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Abstract: In this paper, a kind of univariate Shepard-Euler operators is studied by combining the known Shepard
operator with the generalized Taylor polynomial as the expansion in the Euler polynomials. For practical pur-
poses, another kind of improved Shepard-Euler operators without any derivative of the approximated function
fis given by using divided differences to approximate the derivatives. Some error bounds and convergence rates
of the combined operators are studied. Finally, some numerical experiments are shown to compare the approx-
imation capacity of our operators with that of Caira-Dell’Accio’s scheme. Furthermore, there is no demand for
the derivatives of f in the proposed operator, so it does not increase the orders of smoothness of f.
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1 Introduction

The classical Shepard operator, first introduced in [1], is a well suited operator for two-dimensional interpolation
of very large scattered data sets. Let f be a real valued function defined on X C R. Let X = {Xi}f-i , be a set of
some distinct points. The Shepard operator in the univariate case is defined by

N
Sy 10 = A, (0f0), u>0, )
i=1

where | -u
— X=X
Au,i(x) - N

21X = x| 7H
k=1

v

and | - | denotes the Euclidean norm in R. It is easy to check that
Aﬂgi(XU) :61"1}, i,U=1,2,...,N, (3)
and

N
YA 0=1 @)
i=1
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Because Sy ,[f10x) reproduces only constant functions, so Shepard has suggested to apply Sy ,[f10x) not
directly to the f(x;), but to the Taylor polynomial of f of degree 1 at x;. In this case the combined operator has
the degree of exactness 1in [1].

To increase the degree of exactness of the Shepard operator, several combined operators have been intro-
duced and studied on Taylor [1-5], Lagrange [6], Hermite [7], Birkhoff [8], and Bernoulli [9]. The Shepard method
can also refer to recent developments on the subject, see [10-16] for details.

Based on the idea in [9], we first combine the Shepard operator Sy ,[f1(x) in [1] with the generalized Taylor
polynomial, the Euler-based expansion as one instance of two-point generalized Taylor polynomials introduced
in [17] to obtain a kind of Shepard-Euler operators. The proposed Shepard-Euler operator §Em possesses good
reproduction qualities and high accuracy just like the Shepard-Bernoulli operator [9]. However, they involve
the derivatives of f at every node. For practical purposes, applying the divided difference formula in [18] to the
proposed operator EEm’ we present another kind of Shepard-Euler operators S which do not require values of
the derivatives at nodes. We show that the new operators Sy and EE,,, could reproduce all polynomials of degree
< m, and give the convergence rate of @(h"*+!). Further, the constructed operator Sg, could provide the desired
smoothness and precision in the practical applications.

The organization of the remainder of this paper is as follows. In Section 2, we recall the definition of univari-
ate Euler polynomials and give three useful theorems for the error of approximation that will be used later in the
paper. In Section 3, we apply the previous results to derive a kind of Shepard-Euler operators with derivatives,
and prove their convergence rates. In Section 4, another kind of improved Shepard-Euler operators without
derivativesis provided. In Section 5, numerical examples are shown to demonstrate the accuracy of the proposed
combination in some special situations. In Section 6, we give the main conclusions.

2 Some remarks about the generalized Taylor polynomial

The generalized Taylor polynomial is an expansion in the Euler polynomials E, (x), i.e., the polynomials of the
sequence defined recursively by means of the following relations, see [19]

E,(x) =1,
E/(X) = nE,_;(x), n>1, 5)

E,(x+1)+E,(x) = 2x", n>1

For functions in the class C"([a, b]), a,b € R, a < b, this expansion is realized by the following equation
£00 = PE>[f;a,b100 + RE>[f;a,b1(0), X € [a,b), ®)

where the polynomial expansion PE>[f; a, b](x) in Euler polynomials is defined by

m

E _v fP@+ fOW) k. (x—a
P00 = ,Zg) () @

and the remainder term R<5>[f: a, b](x) in its Peano’s representation is given by:

b

[ 1K o ®

a

1
<E>r £. —
RY7Lfia,bl(x) = =11
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where

S (S o0 s

K500 = ©
U AT R

k=0

with h = b — a. The polynomial approximant P-5>[f; a, b](x) is derived from a nice property as follows:

lim PEE>T; @, b100) = Tyl f; al0), (10)

where T, [f; al(x) is the mth Taylor polynomial of f about a. Therefore, the expansion P5>[f; a, b](x) in Euler
polynomials is called the generalized Taylor polynomial.
To obtain bounds for the remainder R:f> [f; a, bl(x) from the formula (8) even in points outside the interval
[a, b], we investigate the operator
f-Pf a,bl,

where f € C™[c,d] with ¢ < a and b < d. By using the Peano’s kernel theorem [20], we provide the integral
expression for the remainder (8) as follows.

Theorem 1. Let f € C™[c,d] and x € [c, d], then for the remainder
RE>[f5a,b](x) = f(x) — PE>[f; a, b1(x) (W)

we have the following integral representations

b
T / fMOKEnd,  c<x<a,
' X
b
RSEZ[f1a,b](x) = 4 - i i / fMOKE (x,tdt,  a<x<b, 12)
' a
1)' / f(’")(t)K<E>(x tdt, b<x<d,
where
K, p(x,t) = (x = )71
13)
_ (m—1)! _ am—l-k _ am-i-k|pkp (X —Q (
Z s = 1= ik (@~ O+ 0= 0 R E (555
and (-)i denotes the positive part of the kth power of the argument, i.e.,
()% = max{s*,0}. (14)

Proof. On the one hand, in the polynomial approximation term (7) there are evaluations of derivatives of f up
to the order m on points a and b of [c, d]; on the other hand, the exactness of the polynomial approximant (9) on
the space P™ implies the exactness of the operator on the subspace P, Peano’s kernel theorem provides the
following expression for the remainder (12)

d

/ fMOKS (x, dt, (15)

c

1
<E>| £. —
R7If5a,b1(x) = =1
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where (13) is given by applying the linear functional f — R5E>[f;a, bl(x) to a function (x — t)’jr"1 inx.Ifxe
[c, a], then
RsP>[f;a,b1(x)

= / fMOKS (x, td + / fMOKS” (x, dt

1)1 1), "
b
1 (m) <E> (m) <E>
+(m—1)!/f (DK, 06 Dde+ ¢ 1),/f (OKE> (x, .
If t € [c, x], then
K57 060 = (=™
17

(m—-1)! 1 - Y —a
—ZZ(m Z Kkl [(a—t)+ 1 k+(b—t)+ 1 k]thk( >=0’

where (x — )™ ! is considered as a polynomial in x of degree m — 1.
If t € [b,d], then
Ka’b(X, t) = 0.

Thus, we now have proven the first case of (12). The remaining cases of (12) can be proved in an analogous
manner. O

By Theorem 1, we can obtain the following result.

Theorem 2. If f € C™[c,d] and x € [c, d), then for the remainder we have

CE>(m)|| f™|| (b — )™, c<x<a,
RS [f5a,DI001 < B> (m)|| f™|| (b — @)™,  a<x<b, (18)

CEm)|| f™) (x — @)™, b<x<d,

where || - ||, denotes the sup-norm on [c, d] and
1« i m\ (k 1
<E> — —
c (m)_ml’;ﬂ;(k)<l>’5,(2)‘,m_0,1,.... 19)
Proof. Let ¢ < x < a, then we have from the first case of (12) that
RsP>[f; a, bl(x)
‘ (20)
= % / FIOKS (x, 0dt + % / fIMOKS (x, .
X a
Letx <t < a, then

K;b5>(x, t)

(m-1! m—1-k m-1—k|pkp (X — @
_Zz(m i@ = 0T b - 0T
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so that

m

m _ (m-1)! X—a
/ fMOKE (x, tde = =) thk( . )

& 2Am—1-K)k!
@)

a
X / [(a— 6™  + (b — "] fO0(t)dt.
X
Note that the integrands are of type h(t)f"™(¢) with a h(t) that does not change sign in [x, a]. By applying the
first mean value theorem for integrals, we find for some &, € [c,d],k = 0,1, ..., m, that

a

(m) <E> - _ x (m—-1)! k X—a
/f (O~ 0 D= I;)Z(m—l—k)!k!hEk< h )

X

X fM(E) / [(a— "1 4 (b — ™K de

(m-=-1! —-a
Z 2(m — k)'k'h E"( h ) (22)
X fEN[=b — " + (b ="+ (a—x)"7H]
_ mz (m-1)! < —a)
2(m — k)'k! Ei h

Xf(m)(f) 14 b—x m_k+<a—x)m—k
k h h .

Ifa <t < b, then

m

<E>T f. _ (m-1)! k X—a o am—1-k
KIS 0.0100 = kz=:4)2(m—1—k)!k!hEk< LD @

and b

/ K57 060 f ™ (dt

a

b

— _i (m-1)! thk<X ; a)/ b - t)m_l_kf(m)(t)dt.

& a(m—1-K)lk!

Based on the first mean value theorem for integrals, we get for some f,, € [c,d],k = 0,1, ..., m, that

/ fMOKS” (x, Hdt

__’" (m = 1)! k (m) / _ym—1-k
B ,§)2(m—1—k)!kvhfk< )Xf B | b=10 dt

== m=D! pp (X=a (m) __ym—k
- z“Z(m k)'k'hEk< h )Xf (B )b — a)

— _hmz 2((m_— 1)' .Ek(X ; a) x f(m)(ﬁk)- 24)
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Substituting into (20) the left-land sides of (22), (24) with their respective right-hand sides, we finally give
after some calculations

<E>T £. — (m) —a

RP 0, b0 = -0 f @5 B (5
m—k

b—x a—x\mk

xl—1+<h) +(57) ]

P00 B )

and -
getanw] sl S o B e()
In [21], we have the following known identity:
k
Ex+y) = lz; <1;>Ek(x)yk",k= 0,1,...,m (25)

From the relations (25) we can easily deduce the following formula:

B =3 (a1 o)

=0

so that we get

RSP 1f3a,b10)|

A/l m (b=x\"" k’ 1‘ b—x _1\"
<H Z(m—k)!k!( h) > () EG) R -

k=0 =0 (27)
k m
nlf™l S 5 (my (K[ (1)|(b=x
<K Z;Z;(k) l E’(z) h )
Similarly, we can prove the remaining expressions of (18). O

Since the algebraic degree of exactness of the operator P=5>[-; a, b] is equal to m, we can prove the following
desired bounds in an analogous manner.

Theorem 3. If f € C™c, d] and x € [c, d], then for the remainder we have
C<E>(m + 1)”f(m+1)”oo(b _X)m+1’ c<x<a,

RS 3@, BI0OL <4 CE>(m+ DS ™Vl o(b— @™, a<x<b, @)

C<E>(m + l)llf(m+1)”°o(x _ a)m+1, b<x< d,

where

CP(m+1) =

m k
(mi1)v,§gg(mzjl><lz<)'a(;>‘ 29)
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3 Akind of Shepard-Euler operators with derivatives

Suppose that x; < x, < ... < Xy_; < Xy are fixed points in an interval I = [x;,xy] C R and xy,; = xy_;. For
each fixed 4 > 0 and m = 1,2, ..., by combining the Shepard operator with the extension in the Euler polyno-
mials, we first construct a kind of Shepard-Euler operators S; with derivatives of function f at endpoints as
follows

N
S, [f100 = Y A, COPE [ x, X411, x €1 (30)
i=1
where P<E>[f; X;, X;,11(x) is the natural extension of the polynomial approximation term defined in (7).

Theorem 4. The operator EE,,, reproduces all univariate polynomials of degree no more than m.

Proof. The argument EEm [p] = p follows from the well-known property

N
DA =1 31

i=1

and
P pixuxq ) =p fori=12,...,N,

where p € P,,,. U

To study the convergence rates of the two kinds of operators §Em and Sg , we make use of the following

notations
Ip(x) =[x—p,x+pl, p>0,

r=inf{p > 0:Vx e ,LL,(x)nX # @},
M = max#(I.(x) N X),
x€l

where X = {x,X,, ..., Xy} and #(-) denotes the cardinality function. So M denotes the maximum number
of points from X contained in an interval I,(x). For the operators Sy we then give the error estimates as
follows.

Theorem 5. Let f(x) € C™(I). Then

IS, 11100 = fW0llge < CMIf™ o€ (r), (32)
where r
|In r|7%, u=1,
. ri=1 1<pu<m+1,
eZ" (r)=- (33)
r“n r|, u=m+1,
rm, u>m+1,

C'E) is a positive constant independent of x, and X, and r is given above.
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Proof. Assume that each pair x;, x;,, € I is fixed and suppose x; < x;,4. For each x € I, we make use of the

following settings
- X, X <X,

Xip1
dlx, X ) = x0 — X X X< X,

(34)

X = X,

d™[x;, X110 = (dx;, X, 100)™

Based on (2) and (30), we obtain
_ N
[Sk,, = FOO||< X AP Ui K] = F00
i=1

N
< ZAM’i|P;E> (3 X Xiga] — f(x)|
i=1

< CE )| f ™l 000,

where N
Zl [X = X;|7Hd™[x;, X311 (X)
m — =
s () = . (35)
X = x| 7H
k=1

From [9], we can give the following prove:
m <E> m—1
s, x)<c Me)) (r).

Suppose that
n= [L _XO] +1,
2r

Qw=-p,u+pl, uelp>0,
Tj =Q,(x=2rj)uQ,(x+2rj), j=0,1,...,n,

where the set U;.‘z_th(x+2rj) denotes the covering of I with half open intervals. Thus, for every i €
{1,2,...,N} there exists a unique j € {0,1,...,n} such thatx; € T;. Then, we obtain the following inequalities

2j=Dr<Ix—x| <@2j+Dr,
(36)

Q-D-Dr<ix—7l <QG+D+Dr,

where j =2,3,...,nand 7; € [x;_y, X;;4]. Therefore, we find from (34)
dlx;, xi1() < QG+ 1D+ Dr, (37

On the other hand, we also find from the definition of M
1<#XNTy) <M,
1<#XNT)<2M, j=12,....n

(38)

Let us denote by x, the node closest to x; since
— —H
X=xl™ g

N
21X = x| 7H
=1
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By applying (36) and (37), we have

S0 < Z |X_X]£[|_Mdm[xiﬁxi+1](x) + Z Z IX—x]f]|‘/‘d”'[xi,xi+1](x)

x;€T, Z |X _ Xkl—y Jj=1 X,€T; Z IX _ Xk|—/4
k=1 k=1

< Z d"[x;, Xi3.4100 + |X—Xd|”2 z [x = x; |7 d™[x;, X410

X, €Ty J=1 x;€T;

< M@ry™ +2Mr# Y (2 = Dr)~#(2) + 3™
j=1

n
< M5™™ (1 + zZ;"H),
j=1
where the last inequality follows from

2j—1>j,  j=12 ...,
2j+3<5, j=12 ...

Casel:(u>1)
If1< p<m+1,then

n
r'"<1 + 22;'"—”) =0o(r* ).
j=1

If y =m+1,then

If 4 > m+1,then Z j™* is bounded.
Case2: (u=1)

$ 00 = 8700

N
21X = X7 ™ Dxg, Xi44100

< i=1

N
Y Ix—xl™
k=1

2 A", X100 + Z 21X = x| 7" I, Xigg 100

X, €Ty J=1X,ET;
= n
TIx=xlT+ Y X Ix—xl™!
X €T, J=1X€ET;

¥ A, X OO+ Y Y [x = x| ™I, X ] ()

X, €Ty J=1X€ET;
B Y Ix=x ™+ Efnr|
X €T,
1
demmuHm”ZZux|d Xyl 00

X, €Ty j=1 x;€T;
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n

<M+ =3 Y (2 - 17 + 3

| In r| j=1 x,€T;
C n
<M5mP 1+ 2 Yy it
< |In r| ;]
ma.m CZ —m
<M1+ ——2-0(r ™)
[In r|
=0(|Inr|™).
O
In an analogous manner we can prove the following theorem.
Theorem 6. Let f(x) € C™'(I). Then
IS, [F100 = f(llgo < CE> M| F™D| em(r), (39)
where
[In |72, u=1
ri-1 l<pu<m+2,
gZ‘(r) =4 (40)
r“inr|, u=m+2,
ala u>m+2,

L

and C'® is a positive constant independent of x and X.

Because of disadvantage with the derivatives in the operator EE,": we give the following modification oper-
ator Sy .

4 A kind of improved Shepard-Euler operators without derivatives

Although the operator EEm possesses the degree of exactness not greater than m, they require the derivatives of
the function f at the nodes, which are very difficult to measure in practice. By using divided difference oper-
ator Df‘ f in the following Definition 1 to substitute the derivatives f*' in the operator EEm’ we define a kind of
improved Shepard-Euler operators S; without derivatives of function f at endpoints.

Definition 1 (see [18]). Let ¥ = { f|f:R — R} and let A be a discrete subset of R, k € N. Suppose that D* is the
order k derivative. An operator Df;: F — F is said to be a P,,-exact A-discretization of D¥ if and only if
(i) There exists a real vector 4 = (4,),e4 s.t. forany f € F,

DEfCY =D A fC+@, k=1,...,m; 41)

agA
(i) Foranyp € P,
D¥p =Dp. 42)

In such situation, we also say that Df‘ f is a P, -exact A-discretization of Df. Let the points be distinct in the
set A, then Dfl is determined uniquely.
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Suppose that | - | denotes the number of elements in set and assume that the points in set A are distinct, and
|A] = m + 1. Then by Definition 1 and [18], a P,,-exact A-discretization of the order k derivative f " jg

DEf) = Y A fx+ @), k=12,....,m, 43)
acA
where |
k!
' R k = m7
HceA\{a}(a —0)
Ag =1 (44)
(_1)m_kk!2A’cA\{a} [Teea(©
1A' |=m—k
s k<m.
{ Heeaig(@=0)

According to the location of each pair x;,x;.; (i=1,2,...,N), we choose suitable sets A;, and substitute
f(k)(xi), f(k)(xi+1) in (30) by Dl‘;i fxyp), D/’gi f(x;41), respectively, then a kind of improved Shepard-Euler operators
Sg, can be written as

N

Se [f100 =Y FO) +2f Wit p (XX X >AM,,-(X)
i=1

i+1 i
N m Z j'af(xi + a) + Z Aaf(XiH + a)

aea; aeA; 45
+ Z Z 2k! (i1 = X)" @)
i=1| k=1 :

X=X
X E L >]A (x).
k<xi+1_xi ol

Theorem 7. The operator Sy reproduces all univariate polynomials of degree no more than m.

Proof. Since Dﬁ f are the P, -exact A-discretization of the derivative of the kth order f®, 1 < k < m, then for

any f € P,, we have
DEfx) = fPx), x€eR,

so that

Xiy1 — X;

N
5, U100 = 3, T2 T (""“)Eo< X=X )A,u»(x)
i=1

Nlm XA S+a+ Y A, +a)
acA,; a€A;
+Y 1Y T Ogr = X))

i=1| k=1

xEk< X =X > 0 (46)

Xiy1 — X

N
= 3 Fot fliadp (X=X, 00
X i ’

i=1 2 i+1

i1 X

N o[ oy, () (y. —
+zlzf )+ f (Xl+1)(Xi+1_Xi)kEk<XX X; >]Am(x).

i=1 | k=1 2k! -

According to (46) and the proof of Theorem 4, we can obtain S}sm [f100 = f(x), when f(x) =1,x,...,x™.
Therefore, we have proved that the operators S satisfy the mth degree polynomial reproduction property. []
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For the Shepard-Euler univariate operator Sy we then have the following desired error estimates.

Theorem 8. Let f(x) € C"*'(I). Then

15, 100 = f0)lleo < CF M f" P e (1), 47
where
[In r| ™, u=1
ri=1 1<pu<m+2,
en(r) = 4 (48)
r*Inr|, u=m+2,
pmtl Hu>m+2,

and C<E> is a positive constant independent of x and X.

Proof. Consider
g, L1100 = £00| = [I85, 1100 =S, 111001 + (8, [£100 = £()]|

~ ~ (49)
< [Se, L1100 = 00| + [Sg, L1100 = S [£10).
The first term of the right-hand sides in (49) has been obtained from the Theorem 6:
[S:, 1100 = f00| < €1 F ™V 57 00), (50)
where
N
I = X THA™ g, X 41(X0)
1 _ =1
SZHr ) =" N
2 X=X 7H
k=1
Based on (36) and (37), we get
SZH—l(X)
Z | X — X; | HA™ X, X 4] (X) + 2 2 [ X —X; | Hd™ [, Xi41(X)
x;€T, z |X Xkl U j=1 x;€T; Z |X Xkl "
n (51
< Z d™x;, X100 + |X—Xd|”2 Z | X = X, d"™ X, X441 00
X, €Ty Jj=1 €T}
n
< MErY™+2MrH Y (2 — Dr)7H(2) + 3)rm
=1
n
< M5mH (1 +2) j’"“‘”). (52)
j=1

Next, we need to prove the first term of the right-hand sides in (49). We denote by .4 "'min the maximum
and the minimum distance between adjacent nodes respectively. Let k = :m—ﬂ > 1. Let G, C, be a constant, then

min

according to [18], we get

a
Z|Aa|(,'n'+1), _Z| o Gy g A A < Gk (53)
aeA
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Therefore, we have
Dk FO) = FRO] < Cr = ™| F D00

and
1D fOi4) = FP 0601 < Gr™ ™ F 00 .

Let Cpg, C115 Cy0s Co1s Cogs -+ s Cgs Cts - s G €5 €, €', Co = |1 f™*P]| o, be constants. Then

[S¢, L£100 = S, LF100)|

X2 D5 700 = 1900 | + D5 F0xn) = F90x)]
= Z z, : : (Xip _Xi)k
A 2k!
i=1 k=1
X — Xi
<A

[, 700 = 7000 + D5 £0610) = 9 xi0)

N m
< Z Z (Xi+1 - Xi)k 2k!

i=1 k=1

k

K\, (1 1\
<D0 5) e
=0 i+1 1
N m k
ik O =30 (I | (1
=122r+1k’(+12k!"<l>’}51(2>‘

k=1 1=0

< (Cy + C)Cok™

1

1 k=1
X ( > d[x,, Xi1alA,, ()

Xip1 = X;
N N
< Cl’ormeZ dlx;, X;411A,, 00 + Clylr’"rc’”z rA, ;00 + Cyor™ k™
i=1 i=1
N N
X Z d*[x;, X;14]4,,00 + Cz,lrmrcm‘lz rdlx;, X 4414, ;00
i=1 i=1
N N
+ ™K™Y PPAL 00 + - CgTK™ D AN XA, ()
i=1 i=1
N N
+ Cm,lrrcmz rd™ X, XA, 00 + - -+ Cm!mrzc’"z r"A, (x)
i=1 i=1

N
S(C+Cp+-- -+ Cm,m)KmrmHZAM,i(x)
i=1
N
+ (Cl,o + Cz,l 44 Cm,m—l)KmrmZ d[Xi7Xi+1](X)Ay,i(X)
i=1
N
+(Cog ¥ Gt G 2, €6 X JOOA 00
i=1
N

+ o Gk Y A7 X X;41100A,, 00,
i=1

(54)

(55)
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By applying (36) and (37), we have
|8z, 1100 = S, 10|

S (Cl,l + CZ,Z + R + Cm’m)Kmrm+1 + (Cl,o + C2,1 + A + Cm’m_l)Kmrm

% Z IX—zil_”d[Xi’Xm](X) +Z Z IX—xil_”d[Xi’Xm](X)

x;€T, z |X_Xk|—;4 J=1 x,€T; Z |X_Xk|—y
k=1 k=1

+(Cop+Cag+ -+ Gk ™!

— x|~ Hd[x.. x. " — x|~ HdP[x.. x.
% ZIX )}(\;l d[Xqu+1](X)+22|X )I(\;l d[x;, X441 (X)

X, ETy Y X = x| 7H JF1 €T > x = x| 7H
k=1 k=1

4o Cok™

X = X A" X000 | o N 1X = X THA DG X )00
X LY Y .

X, €T, Z |X _ Xkl—y j=1 X;€T; Z |X _ Xkl—y
k=1 k=1

<(Cy+Cop -+ CodK™ ™+ +(Crg + Coq + - - - + Cymy K™

X| D D, Xigq 100 + Px = xg1* D0 D [x = x;l#dlx;, Xiy41(0)

X, €Ty j=1 X,€T;

+(Cop+ Cag+ -+ Gk ™!

n
X Z dDxg, X100 + |x — xd|"z Z | X — X;| A [X;, X110
X, €Ty j=1 X,€T;
+ o+ Cok™r

n

X Z d™ X, Xipq J(X) + |x—xd|"z Z [ X = x;| 7 d™[x;, Xi4100)

X, €Ty j=1 x,€T;

S(Cy+Copt -+ CupK™ ™ +(Cro+ Cog + - - + K™

X (M(Br) +2Mri Y (2] — D)) + 3)r)>

=

+ (CZ,O + CB,l +---+ Cm’m_z)Kmrm_l

X <M(3r)2 + 2MrH Z (2j = DHr)#(2j + 3)r)2>

j=1

+ o Gk X (M(3r)'" +2Mr Y (2] — DR H (2 + 3)r)’”>
j=1

DE GRUYTER
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S(Cy4Cop+ -+ 4 Crp)K™ ™ + (Crg + Coq + - - - 4 Gy JE™™

X <M(5r)<1 + 22]‘1—”>>
j=1

n
+(Cpg+Cyq+-- -+ Cm,m_z)xmrm—1<M(5r)2(1 +2) jz‘”)>

j=1
n
+- -4 Cm,OK'"r<M(5r)m<l + 22j’"‘”>>
j=1
_ n
< C||f(m+1)”ooM(5mrm+l<1 + Zij_M>>-

j=1

By applying formulas (50), (52), and the results above, we can obtain

1S5 [£100 = 00

n
< §<E>Ml|f(m+l)||°o<5m+17”m+1 (1 + szm+1—ﬂ>) + E”f(m+1)||ooM

j=1
n
X <5mrm+1<1 + 22 j’""‘))
j=1

n
< CM”f(m+1)||oorm+1<1 + ZZ]'MH—#)_

j=t

Casel: (u>1)
If1 < pu <m+2,then

n
r’"+1<1 + 221""“—”) =0(r* ).

j=1

If y = m+ 2, then

n

Zj'"“_” =0O(|Inr]).

J=1

If u > m+2, then 37_j ™'~ is bounded.
Case2:(u =1

ISg, [£100) — f0)|
<185, [0 = FOON + 1S, [F100 = S, [£1(0)]

S (Cry+Cppt v G ™+ (Crp + Gy + -+ Gy )™

Y Ix=x7 g xiq100 + X X 1x = x] 7, Xi44100

X, €Ty J=1IXET;

!
Y Ix=xl+E]nr|
X €T,

+(Cog 4+ Cag+ - - + )™
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> X=X 100+ X X 1x = X T I, X100

X, €Ty J=1XET;

!
Y Ix=xl+ S nr|

X €T,

+ o Cpok™r

) |X_X|_1dm[x X1 + Z > Ix= X|_1dm[ Xi31](X)

X €Ty J=1XET;

!
Y Ix=xl+ S nr|
X €Ty

<E>| £(m+1)
+ N

> Ix = x| 7 A g, X 100 + Z > Ix = x| 7 A g, Xy 1(X)
XE€Ty J=1x€T;

!
Y Ix=x7+ S 7|

X €T,

S (Cl,l + CZ,Z + ttt + Cm’m)K—mrm*-l

+ (CLO + CZ,l + tet + Cm’m_l)l(‘mrm
x| M@3r) i Z > 2 - D@ +3)r)
} =1 x;€T;

+ (CZ,O + C3‘1 + A + Cm’m_z)l(mrm_l

x | M@3r)? +
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l } =1 x;€T;
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C o
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+CIf ||oo< (5) ( 1 rlgj ))
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5 Numerical examples

5.1 Verification of approximation capacity

We consider the following functions on the interval [0,1]:

saddle f, = ﬁ
Sphere f, = \/W —0.5,
it g, BNCICED g
Gentle f, = eXp(_f;(; - 0'5)2),
Seep f = eXp(—gj(;—o.s)z)’
Exponential  fg = 0.75 eXp<—(9’:2)2) +0.75 exp<—(‘c)x;;1)2>
+0.5 eXp(—W) + 0.2 exp(—(9x — 4)?).

These functions were first introduced in [9] and result from adapting to the univariate case test functions

generally used in the multivariate interpolation of large sets of scattered data in [22]. For each function f;,i =
1,2,...,6 we will compare the numerical results of our new operators EEM [f] and S [f] with the Shepard-
Bernoulli operator SBm [f1in [9].
B We adopt uniform grids of 17 points for SBl,Egl, and S ; at the same time we use grids of 11 points for Sg,
Sg,» and Sg, and finally grids of 8 points for Sp , S, and Sg,. To have as accurate an estimation of the error as
possible, we compute the approximation functions at the points ﬁ, i=1,2,...,100. Tables 1-6 show mean and
max absolute errors for different values of the parameters y and m. Numerical results show that the approxima-
tion accuracy of our new operators EEM and Sg is comparable with the accuracy of Shepard-Bernoulli operator
Sp, -

In Figure 1, we plot the absolute error graphs of Sp f; (i=1,2,...,6) as the parameters 4 = 3and m = 2.

Table 1: Saddle.

(4, m) Ss, [ St fi Se fr

Emean Emax Emean Emax emean Emax
2,1 0.001050 0.004954 0.001067 0.005139 0.001050 0.004955
(2,2) 0.001062 0.004715 0.001100 0.004430 0.001004 0.003710
(2,3) 0.001490 0.005153 0.001516 0.005141 0.001771 0.007104
(3,1) 0.000476 0.003314 0.000496 0.003220 0.000477 0.003315
(3,2) 0.000333 0.002302 0.000313 0.001076 0.000280 0.001071
(3,3) 0.000206 0.001096 0.000391 0.001568 0.000550 0.003165
4,1) 0.000457 0.003233 0.000476 0.003158 0.000457 0.003234
4,2) 0.000259 0.001908 0.000259 0.001042 0.000295 0.001007

(4,3) 0.000136 0.001460 0.000358 0.001649 0.000505 0.003001
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Table 2: Sphere.

(u, m) Ss, [ EE,,, f Se, [

Emean emax Emean gmax 8mean emax
2,1 0.002145 0.005623 0.002151 0.005592 0.002145 0.005624
(2,2) 0.000312 0.000842 0.000326 0.000839 0.000222 0.000534
(2,3) 0.000586 0.002344 0.000583 0.002392 0.000176 0.000888
(3 0.000583 0.001620 0.000586 0.001576 0.000584 0.001620
(3,2) 0.000058 0.000247 0.000825 0.000171 0.000056 0.000198
(3,3) 0.000079 0.000323 0.000082 0.000315 0.000055 0.000167
4,1) 0.000510 0.001447 0.000513 0.001512 0.000510 0.001448
4,2) 0.000039 0.000255 0.000044 0.000171 0.000053 0.000209
(4,3) 0.000025 0.000113 0.000039 0.000130 0.000063 0.000195
Table 3: Cliff.
(p, m) S5, f EE,,, f Se, f3

Emean Emax Emean Emax Emean Emax
2,1) 0.006604 0.038815 0.006867 0.041552 0.006604 0.038816
(2,2 0.004710 0.031367 0.005681 0.032557 0.005213 0.042274
(2,3 0.013455 0.062821 0.019834 0.067441 0.012252 0.084868
(3,1 0.002522 0.021627 0.002466 0.023453 0.002523 0.021627
(3,2) 0.002466 0.027527 0.002539 0.020448 0.003466 0.028998
(3,3) 0.002138 0.016732 0.008360 0.049557 0.009664 0.072554
4,7) 0.002405 0.021752 0.002307 0.021369 0.002406 0.021753
4,2) 0.002170 0.034048 0.002481 0.021815 0.003451 0.028254
(4,3) 0.001542 0.024101 0.007482 0.049916 0.009573 0.071607

Table 4: Gentle.

(#, m) S5, [ Se fa S, fa

Emean Emax Emean 6max Emean Emax
2,1 0.002590 0.007116 0.002585 0.007136 0.002591 0.007116
(2,2) 0.001897 0.005956 0.001897 0.005475 0.001640 0.004237
(2,3) 0.001138 0.006015 0.000982 0.005419 0.000096 0.009007
(3,7 0.000681 0.003277 0.000695 0.003216 0.000681 0.003278
(3,2) 0.000378 0.001727 0.000355 0.001089 0.000290 0.000703
(3,3) 0.000175 0.000940 0.000174 0.000854 0.000376 0.001751
(4,1) 0.000618 0.002978 0.000630 0.002926 0.000618 0.002979
(4,2) 0.000270 0.001163 0.000257 0.000606 0.000279 0.000622
(4,3) 0.000089 0.000575 0.000162 0.000425 0.000329 0.000983

5.2 Comparison of computational cost

Suppose that Exponential. f;(x) is still the approximated function, then we choose the different shape parameter
u and different positive integer m to compare the computational cost of our operators §Em [fs] and S _[fe] with
that of Sy [f;]. The laptop which we use to compute the max errors have the following properties: processor
type is Intel Core i5-5200U, CPU frequency is 2.2 GHz, memory capacity is 4 GB. In Tables 7 and 8, we observe the
computational time(s) of each operator.



DE GRUYTER R. Wu: A kind of univariate improved Shepard-Euler == 19

Table 5: Steep.

(4, m) s, fs S, fs Se fs

Emean 8max 8"\ea“ Emax £mean Emax
2,1 0.002358 0.012532 0.002542 0.013477 0.002359 0.012532
(2,2) 0.002950 0.015868 0.003583 0.013701 0.003489 0.011714
(2,3) 0.004950 0.019728 0.004996 0.022482 0.004876 0.018069
(3,1 0.001930 0.011016 0.002034 0.010647 0.001930 0.011016
(3,2) 0.001501 0.009079 0.001521 0.004408 0.001338 0.004893
(3,3) 0.000909 0.005278 0.002128 0.007668 0.003780 0.012462
4,1) 0.001945 0.011413 0.002014 0.010619 0.001945 0.014433
(4,2) 0.001323 0.008184 0.001322 0.004414 0.001390 0.004782
(4,3) 0.000815 0.006381 0.002138 0.006357 0.003766 0.012590

Table 6: Exponential.

(4, m) Ss, fe S, fo St fo

6\"'Iean Emax 6\"1ean Emax Emean 6\"'Iax
2,1 0.007669 0.034757 0.008035 0.036003 0.007670 0.034958
(2,2) 0.005271 0.025436 0.008158 0.026378 0.007703 0.030519
(2,3) 0.025296 0.067861 0.022226 0.059885 0.019342 0.072922
3,1 0.005122 0.021099 0.005439 0.022252 0.005123 0.021100
(3,2) 0.004379 0.024620 0.005992 0.015731 0.006238 0.020148
(3,3) 0.003523 0.020488 0.015247 0.058286 0.017772 0.046858
4,1 0.005026 0.022762 0.005276 0.021013 0.005026 0.022762
(4,2) 0.004233 0.024080 0.005834 0.015174 0.006435 0.019645
(4,3) 0.003020 0.018326 0.015702 0.058286 0.017589 0.043494

From Tables 7 and 8, we find that for the different ¢ and m, our Shepard-Euler operator SEm [ fg] without
derivatives cost a less time(s) than the Shepard-Bernoulli operator SBm [f]. Hence, we believe that it is really a
good idea to move up to high-order scheme.
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Figure 1: Absolute error graphs using operator S, with m = 2 and p = 3 for functions f, i =1,2, ..., 6. (a) Absolute error graph of
S, /- (b) Absolute error graph of S, f,. (c) Absolute error graph of S, f;. (d) Absolute error graph of S, f,. (e) Absolute error graph of
Sg, fs- () Absolute error graph of S, f;.
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Table 7: Computational time(s) of the max errors of operators approximating f; asm = 2.

(p, m) 2,2) (3,2) 4,2)
S, fs 21.023985 21.106101 21.276911
$e fs 42.213025 42.838780 44.621109
S fs 0.146423 0.124507 0.105130

Table 8: Computational time(s) of the max errors of operators approximating f; asm = 3.

(u, m) 2,3) (3,3 4,3)
S, fo 31.562475 30.887780 32.220974
Se, fo 47.240185 47.940174 47.033827
St fs 0.202907 0.248268 0.217616

6 Conclusions

In this paper, a kind of univariate Shepard-Euler operators Egm is constructed by combining a known Shepard
operator with the expansion in univariate Euler polynomials. However, it requires the derivatives of approx-
imated function at endpoints, which is not very convenient for practical purposes. Using linear combinations
of the shifts of approximated function to approximate the derivatives of approximated function, we propose
another kind of improved Shepard-Euler operators Sy which do not need values of the derivatives at nodes.
Meanwhile, we have also proven that the operator Sy possesses the mth degree polynomial reproduction
property and good convergence capacity. Furthermore, Numerical results show that it uses less computational
cost. So the method is also applicable for people in applications.

In the following work, on the one hand, we want to use it to the fitting of discrete solutions of the initial
value problems of ODEs. On the other hand, the univariate Shepard-Euler operators can be extended to the
multivariate case.
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