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Abstract: This paper ascertains the limiting profile of the positive solutions of heterogeneous logistic elliptic

boundary value problems under nonlinear mixed boundary conditions. Specifically, the study considers cases

when the nonlinear flux on certain regions of the boundary decays to negative infinity, while vanishing on

the complementary regions. The main result establishes that the limiting profile of these solutions is a positive

function that satisfies the logistic equation, vanishes on the regions where the nonlinear flux decays to negative

infinity, and exhibits zero flux on the complementary boundary pieces. The mathematical analysis carried out

in this work employs functional and monotonicity techniques as key tools.
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1 Introduction and main results

This work focuses on analyzing the asymptotic behavior of positive solutions to the following heterogeneous

logistic elliptic boundary value problem with nonlinear mixed boundary conditions as γ ↑ ∞:

⎧⎪⎨⎪⎩
−Δu𝛾 = 𝜆u𝛾 − a(x)u

p
𝛾 in Ω, p > 1,

u𝛾 = 0 on Γ0,

𝜕u𝛾 = −𝛾b(x)uq𝛾 on Γ1, q > 1.

(1.1)

The analysis is conducted under the following assumptions:

i) Ω is a bounded domain of ℝN , N ≥ 2 of class 2, with boundary 𝜕Ω = Γ0 ∪ Γ1, where Γ0 and Γ1 are two

disjoint components of 𝜕Ω and Γ1 = ΓD
1
∪ Γ

1
, being ΓD

1
and Γ

1
two connected pieces, open and closed

respectively as N − 1 dimensional manifolds, such that 𝜕Γ

1
= 𝜕Γ

1
⊂ Γ

1
.

ii) −Δ stands for the minus Laplacian operator in ℝN and 𝜆 ∈ ℝ.
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iii) The potential a ∈ (Ω̄), with a ⪈ 0, measures the spatial heterogeneities inΩ and satisfies that

Ω0 := int{x ∈ Ω : a(x) = 0} ≠ ∅, Ω0 ∈ 2, (1.2)

𝜕Ω0 = Γ1 ∪ Γ0
0
, Γ0

0
:= 𝜕Ω0 ∩Ω, dist

(
Γ0
0
,Γ1

)
> 0. (1.3)

SetΩ+
:=Ω∖Ω̄0.

iv) 𝜕u𝛾 = ∇u𝛾 ⚬ n̄, where n̄ is the outward normal vector field to 𝜕Ω.
v) b ∈ (Γ1 ) is a positive potential satisfying

Γ

1
= b−1(0) and ΓD

1
= b−1(0, ‖b‖L∞(Γ1 )

] (1.4)

and 𝛾 > 0.

Figure 1 shows a possible configuration of the domainΩ, its boundary 𝜕Ω = Γ0 ∪ ΓD
1
∪ Γ

1
and the boundary

conditions in each piece of the boundary.

The existence and asymptotic behavior of positive solutions to elliptic boundary value problems with a

bifurcation-continuation parameter in the boundary conditions has been extensively studied in previousworks,

such as [1–4]. In this paper, we analyze the limiting profile of positive solutions to (1.1) as 𝛾 tends to infinity.

Equation (1.1)models a logistic elliptic boundary value problemwithnonlinearmixedboundary conditions, aris-

ing in the context of coastal fishery harvesting under spatially heterogeneous conditions (cf. [5]). Additionally,

taking into account that the nonnegative solutions of (1.1) correspond to the steady states of positive solutions

in the associated parabolic problem, (1.1) plays a key role in population dynamics with spatial heterogeneities.

This is particularly relevant in scenarioswhere, due to the heterogeneous distribution of natural resources, some

regions of the habitat boundary exhibit zero population flux, while others experience a nonlinear population

flux.

To analyze the limiting behavior of the positive solutions to (1.1) as 𝛾 tends to infinity,we focus on the positive

weak solutions of the following heterogeneous logistic elliptic boundary value problem, which involves mixed

and glued Dirichlet-Neumann boundary conditions:

⎧⎪⎪⎨⎪⎪⎩

−Δu = 𝜆u− a(x)up in Ω, p > 1,

u = 0 on Γ0,

u = 0 on ΓD
1
,

𝜕u = 0 on Γ

1
.

(1.5)

These weak solutions will play a crucial role in our analysis.

Figure 1: Configuration of Ω and 𝜕Ω = Γ0 ∪ ΓD
1

∪ Γ

1
.
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The main result of this work (Theorem 1.1) states that if the parameter 𝜆 belongs to a suitable interval, to

specify later, the limiting behavior of the positive solutions to (1.1) in H1(Ω) as 𝛾 tends to infinity coincides with
the unique positive weak solution of (1.5).

Before stating our main findings, we introduce some notations and previous results. Let us denote

W2(Ω) :=
⋂
p>1

W2
p
(Ω),

∞
Γ0∪ΓD1

(Ω) :=
{
𝜙: Ω̄→ ℝ : 𝜙 ∈ ∞(Ω) ∩ (Ω̄) ∧ supp𝜙 ⊂ Ω̄∖

(
Γ0 ∪ ΓD

1

)}
,

and let H1
∗
(Ω) be the closure in H1(Ω) of the set of functions ∞

Γ0∪Γ
1

(Ω), that is

H1
∗
(Ω) = ∞

Γ0∪Γ1
(Ω)H

1(Ω).

By construction if u ∈ H1
∗
(Ω), then u = 0 on Γ0 ∪ ΓD

1
.

By a positive weak solution of (1.5) we mean any function 𝜑 ∈ H1
∗
(Ω) satisfying

𝜑 > 0,
∫
Ω+

a(x)𝜑 p+1 < ∞,

and such that for each 𝜉 ∈ ∞
Γ0∪ΓD1

(Ω), or 𝜉 ∈ H1
∗
(Ω), the following holds

∫
Ω

∇𝜑∇𝜉 +
∫
Ω

a(x)𝜑 p𝜉 = 𝜆
∫
Ω

𝜑𝜉.

In particular, taking 𝜉 = 𝜑 ∈ H1
∗
(Ω) we have that

∫
Ω

|∇𝜑|2 +
∫
Ω

a(x)𝜑 p+1 = 𝜆
∫
Ω

𝜑2.

Hereafter we denoteB ,B∗
(
Γ

1

)
andB∗

0

(
Γ

1

)
the boundary operators defined by

Bu :=
{

u on Γ0,

𝜕u on Γ1,
B∗

(
Γ

1

)
u :=

⎧⎪⎨⎪⎩
u on Γ0,

𝜕u on Γ

1
,

u on ΓD
1
,

B∗
0

(
Γ

1

)
u :=

⎧⎪⎨⎪⎩
u on Γ0

0
,

𝜕u on Γ

1
,

u on ΓD
1
,

and byD the Dirichlet boundary operator on 𝜕Ω.
In the sequel we will say that a function u ∈ W2

p
(Ω), p > N is strongly positive in Ω, and we will denote it

by u≫ 0, if u(x) > 0 for each x ∈ Ω ∪ Γ1 and 𝜕u(x) < 0 for each x ∈ Γ0 such that u(x) = 0.

Let us consider the eigenvalue problem{
−Δ𝜑 = 𝜎𝜑 in Ω,
B𝜑 = 0̄ on 𝜕Ω. (1.6)

By a principal eigenvalue of (1.6) we mean any eigenvalue of it which possesses a one-signed eigenfunction and

in particular a positive eigenfunction. Owing to the results in [6, Theorem 12.1] it is known that (1.6) possesses

a unique principal eigenvalue, denoted in the sequel by 𝜎Ω
1
[B ], which is simple and the least eigenvalue of

(1.6). Moreover, the positive eigenfunction 𝜑
1
associated to it, unique up to a multiplicative constant, satisfies

𝜑
1

≫ 0 in Ω,

and in addition

𝜑
1

∈ W2(Ω) ⊂ 1+𝛼(Ω̄) for all 𝛼 ∈ (0, 1).
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Also, hereafter we denote 𝜎Ω
1
[D] the principal eigenvalue of−Δ inΩ subject to homogeneous Dirichlet bound-

ary conditions.

A function 𝜑 ∈ W2
p
(Ω), p > N is said to be a positive strict supersolution of the problem (−Δ,Ω,B ) if

𝜑 > 0 inΩ and the following holds {
−Δ𝜑 ≥ 0 in Ω,
B𝜑 ≥ 0 on 𝜕Ω,

with some of the inequalities strict.

Now, let us consider the eigenvalue problemwithmixed and gluedDirichlet-Neumannboundary conditions

on Γ1 given by {
−Δ𝜑 = 𝜇𝜑 in Ω,
B∗

(
Γ

1

)
𝜑 = 0̄ on 𝜕Ω. (1.7)

A function 𝜑 is said to be a weak solution of (1.7) if 𝜑 ∈ H1
∗
(Ω) and for each 𝜉 ∈ H1

∗
(Ω) the following holds

∫
Ω

∇𝜑∇𝜉 = 𝜇
∫
Ω

𝜑𝜉.

The value 𝜇 is an eigenvalue of (1.7), if there exists a weak solution 𝜑 ≠ 0 of (1.7) associated to 𝜇. In that case, it

is said that𝜑 is a weak eigenfunction of (1.7) associated to the eigenvalue 𝜇. By a principal eigenvalue of (1.7) we

mean any eigenvalue of it which possesses a one-signed eigenfunction and in particular a positive eigenfunction.

Owing to the results in [7, Theorem 1.1] it is known that (1.7) possesses a unique principal eigenvalue,

denoted in the sequel by 𝜎Ω
1

[
B∗

(
Γ

1

)]
, which is simple and the smallest eigenvalue of all eigenvalues of (1.7).

Moreover, the positive eigenfunction 𝜑∗ associated to it, unique up to a multiplicative constant, satisfies that

𝜑∗ ∈ H1
∗
(Ω) and

𝜑∗(x) > 0 a.e. in Ω.

Moreover, 𝜎Ω
1

[
B∗

(
Γ

1

)]
comes characterized by

𝜎Ω
1

[
B∗

(
Γ

1

)]
= inf

𝜑∈H1
∗(Ω)∖{0}

∫
Ω
|∇𝜑|2
∫
Ω
𝜑2

=
∫
Ω
|∇𝜑∗|2
∫
Ω
(𝜑∗ )2

(1.8)

(cf. [7, (2.27)]). In the sameway, substituting in (1.7)Ω byΩ0 andB
∗
(
ΓN
1

)
byB∗

0

(
ΓN
1

)
, owing to [7, Theorem 1.1]

we obtain the following variational characterization for 𝜎
Ω0

1

[
B∗

0

(
Γ

1

)]

𝜎
Ω0

1

[
B∗

0

(
Γ

1

)]
= inf

𝜑∈H1
∗(Ω0 )∖{0}

∫
Ω0

|∇𝜑|2
∫
Ω0

𝜑2
=

∫
Ω0

|∇𝜑∗
0
|2

∫
Ω0

(
𝜑∗
0

)2 , (1.9)

where𝜑∗
0
stands for the positive principal eigenfunction associated to the principal eigenvalue 𝜎

Ω0

1

[
B∗

0

(
Γ

1

)]
,

unique up to a multiplicative constant. Taking into account the variational characterizations (1.8) and (1.9), it is

clear that

𝜎Ω
1

[
B∗

(
Γ

1

)]
< 𝜎

Ω0

1

[
B∗

0

(
Γ

1

)]
.

Moreover, owing to [7, Corollary 3.5] and [8, Proposition 3.2] it is known that

𝜎Ω
1
[B ] < 𝜎Ω

1

[
B∗

(
Γ

1

)]
< 𝜎Ω

1
[D] < 𝜎

Ω0

1
[D], (1.10)

and

𝜎Ω
1
[B ] < 𝜎

Ω0

1
[B ] < 𝜎

Ω0

1

[
B∗

0

(
Γ

1

)]
< 𝜎

Ω0

1
[D], (1.11)
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but no clear monotonicity relationship exists between 𝜎Ω
1
[D] and 𝜎

Ω0

1

[
B∗

0

(
Γ

1

)]
, since the relative position of

both depends on the sizes ofΩ0 with respect toΩ and of Γ

1
with respect to Γ1.

The problem of ascertaining the limiting profile of the positive solutions of (1.1) when 𝛾 tends to infinity was

already analyzed in [3], in the particular case when the potential b is a positive potential bounded away from

zero on Γ1, that is, b(x) ≥ b > 0 on Γ1 and in addition, either Ω = Ω0, i.e. a = 0 in Ω, or Ω̄0 ⊂ Ω (Theorem 1.1

and Theorem 1.2-ii) therein, respectively). In both cases it was proved (adapting the notation therein to our

framework) that if 𝜆 ∈
(
𝜎Ω
1
[B ], 𝜎Ω

1
[D]

)
, then

lim
𝛾↑∞

‖u𝛾‖L∞ = 0. (1.12)

Owing to the fact that under assumptions of [3, Th.1.1 and Th.1.2] for each fixed 𝜆 ∈
(
𝜎Ω
1
[B ], 𝜎Ω

1
[D]

)
and for

each 𝛾 > 0 there exists a unique positive solution u𝛾 of (1.1), considering 𝛾 as the bifurcation parameter, we

conclude from (1.12) that (1.1) exhibits bifurcation from the trivial branch (𝛾, u) = (𝛾, 0) when 𝛾 tends to infinity.

In this work we extend the previous analysis about the limiting profile of the positive solutions of (1.1) when

𝛾 tends to infinity, to cover the more complicated case when Ω0 ⊂ Ω satisfying (1.2) and (1.3), and in addition,

either the potential b vanishes on some regions of Γ1 (cf. Theorem 1.1), or b is bounded away from zero on Γ1 (cf.

Theorem 1.2).

The following is the main result of this work

Theorem 1.1. Under the general assumptions (1.2), (1.3) and (1.4), assume in addition that

𝜎Ω
1
[D] < 𝜎

Ω0

1

[
B∗

0

(
Γ

1

)]
(1.13)

and

𝜎Ω
1
[D] < 𝜆 < 𝜎

Ω0

1

[
∗
0

(
Γ

1

)]
. (1.14)

Then,

lim
𝛾↑∞

‖u𝛾 − u∗‖H1(Ω) = 0, (1.15)

where u𝛾 and u
∗ stand for the unique positive solution of (1.1) and (1.5), respectively.

Figure 2 shows the behavior of the limiting profile u∗ of the positive solution u𝛾 of (1.1) when 𝛾 tends to

infinity versus the profile of the potential b(x) on Γ1.

Figure 2: Behavior of u∗ on Γ1 versus profile of b(x)
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Now, Theorem 1.1 asserts that if (1.2), (1.3) and (1.4) hold, then, the contrary to the cases analyzed in [3], the

bifurcation of (1.1) to positive solutions from the trivial branch (𝛾, u) = (𝛾, 0) when 𝛾 tends to infinity fails, since

(1.15) holds.

Remark 1.1. Owing to (1.10) and (1.11) we have that

𝜎Ω
1
[D] < 𝜎

Ω0

1
[D] and 𝜎

Ω0

1
[B ] < 𝜎

Ω0

1

[
B∗

0

(
Γ

1

)]
< 𝜎

Ω0

1
[D].

Moreover, it is known that whenΓ

1
is very small versusΓ

1
, that is, whenΓ

1
is almostΓ1, then, 𝜎

Ω0

1

[
B∗

0

(
Γ

1

)]
approaches to 𝜎

Ω0

1
[D]. Then, in this situation, condition (1.13) will be satisfied.

In the particular case when the potential b ∈ (Γ1 ) is positive and bounded away from zero on Γ1, that is,

when ΓD
1

= Γ1 and Γ

1
= ∅, the following result holds, which is the second main result of this paper.

Theorem 1.2. Under the general conditions (1.2) and (1.3), assume in addition that b ∈ (Γ1 ) is positive and

bounded away from zero on Γ1 and

𝜎Ω
1
[D] < 𝜆 < 𝜎

Ω0

1
[D]. (1.16)

Then,

lim
𝛾↑∞

‖u𝛾 − uD‖H1(Ω) = 0, (1.17)

where u𝛾 stands for the unique positive solution of (1.1) and uD denotes the unique positive solution of the problem

{
−Δu = 𝜆u− a(x)up in Ω, p > 1,

u = 0 on 𝜕Ω. (1.18)

Then, the results obtained in [3, Th.1.1, Th.1.2] together with Theorem 1.1 and Theorem 1.2 show that the

profile of the positive potential b on the boundary condition plays a crucial role in the shape of the limiting

profile u∗ of the positive solutions of (1.1) when 𝛾 tends to infinity.

The main technical tools used to carry out the mathematical analysis of this work are functional and

monotonicity techniques.

The structure of this paper is as follows. Section 2 collects some previous results that are going to be used

throughout this work, and Section 3 contains the proofs of Theorem 1.1 and Theorem 1.2.

2 Preliminaries, notations and previous results

Let us denote by Λ𝛾 , Λ∗ and ΛD the range of values of the parameter 𝜆 for which (1.1), (1.5) and (1.18) possess

positive solution, respectively. It is known that

ΛD =
(
𝜎Ω
1
[D], 𝜎

Ω0

1
[D]

)
, (2.1)

and for each 𝜆 ∈ ΛD the positive solution of (1.18) is unique and strongly positive in Ω (cf. [9, Lemma 3.1,

Theorem 3.5]).

Let b ∈ (Γ1 ) be the positive continuous potential appearing on the boundary conditions of (1.1) satisfying

(1.4) and 𝛾 > 0. Then, by construction we have that

𝛾b ∈ (Γ1 ), 𝛾b ⪈ 0, (2.2)

and

Γ

1
= (𝛾b)−1(0) = b−1(0), Γ

1
= (𝛾b)−1(0, ‖𝛾b‖L∞(Γ1 )

] = b−1(0, ‖b‖L∞(Γ1 )
]. (2.3)
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Owing to (2.2) and (2.3) next result follows from [10, Theorem 1.1-i)].

Proposition 2.1. For each 𝛾 > 0, (1.1) possesses a positive solution if, and only if

𝜎Ω
1
[ ] < 𝜆 < 𝜎

Ω0

1

[
∗
0

(
Γ

1

)]
, (2.4)

that is

Λ𝛾 =
(
𝜎Ω
1
[ ], 𝜎

Ω0

1

[
∗
0

(
Γ

1

)])
. (2.5)

Moreover, for each 𝜆 ∈ Λ𝛾 , the positive solution of (1.1) is unique and strongly positive inΩ. In the sequel we will
denote it by u𝛾 . Furthermore,

u𝛾 ∈ W2(Ω) ⊂ 1+𝛼(Ω̄) ∀𝛼 ∈ (0, 1).

Next result provides us with a comparison method and it is proved following similar arguments to those

used in the proof of [11, Proposition 3.2].

Proposition 2.2. Assume (2.4) and letΘ𝜆 ∈ W2
p
(Ω), p > N be a positive strict supersolution (subsolution) of (1.1).

Then,

Θ𝜆 > u𝛾 (Θ𝜆 < u𝛾 ).

As for the existence and uniqueness of positive solution of (1.5), next result follows adapting to our frame-

work the arguments given in [12, Theorem 3].

Proposition 2.3. Problem (1.5) admits a positive weak solution u∗ ∈ H1
∗
(Ω) ∩ L∞(Ω) if, and only if

𝜎Ω
1

[
B∗

(
Γ

1

)]
< 𝜆 < 𝜎

Ω0

1

[
B∗

0

(
Γ

1

)]
,

that is,

Λ
∗
=

(
𝜎Ω
1

[
B∗

(
Γ

1

)]
, 𝜎

Ω0

1

[
B∗

0

(
Γ

1

)])
. (2.6)

In this case, the solution u∗ is unique.

3 Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1: Pick 𝜆 satisfying (1.14). Since any positive constant is a positive strict supersolution of the

problem (−Δ,Ω,), it follows from the Characterization of the strong maximum principle [13, Theorem 2.5]

that 𝜎Ω
1
[D] > 0 and hence, (1.14) implies

0 < 𝜎Ω
1
[D] < 𝜆.

To prove the result we will show that (1.15) holds for every sequence of real numbers {𝛾n}∞n=1 such that

lim
n→∞

𝛾n = ∞. (3.1)

Subsequently, we fix a sequence satisfying (3.1) and set

un := u𝛾n , Λn :=Λ𝛾n
, n ≥ 1.

Since (3.1) holds, we can assume without loss of generality that

𝛾n > 𝛾1 > 0, n > 1. (3.2)

Also, due to (1.10), (1.11), (1.13), (1.14), (2.5) and (2.6), we have that
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𝜆 ∈
(
𝜎Ω
1
[], 𝜎

Ω0

1

[
∗

(
Γ

1

)])
= Λn ∩ Λ∗ ∩ Λ, n ≥ 1. (3.3)

Then, it follows from Proposition 2.1 and (2.1), the existence for each n ≥ 1 of a unique positive solution of (1.1)

and (1.18), un and uD, respectively, which are strongly positive inΩ and

un, uD ∈ W2(Ω) ⊂ H2(Ω).

In particular,

𝜕u < 0 on 𝜕Ω. (3.4)

Also, owing to (3.3), it follows from Proposition 2.3 the existence of a unique positive weak solution u∗ ∈
H1

∗
(Ω) ∩ L∞(Ω) of (1.5).

Moreover, thanks to (3.4) it is clear that the function uD is a positive strict subsolution of (1.1) for each n ≥ 1,

and therefore, it follows from Proposition 2.2 that

u < un, n ≥ 1. (3.5)

Also, thanks to (3.2), it is easy to prove that u1 is a positive strict supersolution of (1.1) for each n ≥ 2 and hence,

it follows from Proposition 2.2 that

un < u1, n ≥ 2. (3.6)

Thus, (3.5) and (3.6) imply that

0 < u < un ≤ u1, n ≥ 1. (3.7)

On the other hand, multiplying (1.1) by un and integrating by parts it becomes apparent that

0 <
∫
Ω

|∇un|2 = 𝜆
∫
Ω

u2
n
−
∫
Ω

a(x)u
p+1
n − 𝛾n∫

ΓD
1

b u
q+1
n , (3.8)

and hence, since un is strongly positive inΩ, a ⪈ 0, b ⪈ 0 and 𝛾n > 0, it follows from (3.7) and (3.8) that

0 <
∫
Ω

|∇un|2 < 𝜆
∫
Ω

u2
n
≤ 𝜆

∫
Ω

u2
1
. (3.9)

Now, owing to the fact that u1 ∈ W2(Ω) ⊂ L∞(Ω), it follows from (3.7) and (3.9) the existence of a constantM > 0

such that ‖un‖H1(Ω) ≤ M, n ≥ 1. (3.10)

Moreover, owing to (3.7) and (3.10), it is apparent that along some subsequence, again labeled by n,

0 < L := lim
n→∞

‖un‖H1(Ω). (3.11)

In the sequel we will restrict ourselves to dealing with functions of this subsequence.

Owing to (3.7) and (3.8) we have that

𝛾n∫

ΓD
1

b u
q+1
n < 𝜆

∫
Ω

u2
n
≤ 𝜆

∫
Ω

u2
1
, n ≥ 1. (3.12)

Thus, since u1 ∈ L∞(Ω), it follows from (3.12) that there exists a constant C > 0 such that

0 < 𝛾n∫

ΓD
1

b u
q+1
n ≤ C, n ≥ 1, (3.13)

and hence, (3.13) and (3.1) imply that along some subsequence, again labeled by n,
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lim
n→∞∫

ΓD
1

bu
q+1
n = 0. (3.14)

In particular, since b(x) > 0 for all x ∈ ΓD
1
, it follows from (3.14) that

lim
n→∞

un(x) = 0 a.e. x ∈ ΓD
1
.

On the other hand, since the injection operatorH1(Ω) ↪ L2(Ω) is compact, it follows from (3.10) the existence of

u ∈ L2(Ω) and a subsequence of un, n ≥ 1, again labeled by n, such that

lim
n→∞

‖un − u‖L2(Ω) = 0. (3.15)

To complete the rest of the proof it suffices to prove that (3.11) and (3.15) imply that u = u∗ and

lim
n→∞

‖un − u‖H1(Ω) = 0,

since this argument can be repeated along any subsequence of the original sequence. To prove it, set

𝑣n :=
un‖un‖H1(Ω)

, n ≥ 1.

By construction, ‖𝑣n‖H1(Ω) = 1, n ≥ 1, (3.16)

and owing to (3.7) the following holds

‖𝑣n‖L∞(Ω) = ‖un‖L∞(Ω)‖un‖−1H1(Ω)
≤ ‖u1‖L∞(Ω)‖un‖−1L2(Ω)

≤ ‖u1‖L∞(Ω)‖u‖−1L2(Ω)
:= M̃. (3.17)

Also, owing to (3.16), it follows from the continuity of the trace operator on Γ1, t1 ∈ (H1(Ω),W
1

2

2
(Γ1 )) and of the

injection operator j : W
1

2

2
(Γ1 ) ↪ L2(Γ1 ), the existence of a constant C1 > 0 such that

‖𝑣n|Γ1
‖
W

1
2
2
(Γ1 )

≤ C1, ‖𝑣n|Γ1
‖L2(Γ1 )

≤ C1, n ≥ 1. (3.18)

Now, since by construction 𝑣n provides us with a positive solution of the problem

⎧⎪⎨⎪⎩
−Δ𝑣n = 𝜆𝑣n − a(x)u

p−1
n 𝑣n in Ω,

𝑣n = 0 on Γ0,

𝜕𝑣n = −𝛾nb u
q−1
n 𝑣n on Γ1,

(3.19)

(3.7), (3.16) and (3.19) imply that

‖−Δ𝑣n‖L2(Ω) = ‖𝜆𝑣n − a(x)u
p−1
n 𝑣n‖L2(Ω) ≤ C2‖𝑣n‖L2(Ω) ≤ C2, (3.20)

for

C2 :=𝜆+ ‖a‖L∞(Ω)‖u1‖ p−1
L∞(Ω)

.

Then, owing to (3.18) and (3.20), it follows from the Lp-elliptic estimates of Agmon, Douglis and Nirenberg [14]

the existence of a constant C3 > 0 such that

‖𝑣n‖H2(Ω) ≤ C3, n ≥ 1. (3.21)

Moreover, taking into account the continuity of the trace operator on Γ1, t1 ∈ (H1(Ω),W
1

2

2
(Γ1 )) and of the

injection operator j : W
1

2

2
(Γ1 ) ↪ L2(Γ1 ), it follows from (3.21) the existence of a constant C4 > 0 such that

‖∇𝑣n|Γ1
‖L2(Γ1 )

≤ C4, n ≥ 1. (3.22)
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SinceH1(Ω) is compactly embedded in L2(Ω), it follows from (3.16) the existence of 𝑣 ∈ L2(Ω) and a subsequence
of 𝑣n, again labeled by n, such that

lim
n→∞

‖𝑣n − 𝑣‖L2(Ω) = 0. (3.23)

In particular,

lim
n→∞

𝑣n(x) = 𝑣(x) a.e. x ∈ Ω,

and since 𝑣n > 0, n ≥ 1, we obtain that

𝑣 ≥ 0 inΩ.

In addition, due to the compactness of the injection operator from W
1

2

2
(Γ1 ) to L2(Γ1), it follows from (3.18) the

existence of 𝑣̃ ∈ L2(Γ1 ) and a subsequence of 𝑣n, again labeled by n, such that

lim
n→∞

‖𝑣n − 𝑣̃‖L2(Γ1 )
= 0. (3.24)

Now, let K be any compact subset of ΓD
1
. Since b(x) > 0 for all x ∈ ΓD

1
and b ∈ (Γ1 ), set

bK :=min
x∈K

{b(x)} > 0.

Then, owing to (3.19) the following holds on K

(𝜕𝑣n(x))
2 = 𝛾2

n
b2(x)𝑣2

n
(x)u

2(q−1)
n (x) ≥ 𝛾2

n
b2
K
u
2q
n (x)‖un‖−2H1(Ω)

. (3.25)

Also, since (3.11) holds, there exists n0 ∈ ℕ such that

‖un‖H1(Ω) ≤ 2L, n ≥ n0. (3.26)

Now, (3.25) and (3.26) imply that

(𝜕𝑣n(x))
2 ≥

(
𝛾nbKu

q
n(x)

2L

)2

for each x ∈ K, n ≥ n0,

and hence,

u
2q
n (x) ≤

(
2L 𝜕𝑣n(x)

𝛾n bK

)2

for each x ∈ K, n ≥ n0. (3.27)

Then, (3.27) and (3.22) imply that for n ≥ n0 the following holds

‖un‖2qL2q(K ) ≤
(

2L

𝛾nbK

)2

∫
K

(𝜕𝑣n(x))
2 ≤

(
2L

𝛾nbK

)2‖∇𝑣n‖2L2(Γ1 )
≤

(
2LC4
𝛾nbK

)2

. (3.28)

Now, owing to (3.1), letting n→∞ in (3.28) gives

lim
n→∞

‖un‖L2q(K ) = 0,

and since L2q(K) ⊂ L2(K) we have that

lim
n→∞

‖un‖L2(K ) = 0. (3.29)

Thus, (3.11) and (3.29) imply that

lim
n→∞

‖𝑣n‖L2(K ) = 0 (3.30)

in any compact subset K ⊂ ΓD
1
. In particular,

lim
n→∞

𝑣n(x) = 0 a.e. x ∈ K ⊂ ΓD
1
.
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Now we are going to prove that since (3.30) holds in any compact subset K ⊂ ΓD
1
and (3.17) holds, then

lim
n→∞

‖𝑣n‖L2(ΓD1 ) = 0. (3.31)

In particular

lim
n→∞

𝑣n(x) = 0 a.e. x ∈ ΓD
1
.

Indeed, given any 𝜀 > 0, take a compact subet K contained in Γ

1
such that

|Γ

1
∖K|Ł2(Γ1 )

<
𝜀2

2M̃2
, (3.32)

where | ⋅ | stands for the Lebesgue measure in L2(Γ1) and M̃ the constant defined in (3.17). On the other hand,

taking into account that (3.30) holds, there exists n0(𝜀) ∈ ℕ such that

‖𝑣n‖L2(K ) < 𝜀√
2
, ∀ n > n0 := n0(𝜀). (3.33)

Now, owing to (3.17), (3.32) and (3.33), it is apparent that

‖𝑣n‖2L2(Γ
1

) =
∫

L2
(
Γ
1

)
𝑣2
n
=

∫
K

𝑣2
n
+

∫
Γ
1
∖K

𝑣2
n
<

𝜀2

2
+ 𝜀2

2
= 𝜀2, n > n0.

Thus, for any 𝜀 > 0 there exists n0(𝜀) ∈ ℕ such that ‖𝑣n‖L2(Γ
1

) < 𝜀 for any n > n0, which concludes the proof

of (3.31).

Then, since by construction 𝑣n|Γ0
= 0, n ≥ 1, it follows from (3.31) that

lim
n→∞

‖𝑣n‖L2(Γ0∪ΓD1
) = 0.

We now show that 𝑣n is a Cauchy sequence in H
1(Ω). Indeed, since (3.19) holds, it is apparent that

⎧⎪⎨⎪⎩

−Δ(𝑣m − 𝑣k ) = 𝜆(𝑣m − 𝑣k )− a(x)
(
𝑣mu

p−1
m − 𝑣ku

p−1
k

)
in Ω,

𝑣m − 𝑣k = 0 on Γ0,

𝜕(𝑣m − 𝑣k ) = −b
(
𝛾mu

q−1
m 𝑣m − 𝛾ku

q−1
k

𝑣k

)
on Γ1.

(3.34)

Then, multiplying the partial differential equation of (3.34) by 𝑣m − 𝑣k and integrating by parts gives

∫
Ω

|∇(𝑣m − 𝑣k )|2 = 𝜆
∫
Ω

(𝑣m − 𝑣k )
2 −

∫
Ω

a(x)𝑣mu
p−1
m (𝑣m − 𝑣k )

+
∫
Ω

a(x)𝑣ku
p−1
k

(𝑣m − 𝑣k )+ ∫

ΓD
1

𝜕(𝑣m − 𝑣k )(𝑣m − 𝑣k ).

(3.35)

Now, thanks to (3.6), (3.16), (3.22) and applying the Holder’s inequality, the following estimates hold:

|||||||∫Ω
a(x)𝑣mu

p−1
m (𝑣m − 𝑣k )

|||||||
≤ ‖a‖L∞(Ω)‖u1‖ p−1

L∞(Ω)
‖𝑣m − 𝑣k‖L2(Ω), (3.36)

|||||||∫Ω
a(x)𝑣ku

p−1
k

(𝑣m − 𝑣k )

|||||||
≤ ‖a‖L∞(Ω)‖u1‖ p−1

L∞(Ω)
‖𝑣m − 𝑣k‖L2(Ω), (3.37)

||||||||∫ΓD1
𝜕(𝑣m − 𝑣k )(𝑣m − 𝑣k )

||||||||
≤
(‖∇𝑣m‖L2(Γ1 )

+ ‖∇𝑣k‖L2(Γ1 )

)‖𝑣m − 𝑣k‖L2(Γ1 )

≤ 2C4‖𝑣m − 𝑣k‖L2(Γ1 )
.

(3.38)
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Finally, substituting (3.36), (3.37) and (3.38) in (3.35), it follows from (3.23) and (3.24) that for any 𝜀 > 0 there exists

ñ0 = ñ0(𝜀) such that for anym, k ≥ ñ0 the following holds

‖∇(𝑣k − 𝑣m )‖L2(Ω) ≤ 𝜀,

which proves that 𝑣n, n ≥ 1 is a Cauchy sequence in H1(Ω). Now, combining this fact with (3.16) and (3.23) give

lim
n→∞

‖𝑣n − 𝑣‖H1(Ω) = 0, ‖𝑣‖H1(Ω) = 1 (3.39)

and in particular, it shows that 𝑣 ∈ H1(Ω).
We now ascertain the behavior of 𝑣 on 𝜕Ω. We already know that 𝑣n − 𝑣 ∈ H1(Ω). Let i ∈

(W
1

2

2
(𝜕Ω), L2(𝜕Ω)) be the injection operator i : W

1

2

2
(𝜕Ω) ↪ L2(𝜕Ω) and t ∈ (H1(Ω),W

1

2

2
(𝜕Ω)) the trace oper-

ator on 𝜕Ω. Owing to the continuity of i and t, there exists C̃ > 0 such that

‖𝑣n − 𝑣‖
L2

(
Γ0∪ΓD1

) ≤ ‖𝑣n − 𝑣‖L2(𝜕Ω) ≤ C̃‖𝑣n − 𝑣‖H1(Ω), n ≥ 1,

and owing to (3.39) it is apparent that

lim
n→∞

‖𝑣n − 𝑣‖
L2

(
Γ0∪ΓD1

) = 0.

Now, since 𝑣n|Γ0
= 0, n ≥ 1 and (3.31) holds, we have that

𝑣 = 0 in L2
(
Γ0 ∪ Γ

1

)
,

and therefore, since 𝑣 ∈ H1(Ω), we obtain that

𝑣 ∈ H1
∗
(Ω). (3.40)

Moreover, since 𝑣n ⪈ 0, n ≥ 1, it follows from (3.39) that

𝑣 ⪈ 0 inΩ,

that is, 𝑣(x) ≥ 0 almost everywhere inΩ, but 𝑣 ≠ 0. On the other hand, the following holds for each n ≥ 1

‖‖‖‖𝑣n −
u

L

‖‖‖‖L2(Ω)

=
‖‖‖‖‖

un‖un‖H1(Ω)

− u

L

‖‖‖‖‖L2(Ω)

≤
‖un − u‖L2(Ω)‖un‖H1(Ω)

+
|||||

1‖un‖H1(Ω)

− 1

L

|||||‖u‖L2(Ω),

where L > 0 is the limit defined by (3.11). Then, it follows from (3.11) and (3.15) that

lim
n→∞

‖𝑣n − L−1u‖L2(Ω) = 0 (3.41)

and therefore, (3.23) and (3.41) imply that

u = L𝑣 in L2(Ω). (3.42)

In particular, (3.40) and (3.42) imply that

u ∈ H1
∗
(Ω). (3.43)

Now we show that u provides us with a weak solution of (1.5). We already now that 𝑣 ∈ H1
∗
(Ω). Now, pick 𝜉 ∈

H1
∗
(Ω) up. Then, multiplying the differential equation (3.19) by 𝜉 and integrating by parts, taking into account

that supp(𝜉 ) ⊂ Ω∪ Γ

1
, the following holds

∫
Ω

∇𝑣n∇𝜉 = 𝜆
∫
Ω

𝑣n 𝜉 − ∫
Ω

a(x)𝑣n u
p−1
n 𝜉, n ≥ 1. (3.44)
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It should be noted that since

𝜉 = 0 on Γ0 ∪ ΓD
1

and 𝜕𝑣n = 0 on Γ

1
,

it is apparent that

∫
𝜕Ω

𝜕𝑣n 𝜉 = ∫
Γ0

𝜕𝑣n 𝜉 + ∫

ΓD
1

𝜕𝑣n 𝜉 + ∫

Γ
1

𝜕𝑣n 𝜉 = 0.

Then, taking into account (3.7), (3.11), (3.15) and (3.39), and letting n→∞ in (3.44) gives

∫
Ω

∇𝑣∇𝜉 = 𝜆
∫
Ω

𝑣 𝜉 −
∫
Ω

a(x)𝑣 up−1𝜉. (3.45)

Now, multiplying (3.45) by L and taking into account (3.42), it is apparent that for each 𝜉 ∈ H1
∗
(Ω) the following

holds

∫
Ω

∇u∇𝜉 +
∫
Ω

a(x)up𝜉 = 𝜆
∫
Ω

u 𝜉. (3.46)

In particular, taking 𝜉 = u ∈ H1
∗
(Ω) in (3.46) we obtain that

∫
Ω

a(x)up+1 = 𝜆
∫
Ω

u2 −
∫
Ω

|∇u|2 < ∞, (3.47)

and therefore, (3.43), (3.46) and (3.47) conclude that u ∈ H1
∗
(Ω) provides us with a weak solution of (1.5). Hence,

since u∗ is the unique weak positive solution of (1.5) we have that

u = L𝑣 = u∗, (3.48)

and owing to (3.39) the following holds

lim
n→∞

‖𝑣n − L−1u∗‖H1(Ω) = 0.

Now, (3.10) and (3.48) imply that

‖un − u∗‖H1(Ω) ≤ ‖un‖H1(Ω)

(
‖𝑣n − 𝑣‖H1(Ω) + ‖u∗‖H1(Ω)

|||||
1

L
− 1‖un‖H1(Ω)

|||||
)

≤ M

(
‖𝑣n − 𝑣‖H1(Ω) + ‖u∗‖H1(Ω)

|||||
1

L
− 1‖un‖H1(Ω)

|||||
) (3.49)

and letting n→∞ in (3.49), it follows from (3.11) and (3.39) that (1.15) holds along some subsequence. Therefore,

since the same argument works along any subsequence, the proof is completed.

□

Proof of Theorem 1.2: Assume that b ∈ (Γ1 ) is positive and bounded away from zero on Γ1, that is, there exists

b > 0 such that

b(x) ≥ b > 0 for each x ∈ Γ1. (3.50)

In this case we have that ΓD
1

= Γ1 and Γ

1
= ∅. It follows from [10, Theorem 1.1] that for each 𝛾 > 0

Λ𝛾 =
(
𝜎Ω
1
[B ], 𝜎

Ω0

1
[D]

)
(3.51)

and for each fixed 𝜆 ∈ Λ𝛾 , (1.1) possesses a unique positive solution, which we denote by u𝛾 . Owing to (1.10), (2.1)

and (3.51) we have that for each 𝛾 > 0 the following holds

Λ𝛾 ∩ Λ =
(
𝜎Ω
1
[], 𝜎

Ω0

1
[]

)
.
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Pick 𝜆 satisfying (1.16). In the same way as in the proof of Theorem 1.1, to prove (1.17) we will show that (1.17)

holds for any sequence of real numbers {𝛾n}∞n=1 such that limn→∞𝛾n = ∞. The proof of it readily follows adapting

the arguments used in the proof of Theorem 1.1, substituting Γ

1
by Γ1, Γ

1
by the empty set, the space H1

∗
(Ω)

by the Sobolev space H1
0
(Ω) and taking into account that Proposition 2.2 also works assuming (3.50) and (1.16).

We omit the rest of the details of the proof by repetitive. As a remark, it should be pointed out that in this case,

using the same notation as in the proof of Theorem 1.1, it is straight to prove that

lim
n→∞

‖𝑣n‖L2(Γ1 )
= 0. (3.52)

Indeed, since

𝜕𝑣n = −𝛾n b u
q−1
n 𝑣n on Γ1

(cf. (3.19)), taking into account (3.50) and the fact that‖un‖H1(Ω) ≤ 2L for somen ≥ n0 (cf. (3.26)),whereL is defined

by (3.11), it is apparent that

u
2q
n (x) ≤

(
2L𝜕𝑣n(x)

𝛾n b

)2

for each x ∈ Γ1, n ≥ n0. (3.53)

Then, owing to (3.22) it follows from (3.53) that

‖un‖2qL2q(Γ1 )
≤

(
2L

𝛾nb

)2

∫
Γ1

(𝜕𝑣n(x))
2 ≤

(
2L

𝛾nb

)2‖∇𝑣n‖2L2(Γ1 )
≤

(
2LC4
𝛾nb

)2

, (3.54)

for some constant C4 > 0. Now, owing to the fact that limn→∞𝛾n = ∞, letting n→∞ in (3.54) gives

lim
n→∞

‖un‖L2q(Γ1 )
= 0,

and since L2q(Γ1) ⊂ L2(Γ1), it is apparent that

lim
n→∞

‖un‖L2(Γ1 )
= 0. (3.55)

Now, taking into account (3.11), it follows from (3.55) that (3.52) holds. This completes the proof.
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