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1 Introduction

In 1940, Ulam [1] introduced the stability problem for group homomorphisms, which can be framed as: under
what conditions does an object that approximately satisfies a given property necessarily approximate an object
that satisfies the property exactly? In 1941, Hyers [2] provided a partial affirmative answer to Ulam’s question for
additive functions (Cauchy functions) in Banach spaces, known as the Hyers stability theorem. This result was
subsequently extended by Aoki [3], who generalized the stability concept to functions involving p-powers of the
norm. Later, in 1978, Rassias [4] further expanded Hyers’ theorem to allow for an unbounded Cauchy difference.

The study of stability problems in functional equations has seen substantial progress through the con-
tributions of numerous mathematicians. This advancement can be primarily attributed to the exploration of
three distinct perspectives: the theoretical analysis of functional equations, the study of normed spaces, and the
development and application of various methodological approaches.

Over the past few decades, the stability of various functional equations has been the subject of extensive
study and generalization by many mathematicians (see [5-9]). These investigations have significantly advanced
the understanding and application of stability results for functional equations. In particular, a classic contri-
bution to the field was made by Alsina [10], who investigated the Hyers-Ulam stability problem for functional
equations in the generalized context of probabilistic normed spaces. A notable methodological approach in the
study of stability problems is the fixed point method. Baker [11] was the first to introduce Ulam’s type stabil-
ity using this method, which we refer to as the fixed point alternative method. This approach has since been
applied extensively in a range of studies (see [12—18]). Fixed point theory, as a powerful tool, plays a crucial role
in the research, study, and application of nonlinear functional analysis, optimization theory, and variational
inequalities (see [19-22]). Numerous authors have contributed to this field by introducing new types of fixed
point theorems across various directions. In particular, Brzdek and Cieplifski [23] introduced a fixed point
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existence theorem for nonlinear operators in metric spaces and utilized their results to address stability prob-
lems in Non-Archimedean metric spaces. This approach is referred to as Brzdek’s fixed point method. Recently,
Brzdek’s fixed point method has been applied to various functional equations and normed spaces (see [24—28]).
For instance, Benzarouala, Brzdek, and Oubbi [29] applied a fixed point theorem to establish the Ulam stability
for a general linear functional equation, which includes the Jensen equation as a particular case, within the
framework of random normed spaces.

The theory of fuzzy sets, first introduced by Zadeh [30] in 1965, provided a new framework for modeling
uncertainty. This foundation was soon extended to topological concepts. A crucial step was generalizing the
triangle inequality, which required a binary operation known as the continuous triangular norm (t-norm). The
theory of t-norms was extensively developed by Schweizer and Sklar [31], whose work, along with that of Alsina
[32], established their fundamental role in constructing the triangle inequality for probabilistic metric spaces.
This concept became central to the axiomatic definition of a fuzzy metric space first proposed by Kramosil and
Michdlek [33]. A different and widely used definition of a fuzzy metric space was later introduced by George and
Veeramani [34], which has provided the basis for many subsequent developments. In a parallel development,
these topological ideas were combined with algebraic properties to create fuzzy normed spaces, with influential
early formulations by pioneers such as Katsaras [35] and Felbin [36].

With these fuzzy structures established, researchers began to investigate classical problems within them.
Mirmostafaee and Moslehian made significant contributions by applying Hyers-Ulam stability theory first to
general fuzzy normed spaces [37] and then more specifically to the non-Archimedean setting [38]. The study
of stability for functional equations within these frameworks has since become an active and fruitful area of
research.

This paper focuses on investigating the stability of Jensen’s functional equations in non-Archimedean fuzzy
normed spaces. For completeness, we begin by recalling the fundamental definitions that form the basis of our
work.

Definition 1.1 (Continuous triangular norm(¢-norm) [31]). A binary operation =:[0,1] X [0,1] — [0,1] is called
a continuous triangular norm (or simply a continuous t-norm) if it satisfies the following properties for all
a,b,c,d € [0,1]:

1. asb=bxa,ax(bxc)=(axb)«c

2. Ifa<candb <d,thenaxb <cxd,;

3. axl=aq

4. x is continuous.

Well-known examples of continuous t-norms include the product t-norm a+b = a - b, and the minimum t-norm
a+b =min{a,b}.

Definition 1.2 (Fuzzy Normed Space [37]). Let X be a real linear space and let + be a continuous t-norm. A
function N: X X (0, 00) — [0,1] is said to be a fuzzy norm on X if it satisfies the following conditions for all
X,y €X:

(FN1) N(x,t) = 1for all ¢ > 0 if and only if x = 0;

(FN2) N(kx, t) = N(x, ﬁ) forallt > 0 and k € R\ {0};

(FN3) N+ y,t+38) > N(x,t) =« N(y, s) for all s, t > 0;

(FN4) The function N, (t): = N(x, t) is continuous on (0, co) and gl;}N(x, t)=1

The triple (X, N, =) is called a fuzzy normed space.
Definition 1.3 (Non-Archimedean Fuzzy Normed Space [38]). A fuzzy normed space (X,N, =) is called a
non-Archimedean fuzzy norm if the triangle inequality (FN3) is replaced by the following stronger condition

forallx,y € Xands,t > 0:

(NA-FN3) N(x + y, max{s, t}) > N(x, ) = N(y, t).
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Definition 1.4 (Fuzzy Metric Space [34]). Let X be an arbitrary set and let + be a continuous t-norm. A function
M:X X X X (0,00) — [0,1] is called a fuzzy metric on X if it satisfies the following conditions for all x, y,z € X
ands, t > 0:

(FM1) M(x, y,t) = 1ifand only if x = y;

(FM2) M(x, y, t) = M(y, x, t);

FM3) M(x,z,t+8) > M(x,y,t) = M(y, z, 5);

(FM4) The function M Xy(t): = M(x, y, t) is continuous on (0, c0).

The triple (X, M, =) is called a fuzzy metric space.

Definition 1.5 (Non-Archimedean Fuzzy Metric Space [39]). A fuzzy metric space (X, M, =) is called a non-
Archimedean fuzzy metric space if the triangle inequality (FM3) is replaced by the following stronger condition
forallx,y,z€ Xands,t > 0:

(NA-FM3) M(x, z, max{s,t}) > M(x,y,s) = M(y, z, t).

Example 1.6. This example illustrates a construction of both a non-Archimedean fuzzy normed space and its
associated non-Archimedean fuzzy metric space using the minimum ¢t-norm, a + b = min{a, b}.

Let the underlying vector space be the set of rational numbers X = Q, equipped with the p-adic norm || -
which is a well-known ultranorm satisfying

I,

Ix +yll, <max{|ix|l,, llyll,}, forallx,y € Q.
Using this p-adic norm, we define the fuzzy norm N: Q X (0, c0) — [0, 1] by
N, t) =e W/t forallx e, t> 0.

Then the triple (Q, N, =) forms a non-Archimedean fuzzy normed space.
Next, we define the induced fuzzy metric M: Q X Q X (0, o0) — [0, 1] by

M(x,y,t):=N(x—y,t) = e "I/t forallx,y e Q, t> 0.
Since the fuzzy norm N satisfies the non-Archimedean inequality
N(x + y, max{s, t}) > min{N(x,s),N(y, )},

the induced fuzzy metric M inherits the same property. Therefore, the triple (Q, M, =) is a non-Archimedean
fuzzy metric space.

In particular, Moslehian and Rassias [40] studied the stability problem of functional equations in non-
Archimedean spaces. For a comprehensive overview of recent developments in this area, we refer the reader
to the very recent survey by Ciepliniski [41]. Let f be a function satisfying f(n*> + m?) = f(n?) + f(m?) for all
positive integers m and n, and assume that f is multiplicative or completely multiplicative. Such a function
can be regarded as a solution to an arithmetic functional equation. Koh [28] investigated the stability problem
of this arithmetic functional equation by applying Brzdek’s fixed point method within the framework of a
non-Archimedean fuzzy normed space.

In this paper, we focus on the following Jensen’s functional equation:

2 f(%) = f0O + f). 1)

Kominek [42] was the first to obtain results concerning the stability of Jensen’s equation, and the Hyers-Ulam-
Rassias stability of this equation was subsequently explored by Jung [43]. Furthermore, Moslehian [44] examined
Jensen’s functional equation in the setting of non-Archimedean normed spaces, while Cddariu and Radu [45]
addressed its stability via the fixed point alternative method.
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One of the main objectives of the present work is to investigate the applicability of two fixed point tech-
niques — namely, Brzdek’s fixed point method and the fixed point alternative method — to a broad class of
functional equations, including Jensen’s functional equation (1.1), in various settings such as non-Archimedean
fuzzy normed spaces. Additionally, we aim to examine and compare the distinctive features and advantages
associated with each method.

2 Brzdek’s fixed point method

We will first reproduce the Brzdek’s fixed point method. Brzdek and Cieplinski [23] introduced the existence
theorem of the fixed point for nonlinear operators in metric spaces:

Theorem 2.1 ([23]). Let X be a non-empty set, (Y,d) be a complete metric space and A: IRﬂi - Rﬂi be a non-
decreasing operator satisfying the hypothesis

lim Ad, = 0 for every sequence {5, },cn In R’i with %Hg 0, =0.

n—co
Suppose that 7:YX — YX is an operator satisfying the inequality

A(TEX), Tu(x)) < AAE, )0, forallé, ue€Y*andx € X
where /\: (Y*)* - R¥ is a mapping which is defined by

A&, )= d(E(x), ux)), forallé, yu € Y~ andx € X.
If there exist functions €: X — R, and ¢: X — Y such that
d(T p00), p(x)) < e(x)

and

g5 (x): = Z (A"e)(x) < ©

nen,

for all x € X, then the limit
'llim(T "$)(x)

exists for each x € X. Moreover; the function ¢ € YX defined by
wx):= %i_)rﬁl)lo(T"(l))(X)

is a fixed point of T with
d(p(x), y(x)) < €*(x)

forallx € X.
Brzdek and Cieplinski [23] used this result to prove the stability problem of functional equations in non-

Archimedean metric spaces and obtained the fixed point results in arbitrary metric spaces. In particular,
Brzdek’s fixed point method was also obtained from Theorem 2.1 (see [27]).
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Theorem 2.2 ([27]). Let X be a non-empty set, (Y, d) be a complete metric space and fi, f,, f3: X — X be given
mappings. Suppose that 7:Y* — Y* and A:R¥ — R¥ are two operators satisfying the following conditions

3
AT EC), Tp(x)) < Y dE(f00), u( f(x)) @
k=1
and ,
AS():= Y 8(f,(0)) 2.2)
k=1

forallé, pe v, s e Rﬂi and x € X. If there exist : X — R and ¢: X — Y such that

o0

d(T p(x), Pp(x)) < e(x) and €*(x): = Z (A"e)(x) < o0 2.3)
n=0
forallx € X, thenthe limitlim,_, . (7" ®)(x) exists for each x € X. Moreover; the functiony (x): = lim,_, . (T"¢$)(x)
is a fixed point of T with
d(p(x), y(x)) < €*(x)
forallx € X.

Now, we will investigate the stability problem for the Jensen’s functional equation (1.1) by using Brzdek
fixed point method on an non-Archimedean fuzzy metric space and non-Archimedean fuzzy normed space. We
consider the space R, equipped with a non-Archimedean fuzzy metric M and the minimum t-norm =, denoted
by (R, M, »). We assume that M is generated from an underlying ultrametric on R, that makes it invariant,
that is,

M(x+z,y+zt)=Mkx,y,t) forallx,y,z€e R, andt> 0.

Furthermore, let (R, N, =) be a complete non-Archimedean fuzzy normed space, also with the minimum t-
norm =. These structures provide the setting for studying the stability of Jensen’s functional equation under
non-Archimedean fuzzy norms.

Theorem 2.3. Let h: R, — R, be a function satisfying

L0:={meN|s(m)+2s(1J;m)<1}¢¢, 2.4)

where
s(m):=inf{t € R, | h(mx) < th(x) forallx € R,}.

Assume that for allx,y € R, n,m € N, and s > 0, the following inequality holds:

N(h(nx) + h(my), s) > N(s(n) h(x) + s(m) h(y), s). (2.5
Suppose f:R, — R satisfies
M(2f(532). f00+ FO) t) 2 N(hOO + RO, 1) 6)

for all x,y € R, and t> 0. Then there exists a unique function T:R,_ — R satisfying Jensen’s functional
equation (1.1), such that
M(f00), T(x), t) > N(soh(x), t) @7

forallx € R, andt > 0, where

Sp:= inf 1+ sm)

B m—(7) 28)




6 = D.Kang and H. Koh: Jensen’s functional equation DE GRUYTER

Proof. Letm € L. By letting y = mx in the inequality (2.6), we have

(2 f(1 T, £+ fm), £) 2 NGO + hmo, ), >0, X ER,. 29)

From inequality (2.5), it follows that

m(2f (™), 00+ famo, €) > Nie, 00, o), 2.10)

where
Cr(X):=(1+s(m)h(x), t>0,x€eER,.

To utilize the Brzdek fixed-point method, we must first define two operators as outlined in Theorem 2.2:
1. Define 7,,: RR+ — RR+ by

ng(x):=§(12m )+5<1J;m >—§(mx)=2§(Hme)—§(mx). @.11)

2. Define A,;: RE* - R? by

Appu(x): = y(i_;mx> + u(lzmx) + u(mx) = 2y<1_;mx> + pu(mx) (2.12)

forallx e R, and ¢ e RR+, y € IRE*. Clearly, A,, satisfies the condition (2.1) of Theorem 2.2. Now, we will
check the condition (2.2) in Theorem 2.2.

For &, u € R®+ and t > 0, we have

M (T, E(), Tou(X), t)

) 2(4) o
Zmin{ ( ( tm ) E(mx), u(“ém >+§< +m )—é(mx),t),
(5] (25) om0, 2 (55) )

= min{M((f,(x)), u(f,(x)), ), M(E(f,(x)), u(£,(x)), )},

where f,00) = 2, f,(x) =
From (2.10), we have

M (T, £00, 00, 1) = M(2 f(l ), 00+ fm, ) 2 N((+ stm)h(0, 1)

Also, note

A0 < (1+ s(m))[Zs(1 L) 4 stm) 0o, xR,
By induction on k € N, we obtain

14+m

k
A () = (1+ s(m))[Zs( )+ s(m)] h(x), x€ER,.
Hence, summing over k gives

1+ s(m)
1—s(m)— 23(”7’")

cfn(x): = Z A{ncm(x) = h(x), A?ncm(x) = ¢, (x).
=0
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By the Brzdek fixed-point theorem (Theorem 2.2), the limit
T (x):= kl}g?’”’f f(x)
exists for eachm € Ly and x € R, with
M(f(x), T,,(x), 1) > N(c; (), 1), t>0.

Using induction on k € N, we verify

M@ﬁ@KX;U)ZHUH4ﬁﬂmQZNGRC;m)+ﬂmrwm+mwm> Xy ER,.
The base case k = 0 holds from (2.10). The inductive step uses the non-Archimedean property of M:
M(7 (27 (*52)). T 100 + TE O, )

=u(ari (2 (V5 5)) 2 ().

er(E50) <o 74 er(F5) <o

> min{ur (7 (2 (575 Y) 7 (55) + 7 () o)

(7 (27 (m*52) ). Tk om0 + T flmy). ) |

() ] (147 (%))

N<[Zs(1+ )+s(m)] (h(mx) + h(my)), t)}

<[ s(1m )+s(m)] (hCX) + h(y), ()>}

We note that

1+m

0<s(m)<Zs< 5 )+s(m) <1and0<s(1zm) <23<1—;m> +s(m) < 1.

Since N(x, ) is a non-decreasing, we have
k1 X+y K+ k+1
M<7'm (2f( . )) THF00) + TR f(y), t)

>N [2s(1 J; ™)+ s(m)]k(h(x) +h(y)),

i)

= N| (h(x) + h(y)), d k+1
|2s( 5 ) + stm)| ]
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for ¢t > 0. Passing to the limit k — oo, we deduce

N[ (hG) + h(y)). t -1,

[Zs( Lm ) + s(m)] !

2

where 0 < ZS(HT”') +s(m) <1

Hence we have
X+Yy

2Tm(

so T, satisfies the functional equation (1.1) uniquely.
Assume T: R, — R satisfies the equation (1.1) and

) =T, +T,(y), x,y€ER,, (2.13)

M(f(00), T(x),t) > N(Lh(x), t)

for L > 0 constant.
Let

ZT(X +y) = T(x) + T(y) (2.14)

for all x, y € R,. Then we will show that T = T, for each m € L,. By letting y = mx in the inequality (2.14), we

have
1+ m)x

T(x) = 2T< 5

> — T(mx),
forx e R, andt > 0.Let my € L,. Then

M(T(X), T, (%), t) > min {M(T(x), f(x), t), M(f(x), T, (X), 1)}

1+ s(mg)

> min < N(L h(x),t),N h(x),t
1—s(m,) — 23(”%)
By letting Sy = ((1 + s(my)) + (1 — s(m,) — Zs(”%))L), we have
0 k
1+s(m0)1 +L=5Y [s(m0)+23<1+m0)] :
1—s(m0)—23<%) k=0 2

Since N(s, -) is a non-decreasing, we note

1+ s(my)
1—s(my) — Zs(1+2’”0 )

min < N(L h(x), t), N| h(x),t

1
>N h(X), 1+s(my) + Lt

1=s(1+m2)—s(m3)

0 k
_ N(SOZ [s(mo) + 2s<1 e )] h(x), t).
k=0

oo k
M(T(X), Ty (), ) 2 N<SOZ [s(mo) + 23(”2’”0)] h(0), t), 2.15)

k=0

Hence we get
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forx e R, and t > 0. For l € N, assume that

(S

k
M(T(0, T, (00, ) > N(SOZ [s(mo) n 2s<1 + iy )] hoo, t>,

k=l

forx € R, and ¢t > 0. We will checkit by using mathematical induction on . If I = 0, it follows from the inequality
(2.15). Then

M(T(x), T, (), 1)

- M<2T((1+2m°)x> — T(my), 2T, <(1+2’"0)X> — T,,, (my), t>

min {M(T<(1+2m°)x> T, <(1+2m0)x>,t>,M(T(m0x), T, (M), t)}
[+ k
min {N(Zs<1+2m°>802 [s(m0)+23<1+2m°)] h(x), t),
k=l
- 1+ m k
0
N<s(m0)80kz=; [s(m0)+23< 5 )] h(x),t)}

oo k
2N(So Z [s(mo)+23<1+2m°>] h(x),t>,

k=l+1

v

\

for x € R, and t > 0, where S, is a positive constant depending on m, and L. Hence it holds whenever [ € N,
Letting the summation index [ - oo, we obtain

) k
N(s0 Y [s(mo)+2s<1+2m°>] h(x), t) -1,

k=I+1

implying T = T;, forallm, € L,. O
Corollary 2.4. Let h: R, — (0, 00) be a mapping such that

h(“T"x) +h(no)

rl[LIElc inf ngﬂg hoO =0. (2.16)
Suppose that f: R, — R satisfies
M (2f(X52). f00 + FOLt) 2 N(ROO + . 1) @)

forallx,y € R, andt > 0. Then there exists a unique additive function T: R, — R such that
M(f(x),T(x),t) > N(h(x),t) (2.18)

forallx e R, andt > 0.

Proof. For eachn € N, define

1+n
A h(7x> + h(nx)
T oem. h(o

By the definition of s(n) as in Theorem 2.3, we observe that

140
(150 = ) <,
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h(nx)
s(n) = su .
(W= S0P G5y <
Therefore, we get
s<1+Tn> +s(n) < 2a,. (2.19)

By assumption, the sequence {a,} has a subsequence {a,, } such that

R( ™% x ) + h(n, x)
( 2 ) oo (2.20)

lim su
oo en, hx)

Then from (2.19) and (2.20), we have

which implies
lims<1+2nk> =0, klims(nk) =0.

Thus,
lim— TSy

k— 1+n,
*1—s(n) — 23( S k)

Now, letting s, = 1 as in Theorem 2.3, the inequality (2.18) follows directly from the stability result (2.7). O

3 Fixed point alternative method

We will first present the theorems of the fixed point alternative in a generalized metric space. Subsequently, we
will analyze stability using the fixed point alternative method.

Definition 3.1. Let X be a set. A function d: X X X — [0, oo] is called a generalized metric on X if d satisfies
1 dx,y)=0ifandonlyifx = y;

(2 dix,y)=d(y,x)forallx,y € X;

) dx,z) <d(x,y)+d(y,z)forallx,y,z € X.

It is important to note that the principal distinction between a generalized metric and a traditional metric
is that the range of a generalized metric can include infinity. We will now present one of the fundamental results
in fixed point theory. For the proof, refer to [46].

Theorem 3.2 (The alternative of fixed point [46], [47] ). Suppose that we are given a complete generalized metric
space (2, d) and a strictly contractive mapping T: X — X with Lipschitz constant 0 < L < 1. Then for each given
X € X, either

A(T"x, T""'x) =00 foralln >0,

or there exists a natural number n, such that

1. d(T"x, T""'x) < co for alln > ny;

2. The sequence {T"x} is convergent to a fixed point y* of J;
3. y*isthe unique fixed point of T in the set

Y={yeX|d(Thx,y) <oo};

4. dy,y*) < L d(y,Ty)forally €.

- 1-L
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To investigate the stability of the Jensen’s functional equation, we define an operator Df(x, y) which mea-
sures how much a function f deviates from satisfying the equation. For a mapping f: R, — R, the operator is
defined as follows:

pfoey) =2f(*32) - fo0 - f). xyeR,.

The following theorem, which is proved by applying the fixed point alternative method, is the main result of our
analysis.

Theorem 3.3. Let (R, N, =) be a non-Archimedean fuzzy normed space with the minimum t-norm = . Let ¢: Ri —
[0, o) be a function for which there exists a constant L with 0 < L < 1 such that

N(56@x29).t) 2 NLpx. ). 0,
forallx,y € R, andt > 0. Let f:R, — R be a function satisfying f(0) = 0 and the inequality
NDf(x,y),0) > N(¢(x, y), 1) GD

for all x,y € R, and t > 0. Then there exists a unique Jensen’s function R:R, — R defined by R(x) =N —
lim,,_, zln f(2"x) such that

N(f(X) = RX), ) > N(ﬁ $(x,0), t) 32)

forallx e R,.

Proof. Consider the set
Q={g:R, > R|g0)=0}

and define the generalized metric on by
d(g,h) = inf{c € (0, 00) | N(g(x) — h(x), 1) > N(c(x,0),t) forallx e R,, t> 0}.

It is easy to show that (€2, d) is a complete metric space. Now define a function T: Q — Q by
Tg = 1820, g€,

forallx e R,.
Let g,h € Q and suppose d(g, h) < ¢ for some ¢ € (0, c0). Then

N(g0) — h(x),2t) > N(c(x, 0), 2t)
forallx € R, and ¢ > 0. By replacing x with 2x, we obtain
N( @0 - hen,t) = N(Lpex 0, L) 2 Naepx, 0,0
2 2 b - 2 b 9 C - b b b
where the last inequality follows from the assumption on ¢ and L. Hence,
d(Tg,Th) < Ld(g,h),

which shows that T is a strictly contractive mapping on € with Lipschitz constant L.
Now, by setting x = 2x, y = 0, and ¢ = 2t in inequality (3.1), we obtain

N( Foo - % F(20), t) > N(L(x, 0, 1) = N(q’)(x, 0), %)

forall x € R, and ¢ > 0, which implies
d(Tf,f) <L < 0.
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By induction, we obtain
1 t
N(f00 = 5 f@0,t) 2 N(px.0), 17 )

forallx € R, and ¢ > 0. As n — oo, we haveN<¢(x,0), Lin) —1,since0 <L < 1.
Hence, by the alternative fixed point theorem (Theorem 3.2), there exists a fixed point R of T in Q such that

RO =N — nmélzln £ (3.3)

forallx € R,.
Now, let x = 2"x, y = 2"y, and t = 2"t in equation (3.1). Then,

N(Df(2"x,2"y),2"t) > N(¢(2"x,2"y), 2™1),

which implies
N(zlnpf(znx, 2"y), t> >N (zln¢(2"x, 2"y), t) zN <¢(X’y)’ ftn )

forallx,y € R, andt > 0.
Asn — oo, we have N <¢(x, y), Li> — 1, so R satisfies the Jensen’s functional equation (1.1). Therefore, R is

a solution to the Jensen equation. The uniqueness of R also follows from the fixed point theorem.
Furthermore, we obtain

1
d(f,R)Smd(Tf,f),

and thus I
N(F() — R(X), 6) > N(m H(x,0), t)

for all x € R, and ¢ > 0. This proves the desired inequality (3.2). O
Corollary 3.4. Let 0 and L be positive real numbers with 0 < L <1, and let f:R, — R be a mapping satisfying

f(0) = 0 and the inequality
NDf(x,y),0) > N(6ClIx|l + IlylD. t) (3.4)

forallx,y € R, andt > 0. Then there exists a unique solution R: R, — R such that
Lo
N(f(x) —R(x),t) >N mHX”’t (3.5

forallx e R, andt > 0.
Proof. Let ¢(x,y) = 0(||x|| + [yl for all x, y € R,. Then the inequality (3.4) becomes
NDf(x,y),t) > N(¢(x, y), 1),

which satisfies the condition of Theorem 3.3. Therefore, by applying Theorem 3.3, we obtain

N0 = RO0,0 2 N( 12, 0),€) = N<1L_9L ||x||,t>

forallx € R, and t > 0. O
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Remark 3.5. One of the primary aims of this paper is to assess whether Brzdek’s fixed point method can be
effectively applied in various spaces, including non-Archimedean fuzzy normed spaces. The primary results
on stability estimates within Brzdek’s fixed point method indicate that this approach necessitates the non-
Archimedean fuzzy metric to possess the invariant property. This invariance property is not a requirement in
other stability methods. Additionally, it is important to highlight the use of the relation y = mx in the Brzdek’s
fixed point method. This linear relationship between the variables x and y makes it possible to prove the results
and contributes to a highly effective stability approach. On the other hand, the fixed point alternative method
typically necessitates strictly contractive mappings and scaling processes. To investigate the stability problem
related to Jensen’s functional equation (1.1) using the fixed point alternative method, it is essential that one of
the variables, x or y, should be zero. We also propose the following open problems for further investigation: Can
Brzdek’s fixed point method be extended to other types of functional euations and normed spaces?
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