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Abstract: Kloosterman sums and Dedekind sums are two important sums in analytic number theory, the study
of their various properties is a very interesting subject. The primary objective of this article is used the analytical
methods and the properties of L-functions to examine and interpret the calculating problems of a particular type
hybrid power mean involving the classical Kloosterman sums and Dedekind sums, and provide several new and
intrinsically intriguing mean value formulae for them.
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1 Introduction

To delineate the findings of the present study, it is first necessary to give the definitions of the classical Klooster-
man sums K(s, t; q) (see [1]) and the Dedekind sums S(r, q) (see [2]). For any integer q > 1, we define the classical

Kloosterman sums K(s, r; q) as
q —
X + SX
K(s,r;q) = ’e<>,
el

x=1

q
where Y denotes the summation overalll < x < gsuchthat (x,q) = 1,r and sare any integers, x - x = 1 mod g,
x=1

e(z) = e and i* = —1.

This sum plays a very crucial role in the study of analytic number theory, as many number theory problems
within the field are intimately connected with it. For instance, Zhang Yitang’s important work [3] is the case, he
gave a strong upper bound estimate for K(r, s; p) on some special sets, as a result, substantial progress has been
made on the major problem of twin primes. About the arithmetical properties of the Kloosterman sums, many
scholars have conducted extensive research on this topic, yielding numerous significant findings. For example,
Li Jianhua and Liu Yanni [4] used the properties of Gauss sums and the analytic method to studied the hybrid
mean value problem involving between the Gauss sums and the general Kloosterman sums, and to gave several
interesting identities of it. Li Xiaoxue and Hu Jiayuan [5] used the analytic method and the properties of the
classical Gauss sums to studied the computational problem of one kind fourth hybrid power mean of the quartic
Gauss sums and Kloosterman sums, and gave an exact computational formula for it.
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Perhaps the most basic and the most important work in this area is the upper bound estimation for K(r, s; q)
(see Chowla [6] or Estermann [7]). That is,

I rX + sx 1 1
Z’e(q) < (r,s,q)2-d@ - q2,
x=1

where d(q) denotes the Dirichlet divisor function, (r, s, q) denotes the greatest common factor of r, s and q.
In addition, Salié [8] and Iwaniec [9] proved that for any prime p, an individual possesses a distinct identity

(5

x=1

p-1 4

>

n=0

=2p*—3p* - 3p.

Let p > 3 be a prime. For any integer n, the Legendre’s symbol (%) modulo p is defined as follows:

1, if (n.p) =1 and n is a quadratic residue modulo p;
(Z) =5-1, if (n.p) =1 and n is a quadratic nonresidue modulo p;
0, if p|n

This arithmetical function occupies a very important position in the elementary number theory and analytic
number theory, and many classical number theory problems are closely related to it.

Zhang [10] used the elementary methods to prove a generalized result. That is, for any positive integer R
and integer n with (u, R) = 1, one has the identity

2(*5)

x=1

4

_ q0(R) |, p2 . . 2_1_ 4
=3 R o®) H<3 3p 3p(p—1)>’

PIIR

>

h=1

where ¢(R) is the Euler function, [, denotes the product over all prime divisors of R with p | R and P> R,
and w(R) denotes the number of all different prime divisors of R.

On the other hand, it is also imperative to introduce the concept of Dedekind sums S(r, ). For any integers
q > 2 and r, the classical Dedekind sums S(r, q) is defined as follows (see [2]):

=2 ((0)((9)

where as usual, ((2)) is defined as

z—[z] — 1, if z is not an integer;
((2)) = 2
0, if z is an integer.

It is clear that S(r, q) describes the behaviour of the logarithm of the #-function (see [11] and [12]) under modular
transformations. Certain arithmetical properties of S(r, q) are documented within various references [13-16]. In
order to avoid the tedious, we do not want to list them here. However, it should be noted that perhaps the most
critical attribute of S(h, q) is its adherence to the principle of reciprocity (see [2] and [13]). That is, for all positive
integers u and v with (u, v) = 1, one has the identity

w4t +1

1
S S(v,u) = =,
(u,v) + S(v,u) T 1

)]

Rademacher and Grosswald [12] also obtained a three-term formula similar to (1).
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The main purpose of this paper is to study the calculating problems of one kind hybrid mean values
involving K(m,1; p) and S(r, p). That is,

-1 p—-1
K*(m,1;p) - K*(n,1; p) - $*(m -7, p), @

1

=
=

1

3
Il
=
Il

where p is an odd prime.
About the contents, Liu and Zhang [17] proved the following conclusion:
For any odd square-full number H, one has the identity

ss]

H
' 2 K(m, 1 H) - K(n, 1 H) - S(m 7L H) = - () - H - H<1+ )

1n=1 plH

3
Il

But there seems to be no research on (2), at least we have not seen such a result in the existing literature.
In the present manuscript, we employ analytical methodologies coupled with the intrinsic characteristics of
Dirichlet L-functions to investigate the computational intricacies associated with (2), thereby establishing several
intriguing findings. That is to say, we have arrived at the following three inferences:

Theorem 1. Let p be an odd prime with 4 | (p — 1). Then for any integer k > 0, we have the identity

-1 p-1

'B

2+

) _ _ p3 (p 1)2k+l 2
K*(m,1;p) - K*(n,1; p) - % (m -7, p) = e 1—E )
1n=1

3
Il

Theorem 2. Let p be an odd prime with 4 | (p — 3), then we have the identity

p—1

"u
H

2. — . —
Km, 1 p)- K, 1, p) - S(m 7, p) = B E=DP=D e

n=1

3
Il
-

where d,, denotes the class number of the imaginary quadratic field Q( \/ - p).

Theorem 3. For any odd prime p, we have the asymptotic formula

p—1p-1
Z ZKZ(m,l; p) -K*(n,1;p) - S*(m-n, p) = i . p5+0<p4~exp< 4lnp ))

m=1 n=1 In In p

where exp(y) = €.
Taking k = 0 in Theorem 1, we can derive the following inferences:
Corollary. Let p be a prime with p = 1 mod 4, then we have

-1 p-1
K*(m,1; p) - K*(n,1; p) - S(m - 1, p)

"E

_P-(p-D-(p-2)
12 ’

1n=1

3
Il

Some notes: If k is an even number, then we only consider the case k = 2in (2). Because when the even number
k > 2, the situation is considerably more complex, hence, we will defer its consideration. If p = 3 mod 4 and k =
2n+1 > 3 is an odd number; then for 2n+1 odd characters y;(—1) = -1(i=1,2,...,2n+1), it will definitely
appear x1ys --- Xons1 = (% . As a result, the mean theorem of Dirichlet L-functions are difficult to deal with, so
we do not consider it in Theorem 2 when k = 2n + 1 > 3. Obviously, in our all theorems, the modulo is a prime
D, and it is an interesting open problem whether these conclusions can be generalized to the general composite
number q.
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2 Several lemmas

In this section, we present three elementary lemmas that are essential for the demonstration of our theorems.
Subsequently, it is imperative to incorporate certain principles of analytic number theory, including concepts
Gauss sums and Dedekind sums, the characteristics of which are extensively documented in references [18], [19]

and [20], thereby obviating the need for redundant explication. Initially, we present the following lemmas:

Lemma 1. Let p > 2 be a prime. Then for any Dirichlet character y modulo p, we have the identity

p—-1 p—-1 — 2
Z ){(m)(z e(ma + a>>
m=1 a=1 p

pPP-p-1, if y = y, is the principal character modulo p;

=14D, if y = y, is the Legendre’s symbol modulo p;
3

p2, if 22 # %o

Proof. If y? is not the principal character modulo p, then from the definition and properties of the classical
Gauss sums we have

) x(m)(pf e(’"“;a))z 55 pz'lm)e(mmw?)
m=1 a=1 a=1

=1 b=1 m=1 p
oo S [ b(@a+1)
= T()()Z xla+ 1)2 ){(b)e( )
a=1 b=1 p
p—1 p-1
=72 Y 7@+ Dx(a+1) =) ), y(@zXa+1)
a=1 a=1

_ ) N <b(a+1)>
=) dx (b)Z e =

b=1 a=1
P § xve( L) = 2. ®
o(x*) = p/) (¥

Note that |7(y)| = |7(x*)| = /p, from (3) we have

Ly o (ma+a 3
Z;{(m)(Ze( >> = pi. @
m=1 a=1 p

If 2 = y, is the principal character modulo p and y # y,, then from (3) we have

2 p—1
Zx(m)(Z <ma+“>> =70 Y, x@xHa+1D)

m=1 a=1 a=1
—2

=72(x)- Z 2(@) = —x(=1) - 7). 5)
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If ¥ = y, is the principal character modulo p, then we obatin

P 0 z_pll’ll’ mb(a+1)+ b(@+1)
(Ze()) = BR By

m=1

=p-(p-1)—-1=p*—p-1. (6)
Combining (4), (5) and (6),

Zx(m)<28<map+a>>2

P-p-1, if y = y, is the principal character modulo p;
=14D, if y = y, is the Legendre’s symbol modulo p;
3 .
pi s if 2,2 ;é Xo-

This proves Lemma 1.

Lemma 2. Let q > 2 be an integer. Then for any integer v with (v, q) = 1, we have

S, q) = Z 4)( 5 2 AWIL P,

r|q y mod r
x(=1)=-1

where L(s, y) is L-function corresponding to y mod h, ¢(r) is the Euler function.

Proof. This is a result established by Zhang, see Lemma 2 in [14].

Lemma 3. Let p > 2 be a prime. Then for the fourth power mean of Dirichlet L-functions, we have the asymptotic

formula
4 _ 4In p
Z LA 01" = 144 P < p(lnln p>>

xmod p
x(=1)=-1

Proof. See reference [21].

3 Proofs of the theorems

In this section, we shall employ the three fundamental lemmas introduced in Section 2 to establish our main
results. First if q is an odd prime p, then from Lemma 2 we obtain

S(r,p) = —P— 2@ - 1L, - V)
T (p-1) p n%l ,
y(—1)=-1
From (7) we have the identity
Y app=" . 2=0p=D ®
x mod p ’ 12 p2 .

x(=D=-1
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If p=1mod4, k = 2h + 11is a positive odd number, then for all Dirichlet characters y;, satisfying y;,(—-1) = —
and y,x, ... xx(=1) = —1, it follows from (7) and Lemma 1 that the product y, ... v, is not the Legendre’s
symbol modulo p. Moreover, since the Kloosterman sums is a real number, we obtain the following identity

p=11:=1(x2_1 <Wp+})>2(§e<w>>zsk(m-ﬁvp)

p—1p-1

P
WZ K*(m,1; p) - K*(n,1; p) - 2 z(mn) - LA, p)?
m=1n=1

x mod p
y(=1)=-1
2
k T4
= T X k) g e, g

2
xmod p y mod p T(()(lﬂfz ){k) )
n(=D=-1 X(=D=-1

k
k
_ pk+3 . o pk+3 . 7[72 . (p _ 1)2(p _ 2)
= 71'2k(p _ 1)k ; mZOd ) |L(17 )()| - ”Zk(p _ 1)k 12 p2
y(=D)=-1

_p-p-DF (2 ‘
(12)F p) -
This proves Theorem 1.
Now we prove Theorem 2. If p = 3 mod 4, note that (%) =—-1= p(-Dand LA, )| =7 - dp/\/ﬁ, from
Lemma 1 and Lemma 2,
-1 p—-1

K*(m,1; p) - K*(n,1; p) - S(m -7, p)
1 n=1

’B

3
Il

2

T 22p=1 _1) Z Z}((M) K*(m,1; p)| - |IL(L, p)I?
p ymod p | m=1
x(=D=-1

4 3
= ooy X ML+ b L )P

ﬂz(p x mod p (p
2(~D)=—1
X#EX2
_ p4 'ﬂz'(p—l)z(p—Z)_p?’(p—l)'ﬂ-z‘dzp
(p—-1) 12 p? rX(p—-1) p
_p-(p=-1-(p=-2) _ 5 5
= 2 p dp.

This proves Theorem 2.
For any odd prime p and k = 2, note that y ¥ = y,, from Lemma 1-3,

gi (§e<mxp+}>>2<§e<w>)zsz(m 1. p)

- 4(p—1)2 DI

1 mod p y, mod p
n(=D==1p(-D=-1

2

Z ) - Km 1 p)| - LA, )P - 1L, g

m=1
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5 2. (p2—p—1)°
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4 —1)2 4 —1)2
r (p D x1 mod p y, mod p 7 (p D x mod p
1n(—D=-1x(-1)=-1 x(=1)=-1
nx#x

2

5 5
:m Z IL(L, I —m 2 [L(L, p)I*

x mod p x mod p
x(=1)=-1 x(=1=-1
2
p*- (P*—p-1) s
+ - T |LQ, y)|
AU IR 2 b
x(=D=-1
_p(p—-DVAp-2¢  pp-p-1*-p 1
= o a1y > 1L, )l
x mod p
2(=D=-1

) texp( AP ) L s 4 exp( 210D

= jaa t g TO(PexP Inlnp)) 24 p’+O(p-exp Inlnp/ )’
This completes the proof of Theorem 3.
4 Conclusions

This paper employs analytic techniques and properties of Dirichlet L-functions to study the computational prob-
lems of a specific hybrid power mean, which connects classical sums with Dedekind sums. As a result, we
establish several novel and interesting identities. One of them is the identity

p—1p-1 _ 3 _ )2k 9 2k+1
2 2 K (m.1:p) - K*(n.1; p) - $¥*(m -7, p) = % ' <1— ;) ,
m=1 n=1

where p denotes a prime with p =1 mod 4 and k > 0 be any integer.
We believe that the methods used in this paper will contribute to further research in the relevant fields.
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