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Abstract: This paper ascertains the limiting profile of the positive solutions of heterogeneous logistic elliptic
boundary value problems under nonlinear mixed boundary conditions. Specifically, the study considers cases
when the nonlinear flux on certain regions of the boundary decays to negative infinity, while vanishing on
the complementary regions. The main result establishes that the limiting profile of these solutions is a positive
function that satisfies the logistic equation, vanishes on the regions where the nonlinear flux decays to negative
infinity, and exhibits zero flux on the complementary boundary pieces. The mathematical analysis carried out
in this work employs functional and monotonicity techniques as key tools.
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1 Introduction and main results

This work focuses on analyzing the asymptotic behavior of positive solutions to the following heterogeneous
logistic elliptic boundary value problem with nonlinear mixed boundary conditions as y 1 oo:

_ P
—Auy = Auy - a(x)u, in Q, p>1,
u, =0 onT, 1y
ou, = —yb(u! only, ¢>1.

The analysis is conducted under the following assumptions:

i) Qisabounded domain of R, N > 2 of class C%, with boundary 0Q = I'y UT';, where Iy and I'; are two
disjoint components of 0Q and I'; = 1"1@ U l"ff , being 1"1@ and Ff/ two connected pieces, open and closed
respectively as N — 1 dimensional manifolds, such that ()I“f7 = ()Fff - Ff/ .

i) —A stands for the minus Laplacian operator in R¥ and 4 € R.
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iii) The potential a € C(Q), with a > 0, measures the spatial heterogeneities in Q and satisfies that

Q,:=int{x € Q: alx) =0} # @, Q, e, 1.2)

0Q,=T,uT?,  T9:=0Q,NQ, dist(Fg,F1> > 0. (13)

Set QT :=Q\Q,.
iv) duy = Vuy on, where n is the outward normal vector field to 0€Q.
v) b e C((I)is apositive potential satisfying

r¥=b%0) and TP =570l ] (1.4)
andy > 0.

Figure 1 shows a possible configuration of the domain £, its boundary 02 =I', U I“? U Ff/ and the boundary
conditions in each piece of the boundary.

The existence and asymptotic behavior of positive solutions to elliptic boundary value problems with a
bifurcation-continuation parameter in the boundary conditions has been extensively studied in previous works,
such as [1-4]. In this paper, we analyze the limiting profile of positive solutions to (1.1) as y tends to infinity.
Equation (1.1) models a logistic elliptic houndary value problem with nonlinear mixed boundary conditions, aris-
ing in the context of coastal fishery harvesting under spatially heterogeneous conditions (cf. [5]). Additionally,
taking into account that the nonnegative solutions of (1.1) correspond to the steady states of positive solutions
in the associated parabolic problem, (1.1) plays a key role in population dynamics with spatial heterogeneities.
This is particularly relevant in scenarios where, due to the heterogeneous distribution of natural resources, some
regions of the habitat boundary exhibit zero population flux, while others experience a nonlinear population
flux.

To analyze the limiting behavior of the positive solutions to (1.1) as y tends to infinity, we focus on the positive
weak solutions of the following heterogeneous logistic elliptic boundary value problem, which involves mixed
and glued Dirichlet-Neumann boundary conditions:

—Au=Au—a(xu? in Q, p>1,

u=0 onI’, 15)
u=0 onF?, .
ou=20 onl"f/.

These weak solutions will play a crucial role in our analysis.

—Au, = Au, —a(x)u?

Figure 1: Configuration of Q and 0Q =T, U 1"? U F{‘/.
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The main result of this work (Theorem 1.1) states that if the parameter 4 belongs to a suitable interval, to
specify later, the limiting behavior of the positive solutions to (1.1) in H(Q) as y tends to infinity coincides with
the unique positive weak solution of (1.5).

Before stating our main findings, we introduce some notations and previous results. Let us denote

WHQ):= ﬂ wi(Q),
p>1

cﬁzur?(sz)::{ G Q- R:pECOQNCQ) A suppd C Q\(FO Urli)) }

and let H 1* (Q) be the closure in H'(Q) of the set of functions C;ourD(Q)’ that is
0¥t

1 __ oo H'(Q)
H, (Q)= CFOUI'?(Q) .

By construction if u € H., (Q), thenu=0onT; U F;D .
By a positive weak solution of (1.5) we mean any function ¢ € H', (Q) satisfying

@ >0, /a(x)<perl < 0o,
Q+

and such that for each £ € Cl‘f’ o (Q), or £ € H. (Q), the following holds
0U 1

é Vove+ [awgre = é ot

Q

In particular, taking £ = ¢ € H*, (Q) we have that
/|V<p|2 + /a(x)(p”+1 = /1/<p2.
Q Q Q

Hereafter we denote B, B* (F f/ ) and B (F f/ ) the boundary operators defined by

r u onl, u oan,
Ny.— ) U Oly, w (TN, — N (TN, - — N
B u.—{ auonFO B <F1 )u.— ouonTy’, %O<Fl >u.— duonTy’,

b u onl"?, u onF?,

and by ® the Dirichlet boundary operator on 0Q.

In the sequel we will say that a function u € W;(Q), p > N is strongly positive in €, and we will denote it
by u > 0, if u(x) > 0 for each x € QUT’, and du(x) < 0 for each x € I', such that u(x) = 0.

Let us consider the eigenvalue problem

—Ap=0@in Q,
{ BVp=0 onoQ. (16)

By a principal eigenvalue of (1.6) we mean any eigenvalue of it which possesses a one-signed eigenfunction and
in particular a positive eigenfunction. Owing to the results in [6, Theorem 12.1] it is known that (1.6) possesses
a unique principal eigenvalue, denoted in the sequel by 019[%"/ ], which is simple and the least eigenvalue of
(1.6). Moreover, the positive eigenfunction qo{‘f associated to it, unique up to a multiplicative constant, satisfies

qof‘f>>0 in Q,

and in addition
Y e WHQ)cc**(Q)  forall a€(0,1)
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Also, hereafter we denote af) [®] the principal eigenvalue of —A in Q subject to homogeneous Dirichlet bound-
ary conditions.

A function ¢ € W;(Q), p > N is said to be a positive strict supersolution of the problem (—A, Q, BV) if
@ > 0in Q and the following holds

—A@p >0in Q,
BV p > 00n0Q,

with some of the inequalities strict.
Now, let us consider the eigenvalue problem with mixed and glued Dirichlet-Neumann boundary conditions
on I’ given by

—Ap=pup inQ,
1.7)

(1 )p = DonoQ

A function ¢ is said to be a weak solution of (1.7) if ¢ € H', (©2) and for each & € H', () the following holds

4V¢V§=ﬂ/¢§-

Q

The value y is an eigenvalue of (1.7), if there exists a weak solution ¢ # 0 of (1.7) associated to x. In that case, it
is said that @ is a weak eigenfunction of (1.7) associated to the eigenvalue y. By a principal eigenvalue of (1.7) we
mean any eigenvalue of it which possesses a one-signed eigenfunction and in particular a positive eigenfunction.

Owing to the results in [7, Theorem 1.1] it is known that (1.7) possesses a unique principal eigenvalue,
denoted in the sequel by o; [‘B* <FN )] which is simple and the smallest eigenvalue of all eigenvalues of (1.7).
Moreover, the positive elgenfunctlon @* associated to it, unique up to a multiplicative constant, satisfies that
@* € H. () and

@*(x)>0 ae.in Q.

Moreover, o} [%*( )] comes characterized by

[IVo>  [IVe*?

Qg (TN | = inf Q —Q 1.8
%1 [ ( 1 >] peHON (0] [@* [ (@) 9
Q Q

(cf. [7, (2.27)]). In the same way, substituting in (1.7) Q by Q, and B* (Fjlv ) by B <F N ) owing to [7, Theorem 1.1]

we obtain the following variational characterization for 019 0 [%8‘ <F 1” )]

fIV(pl2 [ Vel
Q * N ' &
0 . y _ ’ 1.9
[%( )] peHI RN D) / @’ / (3)° o

Q)

where @; stands for the positive principal eigenfunction associated to the principal eigenvalue o, [SB* (FN )
unique up to a multiplicative constant. Taking into account the variational characterizations (1.8) and (1.9), it is

clear that
% N Q N
0'1Q [‘B (F1 )] <o [’B; (Fl )]
Moreover, owing to [7, Corollary 3.5] and [8, Proposition 3.2] it is known that
oPIBY] < o [B*(I7)] < oD < 04D, (1.10)

and
o IBY] < oM [BY] < o[ B; (17)] < o101, (1.11)
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but no clear monotonicity relationship exists between 019[91 and af 0 [SB;‘ <F{‘/ )] since the relative position of

both depends on the sizes of €2, with respect to €2 and of Ff‘/ with respect to I';.

The problem of ascertaining the limiting profile of the positive solutions of (1.1) when y tends to infinity was
already analyzed in [3], in the particular case when the potential b is a positive potential bounded away from
zero onI';, thatis, b(x) > b > 0 onI'; and in addition, either Q = €, ie.a=0in €, or QO C Q (Theorem 1.1
and Theorem 1.2-ii) therein, respectively). In both cases it was proved (adapting the notation therein to our
framework) that if A € (62[B+],62[D]), then

lim|u,,,, = 0. (112)

Owing to the fact that under assumptions of [3, Th.1.1 and Th.1.2] for each fixed A € (019[%” I, 619 [D]) and for
each y > 0 there exists a unique positive solution u, of (1.1), considering y as the bifurcation parameter, we
conclude from (1.12) that (1.1) exhibits bifurcation from the trivial branch (y, u) = (y, 0) when y tends to infinity.
In this work we extend the previous analysis about the limiting profile of the positive solutions of (1.1) when
y tends to infinity, to cover the more complicated case when €2, C Q satisfying (1.2) and (1.3), and in addition,
either the potential b vanishes on some regions of I'; (cf. Theorem 1.1), or b is bounded away from zero on I'; (cf.
Theorem 1.2).

The following is the main result of this work

Theorem 1.1. Under the general assumptions (1.2), (1.3) and (1.4), assume in addition that

o101 < o [ B (1) 113)
and
o101 < A <o [ (17)]. (1.14)
Then,
limll, = ey = O, (115)

where u, and u* stand for the unique positive solution of (1.1) and (1.5), respectively.

Figure 2 shows the behavior of the limiting profile u* of the positive solution u, of (1.1) when y tends to
infinity versus the profile of the potential b(x) on I’;.

b(x)>0 b(x)=0 b(x)>0
/oo T 7
T, | | |

\\. u (x)= 0 ' (x)=0 u(x)=0
r? ! r?

Figure 2: Behavior of u* on I, versus profile of b(x)
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Now, Theorem 1.1 asserts that if (1.2), (1.3) and (1.4) hold, then, the contrary to the cases analyzed in [3], the
bifurcation of (1.1) to positive solutions from the trivial branch (y, u) = (y, 0) when y tends to infinity fails, since
(1.15) holds.

Remark 1.1. Owing to (1.10) and (1.11) we have that

oPDI<oM®]  and  o[BY] <[ B;(I7)] < of 101

Moreover, it is known that when Fff is very small versus I f ,thatis,whenI" ? isalmost I, then, 0'19 0 [%; (F f/ >]

approaches to 019 °[®)]. Then, in this situation, condition (1.13) will be satisfied.

In the particular case when the potential b € C(I';) is positive and bounded away from zero on I';, that is,
when F? =I,andT f/ = (J, the following result holds, which is the second main result of this paper.

Theorem 1.2. Under the general conditions (1.2) and (1.3), assume in addition that b € C(I';) is positive and
bounded away from zero onI'; and
o2[D] < A < o} [D). (116)

Then,
yl%’g;l“ u}, - ug ”Hl(ﬂ) = 0, (117)

where u, stands for the unique positive solution of (1.1) and ug, denotes the unique positive solution of the problem

— = — p.
{ Au= Au—a(x)uPin Q, p>1, (1.18)

u=20 on 0Q2.

Then, the results obtained in [3, Th.1.1, Th.1.2] together with Theorem 1.1 and Theorem 1.2 show that the
profile of the positive potential b on the boundary condition plays a crucial role in the shape of the limiting
profile u* of the positive solutions of (1.1) when y tends to infinity.

The main technical tools used to carry out the mathematical analysis of this work are functional and
monotonicity techniques.

The structure of this paper is as follows. Section 2 collects some previous results that are going to be used
throughout this work, and Section 3 contains the proofs of Theorem 1.1 and Theorem 1.2.

2 Preliminaries, notations and previous results

Let us denote by A,, A" and Ag the range of values of the parameter 4 for which (1.1), (1.5) and (1.18) possess
positive solution, respectively. It is known that

Ag = (afl[@],afﬂm]), @1

and for each A € Ag the positive solution of (1.18) is unique and strongly positive in € (cf. [9, Lemma 3.1,
Theorem 3.5]).

Let b € C(I';) be the positive continuous potential appearing on the boundary conditions of (1.1) satisfying
(1.4) and y > 0. Then, by construction we have that

ybec@y),  ybx0, 2.2)

and
Y =ab) 0 =b0), TP =b)0, bl )l = b7, I1bll;_r] @3)
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Owing to (2.2) and (2.3) next result follows from [10, Theorem 1.1-i)].

Proposition 2.1. For eachy > 0, (1.1) possesses a positive solution if, and only if
o1V < 2 <o |5y (1), (2.4)
that is
A, = (of8V1 08 B3 (1Y)]). 2.5)

Moreover, for each A € A,, the positive solution of (1.1) is unique and strongly positive in . In the sequel we will
denote it by u,.. Furthermore,
u, € WA(Q) C C"*(Q) Yae(0,1).

Next result provides us with a comparison method and it is proved following similar arguments to those
used in the proof of [11, Proposition 3.2].

Proposition 2.2. Assume (2.4) andlet®, € W;(Q), p > N be a positive strict supersolution (subsolution) of (1.1).
Then,
0,>u, (0, <u,).

As for the existence and uniqueness of positive solution of (1.5), next result follows adapting to our frame-
work the arguments given in [12, Theorem 3].

Proposition 2.3. Problem (1.5) admits a positive weak solution u* € H' () N L, (Q) if, and only if
of[B()] <2< o[ (7)].
that is,
A, = (o3 ()], 0[5 (17)])- (2.6)

In this case, the solution u* is unique.
3 Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1: Pick A satisfying (1.14). Since any positive constant is a positive strict supersolution of the
problem (—A, Q, D), it follows from the Characterization of the strong maximum principle [13, Theorem 2.5]
that 62[D] > 0 and hence, (1.14) implies

0 <o [D] < A

To prove the result we will show that (1.15) holds for every sequence of real numbers {y, } -, such that

limy, = oo. (Y

n—-oo

Subsequently, we fix a sequence satisfying (3.1) and set

U,:=u A=A, nx1

77[ ’
Since (3.1) holds, we can assume without loss of generality that
Y>>0, n>1 (3.2)

Also, due to (1.10), (1.11), (1.13), (1.14), (2.5) and (2.6), we have that
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i€ (P[5 (1)) =AnA.nAy  nzt (33)

Then, it follows from Proposition 2.1 and (2.1), the existence for each n > 1 of a unique positive solution of (1.1)
and (1.18), u,, and us, respectively, which are strongly positive in  and

Uy, Up € WAHQ) C HX(Q).

In particular,
dup <0 on 0Q. (34)

Also, owing to (3.3), it follows from Proposition 2.3 the existence of a unique positive weak solution u* €
H () N L (Q) of (1.5).

Moreover, thanks to (3.4) it is clear that the function ug is a positive strict subsolution of (1.1) for each n > 1,
and therefore, it follows from Proposition 2.2 that

up < Uy, n>1 (3.5)

Also, thanks to (3.2), it is easy to prove that u, is a positive strict supersolution of (1.1) for each n > 2 and hence,
it follows from Proposition 2.2 that
U, <u, nx2. (3.6)

Thus, (3.5) and (3.6) imply that
0<up<u, Lu, n>1 (3.7

On the other hand, multiplying (1.1) by u, and integrating by parts it becomes apparent that

0< /qunl2 = /1/ u —/a(x)u,f“ —yn/buzﬂ, (3.8)
Q Q o)

Y

and hence, since u,, is strongly positive in ,a > 0, b > 0 and y,, > 0, it follows from (3.7) and (3.8) that

0</|Vun|2</1/ui§/1/uf. (3.9)
Q Q Q

Now, owing to the fact thatu; € Wi Q) C L (€2), it follows from (3.7) and (3.9) the existence of a constant M > 0
such that
lupllzpny €M, nx>1 (3.10)

Moreover, owing to (3.7) and (3.10), it is apparent that along some subsequence, again labeled by n,
0 < L:= lim||u, || g1q)- (311
n—oco

In the sequel we will restrict ourselves to dealing with functions of this subsequence.
Owing to (3.7) and (3.8) we have that

+1
yn/bug </1/ufl§/1/uf, n>1 (3.12)
o Q Q
Thus, since u; € L, (€2), it follows from (3.12) that there exists a constant C > 0 such that
1
0< y,,/buff <C, nx1, (3.13)
ry

and hence, (3.13) and (3.1) imply that along some subsequence, again labeled by n,
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lim [ bu™ =o. (3.14)

n—oo

re
In particular, since b(x) > O forallx € T’ 9, it follows from (3.14) that
limu,(x) =0 a.e xeFE
() = .e. e
n—o00

On the other hand, since the injection operator H'(Q) < L,(Q) is compact, it follows from (3.10) the existence of
u € L,(€2) and a subsequence of u,, n > 1, again labeled by n, such that

nlll;noH Uy, — Ul = 0. (3.15)
To complete the rest of the proof it suffices to prove that (3.11) and (3.15) imply that u = u* and
nlig” U, — Ullgpq) =0,

since this argument can be repeated along any subsequence of the original sequence. To prove it, set

u

v, =—0n1—  n>1
" 1tn |l ) '
By construction,
lopllz ) =1, n>1, (3.16)
and owing to (3.7) the following holds
_ -1 -1 -1 ._ 7
ol @) = Munllz o) ltnll gy < Nl @il ) < Nl @ lluplly o) =M. (317)

1
Also, owing to (3.16), it follows from the continuity of the trace operator onT';, t; € L(H'(Q), W, (I';)) and of the

1
injection operator j: W} (I';) & Ly(I';), the existence of a constant C; > 0 such that

loplp, Il 1 <G, loplr ) < Cis n>1 (3.18)
w,

()

Now, since by construction v,, provides us with a positive solution of the problem

—1 .
—Av, = Av, —a)ul v, in Q,

v, =0 onI, (319
ov, = —y,bul v, onl},
(3.7), (3.16) and (3.19) imply that
Il = Avyll ) = 140, — a00U 0,1 < Collvgll @) < Cas (3.20)

for

-1
Cy:=A+ lall_ollwll} @

Then, owing to (3.18) and (3.20), it follows from the L -elliptic estimates of Agmon, Douglis and Nirenberg [14]
the existence of a constant C; > 0 such that

o, llz20) < Cs, n>1 (3.21)
1
Moreover, taking into account the continuity of the trace operator on I';, ¢; € LHY(Q), W;(Fl)) and of the
1
injection operator j: W} (I';) < L,(I',), it follows from (3.21) the existence of a constant C, > 0 such that

IVoglr, i,y < Cas n>1 (3.22)
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Since H(Q) is compactly embedded in L,(€), it follows from (3.16) the existence of v € L,(€) and a subsequence
of v, again labeled by n, such that
nlig” Un - U”LZ(Q) = 0. (3.23)

In particular
lim v, (x) = v(x) ae. x€Q,
n—oo

and since v, > 0, n > 1, we obtain that
v>0 in Q.

In addition, due to the compactness of the injection operator from W;(Fl) to L,(I"), it follows from (3.18) the
existence of ¥ € L,(I';) and a subsequence of v,, again labeled by n, such that

lim | v, = Bllz,r,) = 0. (3.24)

Now, let K be any compact subset of F?. Since b(x) > O forallx € F? and b € Cc(I"), set
bK:=r;161}1{1{b(x)} > 0.
Then, owing to (3.19) the following holds on K
(00,00)? = y2P2 )02 00U ™" 00 = y2B2UE 00wy | oy (3.25)
Also, since (3.11) holds, there exists n, € N such that

Ity g0y < 2L, n>n. (3.26)

Now, (3.25) and (3.26) imply that

7. beul(x) 2
(v, (x))? > (”KZL”> foreach x €K, n>n,,
and hence,
2
w200 < <2Lavn(x)> foreach x €K, nx>n,. (3.27)
J/n bK

Then, (3.27) and (3.22) imply that for n > n, the following holds

2
2L
Mally! e < <be> / (00, (0) < (
K

Now, owing to (3.1), letting n — oo in (3.28) gives

2 2
2L ) 2LC,
[|Vo,ll < <> . (3.28)
]/an> ML) J/an

,,llg” un”LZq(K) =0,

and since L,,(K) C L,(K) we have that

nl_ig” Unll L,y = 0. (3.29)
Thus, (3.11) and (3.29) imply that
nl_ig” Ul =0 (3.30)

in any compact subset K C 1"1@. In particular,

limo,(x) =0 ae. XeEKcC 1"?.
n—oo
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Now we are going to prove that since (3.30) holds in any compact subset K C I" 19 and (3.17) holds, then
JLim || oyl (r?) = 0. 3.31)
In particular
limov,(x)=0 ae x€ F;D.
n—oo
Indeed, given any € > 0, take a compact subet K contained in I" ? such that

2

D
ITP\KIg, 1) < ek

(3.32)

where | - | stands for the Lebesgue measure in L,(I";) and M the constant defined in (3.17). On the other hand,
taking into account that (3.30) holds, there exists ny(¢) € N such that
&

Now, owing to (3.17), (3.32) and (3.33), it is apparent that
ol = [ 2= [+ [ 2<E+E = asn
Uy L) = vy = [ u; vy 2 7 = £, 0
L,(I'?) K I'P\K

Thus, for any € > 0 there exists ny(¢) € N such that ||v,|| L(rr) <€ for any n > n;, which concludes the proof
of (3.31).
Then, since by construction Unll—D =0, n > 1, it follows from (3.31) that

nliror;la” U"”Lz(rour?) =0.
We now show that v, is a Cauchy sequence in H(Q). Indeed, since (3.19) holds, it is apparent that

—A(v,, — v) = MUy — U)) — a(x)(vmu,’,’f1 - vkulf_1> in Q,
Uy — U =0 onl’, (3.39)
(v, — U) = —b(ymu‘,fflvm - ykuz_lvk> onT,.

Then, multiplying the partial differential equation of (3.34) by v,,, — v, and integrating by parts gives

/|V(vm — )P = A/(vm T — /a(x)umuﬁ,’,‘l(um -0
Q Q

Q
(3.35)
+ / ax)v ™ (v, — vp) + /6(Um — U)W, — V).
Q o

Now, thanks to (3.6), (3.16), (3.22) and applying the Holder’s inequality, the following estimates hold:
/a(X)Umuf,’fl(Um — )| < ||a||L&(Q)IIu1||f;(1m||vm = Ul (3.36)
Q
/a(X)Uku;f_l(Um — V)| < ”a”Lw(Q)||u1||5;(1g)”vm = Ugllz,)» (337
Q
[ 000 = 000 = 00| < IVl + IVl ) 1o = il 038)
FD

< 2C4|[vp = Ugllp,ry-
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Finally, substituting (3.36), (3.37) and (3.38) in (3.35), it follows from (3.23) and (3.24) that for any £ > 0 there exists
iy = fiy(€) such that for any m, k > i, the following holds

||V(Uk - Um)”LZ(Q) S g,
which proves that v, n > 1is a Cauchy sequence in H'(€2). Now, combining this fact with (3.16) and (3.23) give
lim|[[v, = Vllga) =0, lollm) =1 (3.39)

and in particular, it shows that v € HY(Q).
We now ascertain the behavior of v on 0Q. We already know that v, —v € H'(Q). Let i€

1 1 1
L(W, (09), L,(09)) be the injection operator i: W, (0Q) < L,(dQ) and t € L(H'(Q), W, (0Q)) the trace oper-
ator on dQ. Owing to the continuity of i and ¢, there exists C > 0 such that

llo, — U||LZ(1-0U1-1®) <o = vl 00) < Cllv, — vl n>1,

and owing to (3.39) it is apparent that

lim|jv, — U”Lz(rour?) =0.
Now, since v,,| r, = 0, n > 1and (3.31) holds, we have that

v=0 inL(Cul?),
and therefore, since v € H'(Q), we obtain that

v € H (Q). (3.40)
Moreover, since v, > 0, n > 1, it follows from (3.39) that
v>0 in Q,

that is, v(x) > 0 almost everywhere in Q, but v # 0. On the other hand, the following holds for each n > 1

P _ u, u
) o _u
Ll lulme L, o
llu, — u“LZ(Q) 1 1 ]
-7 L,(Q)>
Il Nl L]

where L > 0 is the limit defined by (3.11). Then, it follows from (3.11) and (3.15) that

r}irg|| Up = L7 MUl q) = 0 (3.41)
and therefore, (3.23) and (3.41) imply that
u=~Lv in L,(€2). (3.42)
In particular, (3.40) and (3.42) imply that
u € H., (Q). (3.43)

Now we show that u provides us with a weak solution of (1.5). We already now that v € H, (Q). Now, pick £ €
H! (€2) up. Then, multiplying the differential equation (3.19) by & and integrating by parts, taking into account
that supp(&) C QUT, the following holds

/Vun VEé = /l/ v, &~ / axyv,uf'E, n>1 (3.44)
Q Q Q
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It should be noted that since

£=0 on FOUF? and dv, =0 oanf,

401)"5=460n§+400n5+/00n§=0.

N
I

it is apparent that

Then, taking into account (3.7), (3.11), (3.15) and (3.39), and letting n — oo in (3.44) gives

/Vv Vé= /l/v.f—/a(x)v ub~lg. (3.45)
Q Q Q

Now, multiplying (3.45) by L and taking into account (3.42), it is apparent that for each & € H', (€2) the following

holds
/Vu V§+/a(x)up§ = A/uf. (3.46)
Q

Q Q
In particular, taking & = u € H, (Q) in (3.46) we obtain that

/a(x)u!’+1 = /1/ uw —/|Vu|2 < 0, (3.47)
Q Q Q

and therefore, (3.43), (3.46) and (3.47) conclude that u € Hl* (Q) provides us with a weak solution of (1.5). Hence,
since u* is the unique weak positive solution of (1.5) we have that

u=~Lv=u*, (3.48)

and owing to (3.39) the following holds
3 N e —
lim | o, = L™ [lgpq) = 0-

Now, (3.10) and (3.48) imply that
1 1
Ll
and letting n — oo in (3.49), it follows from (3.11) and (3.39) that (1.15) holds along some subsequence. Therefore,
since the same argument works along any subsequence, the proof is completed.

lw, = u*llpqy < ||un||H1(Q)<||Un — Vg + W )
(3.49)
1 1

< M(||Un = Ul + 1 ) L Tl
nllH'(Q)

(|

Proof of Theorem 1.2: Assume that b € C(I';) is positive and bounded away from zero on I';, that is, there exists
b > 0 such that
bx)>b >0 for each x € I';. (3.50)

In this case we have that F? =TI and Ff/ = @J. It follows from [10, Theorem 1.1] that for each y > 0
A, = (oR1BY],o0(D]) (3.51)

and for each fixed 4 € A, (1.1) possesses a unique positive solution, which we denote by u,. Owing to (1.10), (2.1)
and (3.51) we have that for each y > 0 the following holds

A, N A, = (ofDL, 0 (D)),
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Pick A satisfying (1.16). In the same way as in the proof of Theorem 1.1, to prove (1.17) we will show that (1.17)
holds for any sequence of real numbers {y, } >, such thatlim,,_,, y, = co.The proof of it readily follows adapting
the arguments used in the proof of Theorem 1.1, substituting I“ID by I}, I“f/ by the empty set, the space H’, ()
by the Sobolev space Hé(Q) and taking into account that Proposition 2.2 also works assuming (3.50) and (1.16).
We omit the rest of the details of the proof by repetitive. As a remark, it should be pointed out that in this case,
using the same notation as in the proof of Theorem 1.1, it is straight to prove that

Tim | oyl = 0. (3.52)

Indeed, since
ov, = —y,bul™ v, onT

(cf. (3.19)), taking into account (3.50) and the fact that ||u, || ;o) < 2L for some n > n (cf. (3.26)), where L is defined
by (3.11), it is apparent that

2
w200 < <2L?/U’1‘7(X)> foreach x€Ily, n>n,. (3.53)
n=
Then, owing to (3.22) it follows from (3.53) that

2 2L \* 21\ 21, \*
q 2 2 4

ey < (75) [ 0 < (35) wentt, < (55 o3y

1—‘l

for some constant C, > 0. Now, owing to the fact that lim,_, ¥, = oo, letting n — oo in (3.54) gives
lim [l ) =0,
and since L,,(I'y) C Ly(I"y), it is apparent that
Tim ||ty |, r,) = 0. (3.55)

Now, taking into account (3.11), it follows from (3.55) that (3.52) holds. This completes the proof.
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