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Abstract: It is well known that the continuity of a poset can be seen as a special distributivity. There is an open
problem: is there an equational characterization for continuous semilattices? Based on equational characteriza-
tions of continuous lattices, bounded complete domains and L-domains, we prove that a special class of domains
can be characterized by an equation. As an application, an equational characterization for a subclass of contin-
uous semilattices is given. Moreover, by using ideals instead of directed sets, we obtain a unified equational
characterization for more subclasses of domains, including that of domains mentioned above. Unfortunately,
even if using ideals, we still can not characterize all of the domains. Some examples are provided to illustrate it.
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1 Introduction

In the late 1960s, Dana Scott found the semantic structure in computer science being close to partial order
structures. Based on this observation, he established Domain Theory, which plays a central role in the field
of theoretical computer science. It is well known that the continuity and the quasicontinity of posets are impor-
tant concept in Domain Theory. These can be used to describe convergence and approximation in order theory
[1-3]. Similar to the study of universal algebra, it raises the question as to whether domains are maintained
under subalgebras, products and homomorphic images. For this question, it was shown in [4] that two special
subclass of domains that continuous lattices and bounded complete domains can be characterized by the dis-
tributivity. This kind of characterization is called an equational characterization. The continuity on complete
lattice can be viewed as an infinite distributive law. In [5], Marcel Erné shows the relationship between continu-
ity and the other laws of infinite distribution. In fact, many infinite distributive laws can be applied to a broader
range. For example, Wei Luan and Qingguo Li showed that quasi-continuity complete semilattice can be char-
acterized by an equation in [6] and Paul Taylor provided an equational characterization for L-domains in [7].
There is an open problem about equational characterization in [8]: is there an equational characterization for
continuous semilattices?

In this paper, we first introduce a concept of an A, dcpo. Then we prove that continuous .4, dcpos can
be characterized by an equation for some given .4 a family of some subsets of the dcpo. In particular, a subclass
of continuous semilattices can be characterized in this way. This partially solves the problem presented in [8].
Moreover, we obtain an equational characterization for a special class of domains including .Ap,, domains, by
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using ideals instead of directed sets. However, we can not characterize general domains in this way, especially
for FS-domains. At last, we give some examples about these characterizations.

2 Preliminaries

In this section, we recall some definitions and results related to the paper. A partially ordered set is a nonempty
set equipped with a partial order <, where the partial order is a binary relation satisfying transitive, reflexive
and antisymmetric. The term poset will be used to denote a partially ordered set.

Definition 2.1. [9]
Let L be a set equipped a partial order < and A be a subset of L.
(1) Anpartial order <, on A is called the hereditary order, if <,=< N(4 X A).
(2) An element x € L is called an upper bound of 4, if a < x for all a € A. Respectively, an element y € L is
called a lower bound of A,if y < aforalla € A.For x € L, wewrite | x={y€Ly<x}andtx={z €
L:x <z}.
(3) Anelement x € L is called the least upper bound of 4, if x < y for each upper bound y of A. And we write
itas \/ A or sup A. Respectively, p is called the greatest lower bound of 4, if ¢ < p for each lower bound ¢
of A. The greatest lower bound is written as A A or inf A.
(4) Aiscalled adirected set, if A isnonempty and every finite subset of A has an upper bound in A. Respectively,
A s called a filtered set, if A is nonempty and every finite subset of A has a lower bound in A.
(5) Aiscalled a lower set, if A = {x € L:x < afor some a € A}. Respectively, A is called an upper set, if A =
{yeLl:a<yforsomeacA}.
(6) Aiscalled aideal, if A is a directed lower set. A is called a filter; if A is a filtered upper set.
(7) Ais called a principal idea, if A is an ideal with \/ A € A. A is called a principal filter, if A is a filter with
NA €A

Definition 2.2. [10]

(1) A complete lattice is a poset in which every subset has a sup and an inf.

(2) Anposetis called a complete semilattice if every nonempty subset has an inf and every directed subset has
a sup.

(3) Aposetis called a dcpo if every directed subset has a sup.

(4) Adcpois called an L-dcpo if every principal ideal equipped with its hereditary order is a complete lattice.

Definition 2.3. [10]

(1) LetL be aposet. We say that x is way-below y, in symbols x < y, iff for all directed subsets D C L for which
sup D exists, the relation y < sup D always implies the existence of a d € D with x < d. For each x € L, we
denote by { x the set of all elements are way-below x.

(2) Aposet L is called continuous if it satisfies the axiom of approximation:

(Vxel)x= \/T ¢ X,

ieforallx e L, thesety x={u€L|u<x}isdirectedandx = \/{u e L |u<x}.

(3 Adcpo which is continuous is called a domain.

(4) A domain which is a semilattice is called a continuous semilattice.

(5) A domain which is also an L-dcpo is called an L-domain.

(6) A domain which is a complete lattice is called a continuous lattice.

(7) A domain which is a complete semilattice is called a bounded complete domain.

(8) Anelementx of Lis called a compact element, if for each directed set D of L with \/ D exists, x < \/ D always
implies x < d for some d € D (i.e., x < x). Denotes K(L) as the set of all compact elements.
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(9) Aposet L is called algebraic if it satisfies the axiom of approximation:

wxeLx=\/"t xnKw)),

i.e.for all x € L, the set (¥ x N K(L)) is directed and x = \/({ x N K(L)).

Definition 2.4. [11] Let L be a poset. A topology 7 on L is called the Alexandrov topology, if 7 is the set of all
upper set of L.

For a poset L and x € L, let J(x) = {I € Id(L) | x < supI} where Id(L) is the set of all ideals of L. The
following propositions are excerpted from [8, Proposition I-1.5, Proposition I-4.3].

Proposition 2.5. If L is an algebraic domain, then L is a domain.

Proposition 2.6. Let L be a poset. Then the following conditions are equivalent:
O y<x
@ yenNJw.

Theorem 2.7. [4] Let L be a complete semilattice. Then the following conditions are equivalent.

(1) L is continuous.

() Let{x;,|j€ ],k €K(j)} be a nonempty family of elements in L such that {x;, | k € K(j)} is directed for
each j € J. Then the following identity holds:

/\\/IT(GK( k= \/TfeM/\Xj: Gy
je] j€J

where K(j) is a index set for any j € J and M is the set of all choice functions f: | — U]E]K(j) with f(j) € K(j)
forallje]J.
If L is a complete lattice, then these conditions are also equivalent to
() Let{x;x €] X K} beany family in L. Then the following identity holds:

A V%= \/;GN/\ V Xk

jejkek jeJkef()
where N denotes the set of all choice functions f from | into the finite subsets of K, i.e., f: ] — fin(K).

Next, we recall the definition of connectedness in order theory.
Definition 2.8. [12] Let P be a poset. Then P is called connected, if every two elements x, y can be connected
by a zigzag in P, i.e. there is n € N and there are X, ..., X, Yo, ..., ¥, € P such that x = X,y = x, and x; < y;
whenever 0 < j — i < 1. A subset A of P is called a connected set, if A is connected as a subspace of P.

The following theorem is an excerpt of [7, Proposition 1.3.3].
Theorem 2.9. Let L be an L-dcpo. Then the following conditions are equivalent.
(1) L is continuous.

(@ Let{D;};c; = {{x;x | k € K()}}c; be a family of directed subsets of L such that {\/Dj | j€J}isacon-
nected set. Then the following identity holds:

./\vlzem)xf:" = V;GM/\XJ, F0p
&J jeJ

where M is the set of all choice functions f: ] - |J je/KG) with f(j) € K(j) for all j € .
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3 Main results

First, we propose some families of dcpos. For convenience, we denote by PFS(L) the family of all principal filters
and singleton sets of a poset L.

Definition 3.1. Let L be a dcpo and .4 be a family of sets with PFS(L) C A.
(1 Liscalled an A,, dcpo if inf A exists for each A € A.
(2) Liscalled an .4, dcpo if for each family

{Dj}je; = x| K EK(D}} e

of directed subsets of L with {\/ D; | j € J} € A, then there exists a choice function f: ] — (J jeK() such
that f(j) e K(j) forallj € Jand {x; ;;, | J€ J} € A.
(3) Liscalled an .Ap,, dcpo, if L is both an A,, dcpo and an A, dcpo.

Example 3.2.

(1) Let L be a complete lattice and A be the family of all subsets of L. Then L is an Ap,, dcpo.

(2) LetL be a complete semilattice and .A be the family of all nonempty subsets of L. Then L is an Ap,, dcpo.

(3) LetL beanL-dcpo and .4 be the family of all connected sets of L. Then L is an A, dcpo.

(4) LetL be adcpo and A be the family of all compact subsets of L with respect to Alexandrov topology. Then
Lis an A, dcpo if and only if L is a semilattice.

Now we give the main result of this paper.

Theorem 3.3. Let L be a dcpo and A be a family of sets with PFS(L) C A. If L is an Ap,, dcpo, then the following
are equivalent.

(1) L is continuous.

@ If{D;}je; = {{x;x | k € K()}};e; is afamily of directed sets with {\/ D; | j € J} € A, then the following

identity holds:
1 1
vfem/\xix i = /e\]\/keK(j)Xj’k’
j

jeJ
where M is the set of all choice functions f: | — | ieyK() such that f(j) € K(j) for all j € ] and {x; ;) |je
J} € A

Proof. We prove that (1) implies (2).
To this end, we first claim that { A ier Xi.fo) | f € M} isdirected. Assume f;, f, € M. For each j € J, there is
Xj k, € DyWith X; £, X; 1(jy < X x,- Then {1x; K N D;} ey is a family of directed sets with

{\/(ij,k,-”Dj)IJ'EJ}EA.

Take a choice function f:]— Uje]K(j) such that x; x;) € Xk, N D; and {x; p; | j€J} € A. Then
NierXi nir NierXi s < NjegX;, rp and f € M. Thus { A ;¢; X; s | f € M} is directed.

Assume that {D;};c; = {X; x | k € K(j)} ;¢ is a family of directed sets with {\/D; | j € J} € A. For con-
venience, let [hs denote the left side of the equation of (2) and rhs denote the right one. For each f; € M and
Jo €1.Xj, 1y < Vlek(jo)xjo,k' Thus it is clear that lhs < rhs.

Assume y <rhs. Given j € ], there is k; € K(j) such that y < x; I Because {1x; K, N D;|j € J}isafamily

of directed sets with
{Vaxunoplier}={\/pliesjea,
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there is a choice function f € M such that x; K, < Xj, £ foreach j € Jand {x; s, | j € J} € A. It follows that
Y < Njej Xj.pp- S0 rhs < lhs.

Now we show that (2) implies (1).

Fixx € L,let {I;},e; = {{x;x | k € K())}} ;c; denote all of ideals with sup in 1 x. The equation of (2) holds,
because {\/I; | j € J} = 1x € A. We claim that

{/\Xi,ﬂj)|f€M} = X.

jeJ]

Sincez € ximpliesz € ey I thereis f € Msuchthatx; ¢, = zforeach j € ], due to the fact that A includes
all the singleton sets. That is ¥ x € {\je; X; s | f € M}. Conversely, for each j, € J and all f € M, we have
NjerX, 1y < Xj, g0y 1t follows that A\ ;e ;x; 1) € I;,. Hence, A\ ;) X; s € NjeyI; =4 x. In the equation, ths =
\/T V{ xandrhs = A t x. Thus, x = \/T { x. Therefore, L is continuous.

Remark 3.4. Note that we can characterize many domains by changing .4. From the examples in Example 3.2,
we obtain that Theorem 2.7 and Theorem 2.9 are two special cases of Theorem 3.3.

Taking bounded complete domains as an example, let L be a dcpo and .4 be the set of all nonempty subsets.
Then L is a bounded complete domain if and only if L is an .4, dcpo satisfying Theorem 3.3.

For a special subclass of continuous semilattices, we have the following equational characterization.

Corollary 3.5. Suppose that dcpo L is also a semilattice, and A is the family of all compact subsets of L with respect
to Alexandrov topology. If L is an Ay, dcpo, then the following are equivalent.

(1) L is continuous.

@ If{Dj}je; = {{x;« | k € K(}} e, is afamily of directed sets with {\/ D; | j € J} € A, then the following

identity holds:
1 1
\/fEM/\Xj’ fo = /\\/keK(j)Xj’k’
jej je]

where M is the set of all choice functions f: | — | je/K()) such that f() €K() forallj € Jand {x; 5 | j €
JleaA

Proof. Since a compact set of the semilattice L with the Alexandrov topology always has an inf, L is an .4, dcpo.
Thus, we conclude that (1) equivalent to (2) by Theorem 3.3.

Meet continuous is a distributivity on directed complete semilattice. In [13], Hui Kou stated that the property
can be extended to general dcpos and the characterization uses sets to replace points. By using ideals instead of
directed sets, we will obtain an equational characterization for a subclass of domains, including that of domains

mentioned above. For convenience, we denote by PF(L) the family of all principal filters of a poset L.

Definition 3.6. Let L be a dcpo and .A be a family of sets with PF(L) C A. Then L is called an .4;,, dcpo, if

(L € 1dw)

je]
for each {I;};c; CIdL)with {\/I; | j € ]} € A.

Proposition 3.7. Let L be a dcpo and A be a family of sets with PFS(L) C A. IfL is an Ap,, dcpo, then L is an Ay,
dcpo.
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Proof. Assume that {I;};c; = {{x; | kK € K(j)}};; is a family of ideals with {\/I; | j € J} € A. Since L is
an Ajp dcpo, there exists f: ] — U}E]K(j) such that f(j) € K(j) for all j € J and {x; ¢ | j € J} € A. Thus,
Njey X.pop exists and Aje; X; 5 € (e, I Thatis (e, I; # 0.

Fixa,b € (¢, I;. Then there exists k; € K(j) such thata, b < Xk, for each j € J. So {1x; K NI jEJ}is
a family of directed sets with {\/(1x; K, N I})| j € J} € A. And there exists a choice function f: ] — | J i/ KO
such that x; 1, € (1x; N 1)) foreach j € Jand {x; s | j € J} € A.Itfollows that A\ ;c; X; ;) € (e, 1; and
a,b < /\/E] X; rij)- Therefore, ﬂ]E] I;is an ideal.

Theorem 3.8. Let L be a dcpo and A be a family of sets with PF(L) C A. If L is an Ay, dcpo, then the following
conditions are equivalent.

(1) L is continuous.

@ If{l;};e; CLAL) with{\/I; | j € J} = tx for some x € L, then the following identity holds:

W N = (N 1.

jej jeJ

Proof. (1) implies (2): Let {I;} e, C Id(L) with {\/I; | j € J} € A. We have |(\/ ﬂje] IycC ﬂje] WV I)), since
V Njejlj < VI, for each j, € J. Conversely, for each y € ¢, L(\/ I)). Assume z €} y. Then z € I; for each
JE€J duetoy <\ I; It follows that \/,¢,, z < \/ [, I; Since L is a domain, we have that y = \/ { y, Thus,

Yy eV Nje I

(2) implies (1): Assume x € L. Let {I;},c; = {I € Id(L) | x < \/I}. By Proposition 2.6, ﬂje] I; = x. So we
only need to prove that x € |(\/ (g, I)). It is clear that x € (), L(\/I)) by the definition of {I;} ;c;. Since
{VI;|j€ ]} € A wehave

(V)= 0uva)

jeJ jeJ

Then the conclusion is proved.

4 Some examples

In this section, we will give some examples. First, we illustrate that there is a poset which belongs to the subclass
of continuous semilattice discussed in Corollary 3.5. Before this, we give the following concept of an A-domain.

Definition 4.1. A poset L is called an A-domain if 1 x is a finite lattice for each x € L under the hereditary order.
Lemma 4.2. IfL is an A-domain, then L is an algebraic domain.

Proof. Assume D is a directed set of L. Fix d € D, then 1d N D is a finite directed set. Hence, \/(1d N D) exists in
D. Moreover, all elements in L are compact elements because \/ D exists in D for each directed set D. It follows

that L is algebraic.

Example 4.3. Let L = {F C N | F is finite} be ordered by reverse inclusion and .4 be all of compact subsets of
L with respect to Alexandrov topology. Then L is an .4, dcpo and an A-domain.

Lemma 4.4. Let L be an A-domain, and A be the family of all the principal filters and singleton sets. Then L is an
Apy dcepo.

Proof. Clearly, L is an Ay, dcpo. Assume {D;};c; = {{x;, | k € K(j)}};; is a family of directed sets with
{\VD;|j€ J} € A We can choose Xjk, = V/ D; for each j € J. And there is a choice function f: J — [J;;K(j)
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given by f(j) = k; for each j € J. Then

{X/‘,f(f)Uef}:{\/DjIJGJ}EA.

Thus, L is an Ap,, dcpo.

Thus each A-domain L can seen be as an Ap,, dcpo where .4 = PFS(L). The following example indicates
that there is an .4, dcpo, which may be not an L-domain or a continuous semilattice.

Example 4.5. Let L = {a, b, c} be a set. Define a relation < on L hy

x<yiffx=yory=c

Obviously, < is a partial order on L and (L, <) is an A-domain. But (L, <) is neither a continuous semilattice nor

an L-domain.

Finally, we propose the following example to reveal that the method of using ideals can not be used to

characterize all of domains.

Example 4.6. LetF = {HLJr1 |neN}U{1}and L = {{0,1} x F}J{F x {0}}. We define a partial order <* on

L below:
a,&F, by <b,,

az = 0, al S bz,
(ay, by) <* (ay, by)iffs a, € F, a; < a,,
a, =1,

a,=1 b <b,

where “ <” is the usual order on R.
We now prove that the relation <* forms a partial order.
We first prove that <* is reflexive. Given (a, b) € L.
() a=0,b€F.Then(a,b) <* (a,b) by <}.
(i) a=1,b € F.Then(a,b) <* (a,b) by <}.
(iii) ae€F,b=0.Then (a,b) <* (a,b) by S;

alzo....s’l’
aleF”"S’z,
aleF""Sér
aleF""S;p
a1=1....s’5’

Secondly, we prove that <* is antisymmetric. Given (a, b), (¢, d) € L with (a, b) <* (c,d) and (c,d) <* (a, b).
i (a,b) Sf (¢, d). Then ¢ = 0 or 1. By <¥, <¥, we have ¢ # 1. Hence ¢ = 0 and it follows that (a, b) Sf (c,d)

_4) —5!
and (c, d) S’f (a, b). It implies thata=c=0,b =d.

(i) (a,b) 5;‘ (¢, d). Then ¢ = 0. Because (c, d) <* (a, b), we have (c, d) Sf (a, b) and a ¢& F, a contradiction.
(iii) (a,b) 5;‘ (c,d). Thenb =d=0.And c =d, by (c,d) s;: (a,b). Thatisa = c.
@iv) (a,b) sj; (c,d). Thenc=1.By(c,d) S;‘ (a, b), we have a = 1, a contradiction.

w) (ab) 5; (c,d). Then a = ¢ = 1. Since (¢, d) 5; (a, b), it holds that b = d.

Finally, we prove the transitivity of <*. Given (a, b) <* (c,d) <* (e, f).

O (@b < (cd),cd< (e /).

Thena=c=0,e=00rlb<d< f. And(a,b) <* (e, f), by <J.
(i) (a b)<i (¢, d), (¢, d) < (e, f).

Thena=0,c=e=1b<d< f.And (a,b) <* (e,f),bys’lk.

(i) (a,b) < (¢, d),(c,d) < (e, f).
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Thena<d,c=0,e=00rl,d<f.
If e = 0, then (a, b) S; (e, ).

Ife =1, then (a, b) sj'; (e, f).

(iv) (ab) <] (cad).

If (¢, d) 5;‘ (e, f),thene=0anda <c< f,ie,(a,Db) 5;‘ (e, f).
If (¢, d) 5;‘ (e, f),thena < c<eand(a,b) 5;‘ (e, ).

If (¢, d) sz (e, f),thene=1and (a, b) gj (e, f).

W (ab)<;(cd), (c,d) < (e f)

Thenc =e=1and (a, b) SZ (e, f).
i) (ab) <k (¢, d),(c,d) < (e, )

Thena=c=ezlandbsdsf.Thatis(a,b)sék (e, ).

Hence <* is a partial order.
To understand the above dcpo L more intuitively, we can see Figure 1.

(1,1)

—_

( 2 70) Figure 1: The poset L in Example 4.6.

Forr € Fand (a,b) € L,we set [r={x € R:x<r inR}, |*(a,b) = {(c,d) € L:(c,d) <* (a,b)} and 1*(a, b) =
{(c,d) € L:(a,b) <* (c,d)}.
There is an approximate identity {h, },cy consisting of finitely separating functions defined below.

(<O, max{lbnlni_i_l}), a=0,

h,((a, b)) = | (max{lan lnLH},o), b=0,

(1, max{ lbn lnL-i-l }) else.

Thus L is an FS-domain, and also a domain.
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Let .A be all of principal filters of L. Then L \ {(1,1), (0,1)} and |*(0, 1) are two ideals, and
10,1 = {\/\{(@,D, 0, D}, \/ 1*(0,D} € A,

However, L \ {(1,1), (0,1)} N 1(0,1) is not an ideal. It shows that L is not an .4, dcpo. Therefore, L is not an
Apy, depo, even though L is an FS-domain.

Example 4.6 also tells us that an equational characterization for FS-domains has not been established. So it
is a good follow-up effort to resolve the above question.
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