to determine the sign of b* + cd. By Equation (3.4) the sign of b* + cd coincides with that of
f5(&) defined at Equation (3.5) for (&, @) € €,. Then by an algebraic manipulation we have

Q= {(&,a) € Q| f,(&) >0} = {(f,a)EQZ
Q= {(§,a) € Q| f,(§) <0} = {(cf,a)eﬂz

Q= (G ) Q| fE)=0) = {(s,a) cQ,

(E* — 6£% 4+ 1) - arctan 5}
1
a>1+ - 52) ,
(E* — 6£% 4+ 1) - arctan 5}
1
a<l+ 1 — 52) ,
(&* — 62 +1) - arctan 5}
=1 . 3.8
) G8
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-40

Figure 4: (Sphere case a negative) The subregions of the E()Tx—region Q,:=(1,+00) X (—o00,0) labeled by the Morse index of the
corresponding circular orbit.

So, there holds that
positive for (¢, ) € QF,

cd + b* is { negative for (¢,a) € Q;,
Z€ero for (&,a) € Qg.

Firstly, we can check that f(£) > 1 holds for all (¢, @) € Q, and for every k € N* there exists (£, a) € Q, such
that k < f5(€) < k + 1. Moreover, it is straightforward to check that

(&* +10£2 4 1) arctan &

k=1<=1+ Fi— &) <a<0,
_ (6£* + 20£2 + 6) arctan & (E* +10£2 + 1) arctan &
k=2=1+ F1-2) <a<l+ E1- &)

and so on. Some simple computations show that k =1 for all (§,a) € Q; U Qg . Now we define the following
planar regions
Q= {(cf,a)e£22_|k<f3(§)Sk+l}. (3.9)

Therefore, by invoking Lemma 2.4, we get

2 if (¢,0) € @ | ),
2k+1  if(Ea)eQ;,, k=12 ..

m(x) =

Itis shown in Figure 4.
We finally are in position to summarize the involved discussion in the following conclusive result for the
sphere.
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Theorem 3.1. Under the above notations, the indices of a circular orbit on sphere are given by

1 if (£, 0) € Q,

if (&, @) € QF | J QI u Q) | .
2k+1 if (&) € Q| JQ, k=12....

m-(x) =42

A direct consequence of Theorem 3.1 concerns the Morse index of the circular orbits in one physically
interesting cases: @ = 2 corresponding to a elastic like potential.

Corollary 3.2. For a =2, then we get m~(x) = 3.

3.2 Circular orbits on the hyperbolic plane
This subsection is devoted to compute the Morse index for circular orbits on the pseudo-sphere. In this case

2
1-¢%

p€) = and q&) = —In® Gtg) £ €(0,1).
We let

aor=m(1FE) ma c@r= Lo

By a direct computations we have

e =% 1ee _ 8+ 40E2
p (5)_ (1_52)35 p (5)_ (1_52)4’

(&) = _w negy . Aala — 1)G* (&) + 4aéG (&)
7@ =-"T 5" ¢ = e '

Notation 3.3. Abusing notation, let us now introduce the following notation similar to that of Equation (2.2), we
have

Po = 2 o = 8¢, n_ 8+ 402
27 0 3 o i
(1-&) (1-&) (1-&)

— r_20G77H(&) n_Aala — DG*A(E) + 4a G 1(&))
BETCE ey 0T (-ay |
"o = 28 o= 483 + 4&, o _ G (&)1~ &)

-y " a-g)” &1+ &)

Since the (RHS) of the equation defining 92 should be positive, we only restrict to the case

By a straightforward computation, we get

L 0+E) o) 1, SEHI6E42 L a —SG eI+ E)
o) Ve 20 -t T T LH1-8)7"

1, -
0 ;,I(’)

, [qg]’ _ 206" A& [ (& + 685 +1) - G(&o) — 2a — D& (1+ &)
&1-8)(1+8)
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Then we have

o, (- L 20+8)  [acrg) L (-gy
e e MR-

d=2g (nmY 41 4\ _ 206 A& (36 + 26 +3) - G(&) +2(a — D& (1+ &) }
T &(1-&) (1+£)

0
Similar to the sphere case, we start determining the sign of d ranging in the parameter region

. (3.10)

Q,:= (0,1) X (0, o).

By the explicit computation of d given at Equation (3.10), we infer that the sign of d is minus the sign of
(385 + 282+ 3) - G(&) + 2(a — D&y (1+ £2). We et

1+¢

&(&) = (3E* +282+3) - ln<1_§> +2a—-DEA+E)  (&a) EQ,

We can check that g,(£) > 0 and consequently there holds d < 0 for all (£, &) € €25.
Next we have to study the sign of b* + cd. By Equation (3.10) and by a direct computation, we get

aG HEN{ (&2 + 622 +1) - G(&) — 2a — DE(1+ &)}

b* +cd = .
&A+)
Now, we observe that since a > 0 and G(£,) > 0, then the sign of b* + cd is equal to the sign of the function
1
&(E):= (&' +6£% + 1)1n<1i“§> —2a —DEA+ &)

So we have following three subregions of 2, according to the sign of g,(&).

0.2 0.4 0.6 0.8 12 1.

Figure 5: (Hyperbolic case a positive) In this figure are displayed the subregions of the {OTx-region Q,:=(0,1) X (0,+o0) labeled
by the Morse index of the corresponding circular orbit.
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4 2 . —
QF:={(&,0) € Q31 £,(8) > 0} = {(i,a)eﬂg a<1+ & F6E +2)§(ir§(§§:)/a 5))},
4 2 . —
Q. ={(a) Q3] g(&) <0} = {(5, @) € Qla>1+ (E+86 + ?‘f(ﬂ(éz—; §)/a g))},
4 2 . —
Qp= (£, 0) €Qs| £(6) =0} = {(&megg a=1+ &6 +Z(irf(;5)/(1 6))}_

So, there holds that
positive for (£, a) € QF,

cd+b* is {negative  for (£, a) € Q;,
zero for (£, ) € Q.

In order to compute the index by Lemma 2.4 we have to determine the value of k. Recall that the value of k
is determined by k - 2z < v/ —adT < (k+1) - 2z. Indeed, we have

T =22 =27t\/ Sol1+y)

) aG (&)1 — R

Moreover, by Equation (3.10) we have

/ad = \/aGa—Z(§0)(3~f§ +282+3) - G(&) + 2a — D& (1+ &)

&(1+&) '
Therefore,
N (3&8 + 282 +3) - G(&)) + 2a — D&y (1+ &)
—_ d . T = 2 . .
‘ " \/ GE)1— &2
Let

(34 + 282 +3) - 1n(g) +2(a — DEA + £2)

83(8):=

Direct computations show that
2
¢ 1-¢

Butitis impossible since the right-hand side of above inequality is negative for £ € (0, 1). Moreover, we can check
that for every fixed « and k € N* there exists (£, @) € Q;r such that k < g5(£) < k + 1. Then we can define the
subregions

k=0=0<gl)<l=0<a<l-

Ge={Emet k<g@<k+1), Qu={EmeRk<g@<k+1}. G
All these subregions are displayed in Figure 5. Invoking Lemma 2.4, then we have the following result.

Theorem 3.4. Under the above notations, the Morse index of the circular orbit on the hyperbolic plane is given by

2k it (&a)eQh uQl
m=(x) = ¢ BRTTRE p=1,2,...

2k +1 it (£0)€Qy,



14 = R.Yang: Central force problems on surfaces DE GRUYTER

As direct consequence of Theorem 3.4, in the special case of a = 2 we get the following result.

Corollary 3.5. For a = 2, the Morse index of the circular solution is given by

m () =2k  if(£2€Q;,, k=23,..

3.3 Euclidean case

The last case is provided by the Euclidean one. We start letting

p&) =1 q&)=-¢"

and by a direct computation, we get
p'(&)=p"&) =0, q(&) = —ag*™, q"(&) = —ala —1)E2

By Equation (2.2), we get

po=1 py =0, py =0,
qO = _58‘7 q:) = _agg_lﬁ qg, = _a(a - 1)53—27
My = éé, 776 = 2&,, 9 = afg_z.

Since the (RHS) of the equation defining 92 should be positive, we only consider the case

a>0.
By a direct computation, we get
7!
Lo =261/ g—z’ 2q, (Inny) = —40558’_2, - [Z‘,’] = —ala — 2)§g‘2.
0

By this, we get that the four constants appearing at Equation (2.3) are the following

a=1, b= age?, (3.13)
0
1

c=Z, d=—ala+2)E2
o

Now, we observe thatd < 0 forall@ > 0 and &, > 0.
Next we need to determine the sign of the term b + cd. By a direct computing we get

negative if a>2,
b’ +cd=—ala —2)E7* is <0 if a=2,
positive if 0<a<2.

By taking into account Equations (3.12) and (3.13) we finally get

_ 2 _ / 1 —— Y
T—g—zﬂ' W’ —ad = a(a+2)§0 2.

—ad-T=2nm-Va+2

Therefore

(3.12)
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and we get that k > 1. Indeed, for every k € N* there exists & > 0 such that k < v/a + 2 < k + 1. For example,
there hold
k=1l=0<ax<2, k=2<2<a<7, k=3=T7<a<ld

and so on.
Then we have the following result.

Theorem 3.6. Under the above notations, the Morse index of a circular orbit in the Euclidean plane is given by

2 if 0<ax<2,
m(x) =

2k+1  if K-2<a<(k+1*-2 for k>2

By Theorem 3.6 we have the following direct corollary.

Corollary 3.7. For @ = 2, we get
m (x)=2.
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