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Abstract: In this paper, a kind of univariate Shepard-Euler operators is studied by combining the knownShepard

operator with the generalized Taylor polynomial as the expansion in the Euler polynomials. For practical pur-

poses, another kind of improved Shepard-Euler operators without any derivative of the approximated function

f is given by using divided differences to approximate the derivatives. Some error bounds and convergence rates

of the combined operators are studied. Finally, some numerical experiments are shown to compare the approx-

imation capacity of our operators with that of Caira-Dell’Accio’s scheme. Furthermore, there is no demand for

the derivatives of f in the proposed operator, so it does not increase the orders of smoothness of f .
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1 Introduction

The classical Shepard operator, first introduced in [1], is awell suited operator for two-dimensional interpolation

of very large scattered data sets. Let f be a real valued function defined on X ⊂ ℝ. Let X = {xi}Ni=1 be a set of
some distinct points. The Shepard operator in the univariate case is defined by

SN,𝜇[ f ](x) =
N∑
i=1

A𝜇,i(x) f (xi ), 𝜇 > 0, (1)

where

A𝜇,i(x) =
|x − xi|−𝜇

N∑
k=1

|x − xk|−𝜇
(2)

and | ⋅ | denotes the Euclidean norm in ℝ. It is easy to check that

A𝜇,i(x𝑣 ) = 𝛿i,𝑣, i, 𝑣 = 1, 2,… ,N, (3)

and
N∑
i=1

A𝜇,i(x) = 1. (4)
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Because SN,𝜇[ f ](x) reproduces only constant functions, so Shepard has suggested to apply SN,𝜇[ f ](x) not

directly to the f (xi), but to the Taylor polynomial of f of degree 1 at xi. In this case the combined operator has

the degree of exactness 1 in [1].

To increase the degree of exactness of the Shepard operator, several combined operators have been intro-

duced and studied on Taylor [1–5], Lagrange [6], Hermite [7], Birkhoff [8], and Bernoulli [9]. The Shepardmethod

can also refer to recent developments on the subject, see [10–16] for details.

Based on the idea in [9], we first combine the Shepard operator SN,𝜇[ f ](x) in [1] with the generalized Taylor

polynomial, the Euler-based expansion as one instance of two-point generalized Taylor polynomials introduced

in [17] to obtain a kind of Shepard-Euler operators. The proposed Shepard-Euler operator S̃Em possesses good

reproduction qualities and high accuracy just like the Shepard-Bernoulli operator [9]. However, they involve

the derivatives of f at every node. For practical purposes, applying the divided difference formula in [18] to the

proposed operator S̃Em , we present another kind of Shepard-Euler operators SEm which do not require values of

the derivatives at nodes. We show that the new operators SEm and S̃Em could reproduce all polynomials of degree

≤ m, and give the convergence rate of (hm+1 ). Further, the constructed operator SEm could provide the desired

smoothness and precision in the practical applications.

The organization of the remainder of this paper is as follows. In Section 2, we recall the definition of univari-

ate Euler polynomials and give three useful theorems for the error of approximation thatwill be used later in the

paper. In Section 3, we apply the previous results to derive a kind of Shepard-Euler operators with derivatives,

and prove their convergence rates. In Section 4, another kind of improved Shepard-Euler operators without

derivatives is provided. In Section 5, numerical examples are shown to demonstrate the accuracy of the proposed

combination in some special situations. In Section 6, we give the main conclusions.

2 Some remarks about the generalized Taylor polynomial

The generalized Taylor polynomial is an expansion in the Euler polynomials En(x), i.e., the polynomials of the

sequence defined recursively by means of the following relations, see [19]

⎧⎪⎪⎨⎪⎪⎩

E0(x) = 1,

E′
n
(x) = nEn−1(x), n ≥ 1,

En(x + 1)+ En(x) = 2xn, n ≥ 1.

(5)

For functions in the class Cm([a, b]), a, b ∈ ℝ, a < b, this expansion is realized by the following equation

f (x) = P<E>
m

[ f ; a, b](x)+ R<E>
m

[ f ; a, b](x), x ∈ [a, b], (6)

where the polynomial expansion P<E>
m

[ f ; a, b](x) in Euler polynomials is defined by

P<E>
m

(x) =
m∑
k=0

f (k )(a)+ f (k )(b)

2k! hkEk

(
x − a

h

)
(7)

and the remainder term R<E>
m

[ f : a, b](x) in its Peano’s representation is given by:

R<E>
m

[ f ; a, b](x) = 1

(m− 1)!

b

∫
a

f (m)(t)K<E>
a,b

(x, t)dt, (8)
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where

K<E>
a,b

(x) =

⎧⎪⎪⎨⎪⎪⎩

− 1

2

m∑
k=0

(
m− 1

k

)
hkEk

(
x − a

h

)
(b− t)m−1−k, x ≤ t,

1

2

m∑
k=0

(
m− 1

k

)
hkEk

(
x − a

h

)
(a− t)m−1−k, x ≥ t,

(9)

with h = b− a. The polynomial approximant P<E>
m

[ f ; a, b](x) is derived from a nice property as follows:

lim
h→0

P<E>
m

[ f ; a, b](x) = Tm[ f ; a](x), (10)

where Tm[ f ; a](x) is themth Taylor polynomial of f about a. Therefore, the expansion P<E>m
[ f ; a, b](x) in Euler

polynomials is called the generalized Taylor polynomial.

To obtain bounds for the remainder R<E>
m

[ f ; a, b](x) from the formula (8) even in points outside the interval

[a, b], we investigate the operator

f → P<E>
m

[ f ; a, b],

where f ∈ Cm[c, d] with c < a and b < d. By using the Peano’s kernel theorem [20], we provide the integral

expression for the remainder (8) as follows.

Theorem 1. Let f ∈ Cm[c, d] and x ∈ [c, d], then for the remainder

R<E>
m

[ f ; a, b](x) = f (x)− P<E>
m

[ f ; a, b](x) (11)

we have the following integral representations

R<E>
m

[ f ; a, b](x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

(m− 1)!

b

∫
x

f (m)(t)K<E>
a,b

(x, t)dt, c ≤ x ≤ a,

1

(m− 1)!

b

∫
a

f (m)(t)K<E>
a,b

(x, t)dt, a ≤ x ≤ b,

1

(m− 1)!

x

∫
a

f (m)(t)K<E>
a,b

(x, t)dt, b ≤ x ≤ d,

(12)

where
Ka,b(x, t) = (x − t)m−1+

−
m∑
k=0

(m− 1)!
2(m− 1− k)!k!

[
(a− t)m−1−k+ + (b− t)m−1−k+

]
hkEk

(
x − a

h

) (13)

and (⋅)k+ denotes the positive part of the kth power of the argument, i.e.,

(s)k+ = max{sk, 0}. (14)

Proof. On the one hand, in the polynomial approximation term (7) there are evaluations of derivatives of f up

to the orderm on points a and b of [c, d]; on the other hand, the exactness of the polynomial approximant (9) on

the space ℙm implies the exactness of the operator on the subspace ℙm−1. Peano’s kernel theorem provides the

following expression for the remainder (12)

R<E>
m

[ f ; a, b](x) = 1

(m− 1)!

d

∫
c

f (m)(t)K<E>
a,b

(x, t)dt, (15)
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where (13) is given by applying the linear functional f → R<E>
m

[ f ; a, b](x) to a function (x − t)m−1+ in x. If x ∈
[c, a], then

R<E>
m

[ f ; a, b](x)

= 1

(m− 1)!

x

∫
c

f (m)(t)K<E>
a,b

(x, t)dt + 1

(m− 1)!

a

∫
x

f (m)(t)K<E>
a,b

(x, t)dt

+ 1

(m− 1)!

b

∫
a

f (m)(t)K<E>
a,b

(x, t)dt + 1

(m− 1)!

d

∫
b

f (m)(t)K<E>
a,b

(x, t)dt.

(16)

If t ∈ [c, x], then

K<E>
a,b

(x, t) = (x − t)m−1

−
m∑
k=0

(m− 1)!
2(m− 1− k)!k!

[
(a− t)m−1−k+ + (b− t)m−1−k+

]
hkEk

(
x − a

h

)
= 0,

(17)

where (x − t)m−1 is considered as a polynomial in x of degreem− 1.

If t ∈ [b, d], then

Ka,b(x, t) = 0.

Thus, we now have proven the first case of (12). The remaining cases of (12) can be proved in an analogous

manner. □

By Theorem 1, we can obtain the following result.

Theorem 2. If f ∈ Cm[c, d] and x ∈ [c, d], then for the remainder we have

|R<E>
m

[ f ; a, b](x)| ≤
⎧⎪⎪⎨⎪⎪⎩

C<E>(m)‖ f (m)‖∞(b− x)m, c < x < a,

C<E>(m)‖ f (m)‖∞(b− a)m, a < x < b,

C<E>(m)‖ f (m)‖∞(x − a)m, b < x < d,

(18)

where ‖ ⋅ ‖∞ denotes the sup-norm on [c, d] and

C<E>(m) = 1

m!

m∑
k=0

k∑
l=0

(
m

k

)(
k

l

)||||El
(
1

2

)||||,m = 0, 1,… . (19)

Proof. Let c < x < a, then we have from the first case of (12) that

R<E>
m

[ f ; a, b](x)

= 1

m!

a

∫
x

f (m)(t)K<E>
a,b

(x, t)dt + 1

m!

b

∫
a

f (m)(t)K<E>
a,b

(x, t)dt.
(20)

Let x < t < a, then

K<E>
a,b

(x, t)

= −
m∑
k=0

(m− 1)!
2(m− 1− k)!k!

[
(a− t)m−1−k + (b− t)m−1−k

]
hkEk

(
x − a

h

)
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so that
a

∫
x

f (m)(t)K<E>
a,b

(x, t)dt = −
m∑
k=0

(m− 1)!
2(m− 1− k)!k!h

kEk

(
x − a

h

)

×
a

∫
x

[
(a− t)m−1−k + (b− t)m−1−k

]
f (m)(t)dt.

(21)

Note that the integrands are of type h(t) f (m)(t) with a h(t) that does not change sign in [x, a]. By applying the

first mean value theorem for integrals, we find for some 𝜉k ∈ [c, d], k = 0, 1,… ,m, that

a

∫
x

f (m)(t)K<E>
a,b

(x, t)dt = −
m∑
k=0

(m− 1)!
2(m− 1− k)!k!h

kEk

(
x − a

h

)

× f (m)(𝜉k )

a

∫
x

[
(a− t)m−1−k + (b− t)m−1−k

]
dt

= −
m∑
k=0

(m− 1)!
2(m− k)!k!h

kEk

(
x − a

h

)
× f (m)(𝜉k )

[
−(b− a)m−k + (b− x)m−k + (a− x)m−k

]
= −hm

m∑
k=0

(m− 1)!
2(m− k)!k!Ek

(
x − a

h

)

× f (m)(𝜉k )

[
−1+

(
b− x

h

)m−k
+

(
a− x

h

)m−k]
.

(22)

If a < t < b, then

K<E>
a,b

[ f ; a, b](x) = −
m∑
k=0

(m− 1)!
2(m− 1− k)!k!h

kEk

(
x − a

h

)
(b− t)m−1−k (23)

and
b

∫
a

K<E>
a,b

(x, t) f (m)(t)dt

= −
m∑
k=0

(m− 1)!
2(m− 1− k)!k!h

kEk

(
x − a

h

) b

∫
a

(b− t)m−1−k f (m)(t)dt.

Based on the first mean value theorem for integrals, we get for some 𝛽k,∈ [c, d], k = 0, 1,… ,m, that

b

∫
a

f (m)(t)K<E>
a,b

(x, t)dt

= −
m∑
k=0

(m− 1)!
2(m− 1− k)!k!h

kEk

(
x − a

h

)
× f (m)(𝛽k )

b

∫
a

(b− t)m−1−kdt

= −
m∑
k=0

(m− 1)!
2(m− k)!k!h

kEk

(
x − a

h

)
× f (m)(𝛽k )(b− a)m−k

= −hm
m∑
k=0

(m− 1)!
2(m− k)!k!Ek

(
x − a

h

)
× f (m)(𝛽k ). (24)
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Substituting into (20) the left-land sides of (22), (24) with their respective right-hand sides, we finally give

after some calculations

R<E>
m

[ f ; a, b](x) = −hm

m!

m∑
k=0

f (m)(𝜉k )
m!

2(m− k)!k!Ek
(
x − a

h

)

×
[
−1+

(
b− x

h

)m−k
+

(
a− x

h

)m−k]

− hm

m! f
(m)(𝛽k )

m!
2(m− k)!k!Ek

(
x − a

h

)
and |||R<E>m

[ f ; a, b](x)||| ≤ hm
‖ f (m)‖
m!

m∑
k=0

m!
2(m− k)!k!

||||Ek
(
x − a

h

)|||| × 2

(
b− x

h

)m−k
.

In [21], we have the following known identity:

Ek(x + y) =
k∑
l=0

(
k

l

)
Ek(x)y

k−l
, k = 0, 1,… ,m. (25)

From the relations (25) we can easily deduce the following formula:

Ek

(
x − a

h

)
=

k∑
l=0

(
k

l

)
El

(
1

2

)(
x − a

h
− 1

2

)k−l
, (26)

so that we get

|||R<E>m
[ f ; a, b](x)|||
≤ hm

‖ f (m)‖
m!

m∑
k=0

m!
(m− k)!k!

(
b− x

h

)m−k k∑
l=0

(
k

l

)||||El
(
1

2

)||||
|||||
(
b− x

h
− 1

2

)k−l|||||
≤ hm

‖ f (m)‖
m!

m∑
k=0

k∑
l=0

(
m

k

)(
k

l

)||||El
(
1

2

)||||
(
b− x

h

)m

.

(27)

Similarly, we can prove the remaining expressions of (18). □

Since the algebraic degree of exactness of the operator P<E>
m

[⋅; a, b] is equal tom, we can prove the following
desired bounds in an analogous manner.

Theorem 3. If f ∈ Cm+1[c, d] and x ∈ [c, d], then for the remainder we have

|R<E>
m

[ f ; a, b](x)| ≤
⎧⎪⎪⎨⎪⎪⎩

C<E>(m+ 1)‖ f (m+1)‖∞(b− x)m+1, c < x < a,

C<E>(m+ 1)‖ f (m+1)‖∞(b− a)m+1, a < x < b,

C<E>(m+ 1)‖ f (m+1)‖∞(x − a)m+1, b < x < d,

(28)

where

C<E>(m+ 1) = 1

(m+ 1)!

m∑
k=0

k∑
l=0

(
m+ 1

k

)(
k

l

)||||El
(
1

2

)||||. (29)
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3 A kind of Shepard-Euler operators with derivatives

Suppose that x1 < x2 < … < xN−1 < xN are fixed points in an interval I = [x1, xN ] ⊂ ℝ and xN+1 = xN−1. For

each fixed 𝜇 > 0 and m = 1, 2,…, by combining the Shepard operator with the extension in the Euler polyno-

mials, we first construct a kind of Shepard-Euler operators S̃Em with derivatives of function f at endpoints as

follows

S̃Em [ f ](x) =
N∑
i=1

A𝜇,i(x)P
<E>
m

[ f ; xi, xi+1](x), x ∈ I, (30)

where P<E>
m

[ f ; xi, xi+1](x) is the natural extension of the polynomial approximation term defined in (7).

Theorem 4. The operator S̃Em reproduces all univariate polynomials of degree no more than m.

Proof. The argument S̃Em [p] = p follows from the well-known property

N∑
i=1

A𝜇,i(x) = 1 (31)

and

P<E>
m

[p; xi, xi+1](x) = p for i = 1, 2,… ,N,

where p ∈ ℙm. □

To study the convergence rates of the two kinds of operators S̃Em and SEm , we make use of the following

notations
I𝜌(x) = [x − 𝜌, x + 𝜌], 𝜌 > 0,

r = inf{𝜌 > 0:∀x ∈ I, I𝜌(x) ∩ X ≠ ∅},

M = max
x∈I

#(Ir(x) ∩ X ),

where X = {x1, x2,… , xN} and #(⋅) denotes the cardinality function. So M denotes the maximum number

of points from X contained in an interval Ir(x). For the operators S̃Em we then give the error estimates as

follows.

Theorem 5. Let f (x) ∈ Cm(I). Then

‖̃Em
[ f ](x)− f (x)‖∞ ≤ C<E>M‖ f (m)‖∞𝜀m−1𝜇

(r), (32)

where

𝜀
m−1
𝜇

(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

| ln r|−1, 𝜇 = 1,

r𝜇−1, 1 < 𝜇 < m+ 1,

r𝜇−1| ln r|, 𝜇 = m+ 1,

rm, 𝜇 > m+ 1,

(33)

C⟨E⟩ is a positive constant independent of x, and X, and r is given above.
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Proof. Assume that each pair xi, xi+1 ∈ I is fixed and suppose xi < xi+1. For each x ∈ I, we make use of the

following settings

d[xi, xi+1](x) =

⎧⎪⎪⎨⎪⎪⎩

xi+1 − x, x ≤ xi,

xi+1 − xi, xi ≤ x ≤ xi+1,

x − xi, xi+1 ≤ x,

dm[xi, xi+1](x) = (d[xi, xi+1](x))
m.

(34)

Based on (2) and (30), we obtain

|||S̃Em − f (x)
|||
||||||≤

N∑
i=1

A𝜇,iP
<E>
m

[ f ; xi, xi+1]− f (x)

||||||
≤

N∑
i=1

A𝜇,i
|||P<E>m

[ f ; xi, xi+1]− f (x)
|||

≤ C<E>(m)‖ f (m)‖∞sm𝜇 (x),
where

sm
𝜇
(x) =

N∑
i=1

|x − xi|−𝜇dm[xi, xi+1](x)
N∑
k=1

|x − xk|−𝜇
. (35)

From [9], we can give the following prove:

sm
𝜇
(x) ≤ C<E>M𝜀

m−1
𝜇

(r).

Suppose that

n =
[
xN − x0

2r

]
+ 1,

Q𝜌(u) = (u− 𝜌, u+ 𝜌], u ∈ I, 𝜌 > 0,

Tj = Qr(x − 2r j) ∪ Qh(x + 2r j), j = 0, 1,… , n,

where the set ∪n
j=−nQh(x + 2r j) denotes the covering of I with half open intervals. Thus, for every i ∈

{1, 2,… ,N} there exists a unique j ∈ {0, 1,… , n} such that xi ∈ T j. Then, we obtain the following inequalities

(2 j − 1)r ≤ |x − xi| ≤ (2 j + 1)r,

(2( j − 1)− 1)r ≤ |x − 𝜏i| ≤ (2( j + 1)+ 1)r,
(36)

where j = 2, 3,… , n and 𝜏 i ∈ [xi−1, xi+1]. Therefore, we find from (34)

d[xi, xi+1](x) ≤ (2( j + 1)+ 1)r, (37)

On the other hand, we also find from the definition ofM

1 ≤ #(X ∩ T0 ) ≤ M,

1 ≤ #(X ∩ Tj ) ≤ 2M, j = 1, 2,… , n.
(38)

Let us denote by xd the node closest to xi since

|x − xd|−𝜇
N∑
k=1

|x − xk|−𝜇
≤ 1.
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By applying (36) and (37), we have

sm
𝜇
(x) ≤

∑
xi∈T0

|x − xi|−𝜇dm[xi, xi+1](x)
N∑
k=1

|x − xk|−𝜇
+

n∑
j=1

∑
xi∈T j

|x − xi|−𝜇dm[xi, xi+1](x)
N∑
k=1

|x − xk|−𝜇
≤

∑
xi∈T0

dm[xi, xi+1](x)+ |x − xd|𝜇 n∑
j=1

∑
xi∈T j

|x − xi|−𝜇dm[xi, xi+1](x)
≤ M(3r)m + 2Mr𝜇

n∑
j=1

((2 j − 1)r)−𝜇((2 j + 3)r)m

≤ M5mrm

(
1+ 2

n∑
j=1

j m−𝜇
)
,

where the last inequality follows from

⎧⎪⎨⎪⎩
2 j − 1 ≥ j, j = 1, 2,… ,

2 j + 3 ≤ 5 j, j = 1, 2,… .

Case 1: (𝜇 > 1)

If 1 < 𝜇 < m+ 1, then

rm

(
1+ 2

n∑
j=1

j m−𝜇
)
= 

(
r𝜇−1

)
.

If 𝜇 = m+ 1, then
n∑
j=1

j m−𝜇 = 
(| ln r|).

If 𝜇 > m+ 1, then
∑n

j=1j
m−𝜇 is bounded.

Case 2: (𝜇 = 1)

sm
u
(x) = sm

1
(x)

≤

N∑
i=1

|x − xi|−1dm[xi, xi+1](x)
N∑
k=1

|x − xk|−1

≤

∑
xi∈T0

dm[xi, xi+1](x)+
n∑
j=1

∑
xi∈T j

|x − xi|−1dm[xi, xi+1](x)
∑

xk∈T0
|x − xk|−1 + n∑

j=1

∑
xk∈T j

|x − xk|−1

≤

∑
xi∈T0

dm[xi, xi+1](x)+
n∑
j=1

∑
xi∈T j

|x − xi|−1dm[xi, xi+1](x)∑
xk∈T0

|x − xk|−1 + C

r
| ln r|

≤
∑
xi∈T0

dm[xi, xi+1](x)+
C1r| ln r|

n∑
j=1

∑
xi∈T j

|x − xi|−1dm[xi, xi+1](x)
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≤ M(3r)m + C1| ln r|
n∑
j=1

∑
xi∈T j

(2 j − 1)−1(2 j + 3)mrm

≤ M5mrm

(
1+ C2| ln r|

n∑
j=1

j m−1
)

≤ M5mrm
(
1+ C2| ln r|(

r−m
))

= 
(| ln r|−1).

□

In an analogous manner we can prove the following theorem.

Theorem 6. Let f (x) ∈ Cm+1(I). Then

‖̃Em
[ f ](x)− f (x)‖∞ ≤ C<E>M‖ f (m+1)‖∞𝜀m𝜇 (r), (39)

where

𝜀
m
𝜇
(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

| ln r|−1, 𝜇 = 1,

r𝜇−1, 1 < 𝜇 < m+ 2,

r𝜇−1| ln r|, 𝜇 = m+ 2,

rm+1, 𝜇 > m+ 2,

(40)

and C⟨E⟩ is a positive constant independent of x and X.
Because of disadvantage with the derivatives in the operator S̃Em , we give the following modification oper-

ator SEm .

4 A kind of improved Shepard-Euler operators without derivatives

Although the operator S̃Em possesses the degree of exactness not greater thanm, they require the derivatives of

the function f at the nodes, which are very difficult to measure in practice. By using divided difference oper-

ator Dk
A
f in the following Definition 1 to substitute the derivatives f (k) in the operator S̃Em , we define a kind of

improved Shepard-Euler operators SEm without derivatives of function f at endpoints.

Definition 1 (see [18]). Let  = { f | f :ℝ→ ℝ} and let A be a discrete subset of ℝ, k ∈ ℕ. Suppose that Dk is the
order k derivative. An operator Dk

A
: →  is said to be a ℙm-exact A-discretization of D

k if and only if

(i) There exists a real vector 𝜆 = (𝜆a )a∈A s.t. for any f ∈  ,

Dk
A
f (⋅) =

∑
a∈A

𝜆a f (⋅+ a), k = 1,… ,m; (41)

(ii) For any p ∈ ℙm,

Dk
A
p = Dk p. (42)

In such situation, we also say that Dk
A
f is a ℙm-exact A-discretization of D

k f . Let the points be distinct in the

set A, then Dk
A
is determined uniquely.



R. Wu: A kind of univariate improved Shepard-Euler — 11

Suppose that | ⋅ | denotes the number of elements in set and assume that the points in set A are distinct, and|A| = m+ 1. Then by Definition 1 and [18], a ℙm-exact A-discretization of the order k derivative f
(k) is

Dk
A
f (x) =

∑
a∈A

𝜆a f (x + a), k = 1, 2,… ,m, (43)

where

𝜆a =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

k!∏
c∈A∖{a}(a− c)

, k = m,

(−1)m−kk!∑A′⊂A∖{a}|A′|=m−k
∏

c∈A′ (c)∏
c∈A∖{a}(a− c)

, k < m.

(44)

According to the location of each pair xi, xi+1 (i = 1, 2,… ,N), we choose suitable sets Ai, and substitute

f (k)(xi), f
(k)(xi+1) in (30) by D

k
Ai
f (xi ), D

k
Ai
f (xi+1 ), respectively, then a kind of improved Shepard-Euler operators

SEm can be written as

SEm [ f ](x) =
N∑
i=1

f (xi )+ f (xi+1 )

2
E0

(
x − xi
xi+1 − xi

)
A𝜇,i(x)

+
N∑
i=1

⎡⎢⎢⎣
m∑
k=1

∑
a∈Ai

𝜆a f (xi + a)+ ∑
a∈Ai

𝜆a f (xi+1 + a)

2k! (xi+1 − xi )
k

× Ek

(
x − xi
xi+1 − xi

)]
A𝜇,i(x).

(45)

Theorem 7. The operator SEm reproduces all univariate polynomials of degree no more than m.

Proof. Since Dk
A
f are the ℙm-exact A-discretization of the derivative of the kth order f (k), 1 ≤ k ≤ m, then for

any f ∈ ℙm we have

Dk
A
f (x) = f (k )(x), x ∈ ℝ,

so that

SEm [ f ](x) =
N∑
i=1

f (xi )+ f (xi+1 )

2
E0

(
x − xi
xi+1 − xi

)
A𝜇,i(x)

+
N∑
i=1

⎡⎢⎢⎣
m∑
k=1

∑
a∈Ai

𝜆a f (xi + a)+ ∑
a∈Ai

𝜆a f (xi+1 + a)

2k! (xi+1 − xi )
k

× Ek

(
x − xi
xi+1 − xi

)⎤⎥⎥⎥⎦
A𝜇,i(x)

=
N∑
i=1

f (xi )+ f (xi+1 )

2
E0

(
x − xi
xi+1 − xi

)
A𝜇,i(x)

+
N∑
i=1

[
m∑
k=1

f (k )(xi )+ f (k )(xi+1 )

2k! (xi+1 − xi )
kEk

(
x − xi
xi+1 − xi

)]
A𝜇,i(x).

(46)

According to (46) and the proof of Theorem 4, we can obtain SEm [ f ](x) = f (x), when f (x) = 1, x,… , xm.

Therefore, we have proved that the operators SEm satisfy themth degree polynomial reproduction property. □



12 — R. Wu: A kind of univariate improved Shepard-Euler

For the Shepard-Euler univariate operator SEm we then have the following desired error estimates.

Theorem 8. Let f (x) ∈ Cm+1(I). Then

‖Em
[ f ](x)− f (x)‖∞ ≤ C<E>M‖ f (m+1)‖∞𝜀m𝜇 (r), (47)

where

𝜀
m
𝜇
(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

| ln r|−1, 𝜇 = 1,

r𝜇−1, 1 < 𝜇 < m+ 2,

r𝜇−1| ln r|, 𝜇 = m+ 2,

rm+1, 𝜇 > m+ 2,

(48)

and C<E> is a positive constant independent of x and X.

Proof. Consider |||SEm [ f ](x)− f (x)
||| = |||[SEm [ f ](x)− S̃Em [ f ](x)]+ [̃SEm [ f ](x)− f (x)]

|||
≤

|||S̃Em [ f ](x)− f (x)
|||+ |||SEm [ f ](x)− S̃Em [ f ](x)

|||.
(49)

The first term of the right-hand sides in (49) has been obtained from the Theorem 6:

|||S̃Em [ f ](x)− f (x)
||| ≤ C<E>‖ f (m+1)‖∞sm+1𝜇

(x), (50)

where

sm+1
𝜇

(x) =

N∑
i=1

|x − xi|−𝜇dm+1[xi, xi+1](x)
N∑
k=1

|x − xk|−𝜇
.

Based on (36) and (37), we get

sm+1
𝜇

(x)

≤
∑
xi∈T0

|x − xi|−𝜇dm+1[xi, xi+1](x)
N∑
k=1

|x − xk|−𝜇
+

n∑
j=1

∑
xi∈T j

|x − xi|−𝜇dm+1[xi, xi+1](x)
N∑
k=1

|x − xk|−𝜇
≤

∑
xi∈T0

dm+1[xi, xi+1](x)+ |x − xd|𝜇 n∑
j=1

∑
xi∈T j

|x − xi|−𝜇dm+1[xi, xi+1](x)
≤ M(3r)m+1 + 2Mr𝜇

n∑
j=1

((2 j − 1)r)−𝜇((2 j + 3)r)m+1

(51)

≤ M5m+1rm+1

(
1+ 2

n∑
j=1

j m+1−𝜇
)
. (52)

Next, we need to prove the first term of the right-hand sides in (49). We denote by rmax, rmin the maximum

and the minimum distance between adjacent nodes respectively. Let 𝜅 = rmax
rmin

≥ 1. Let C1, C2 be a constant, then

according to [18], we get

∑
a∈A

|𝜆a| |a|m+1
(m+ 1)! ≤

∑
a∈A

|𝜆a| 1

(m+ 1)! (maxa∈A
|A|)m+1 ≤ C1r

m+1−k
𝜅
m‖ f (m+1)‖∞. (53)
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Therefore, we have |Dk
Ai
f (xi )− f (k )(xi )| ≤ C1r

m+1−k
𝜅
m‖ f (m+1)(x)‖∞, (54)

and |Dk
Ai
f (xi+1 )− f (k )(xi+1 )| ≤ C2r

m+1−k
𝜅
m‖ f (m+1)(x)‖∞. (55)

Let C1,0, C1,1, C2,0, C2,1, C2,2,… , Cm,0, Cm,1,… , Cm,m, C, C, C
′, C0 = || f (m+1)‖∞ be constants. Then

|||SEm [ f ](x)− S̃Em [ f ](x)
|||

=
|||||||
N∑
i=1

m∑
k=1

[
Dk
Ai
f (xi )− f (k )(xi )

]
+

[
Dk
Ai
f (xi+1 )− f (k )(xi+1 )

]
2k! (xi+1 − xi )

k

× Ek

(
x − xi
xi+1 − xi

)
A𝜇,i(x)

|||||
≤

|||||||
N∑
i=1

m∑
k=1

(xi+1 − xi )
k

[
Dk
Ai
f (xi )− f (k )(xi )

]
+

[
Dk
Ai
f (xi+1 )− f (k )(xi+1 )

]
2k!

×
k∑
l=0

(
k

l

)
El

(
1

2

)(
1

xi+1 − xi

)k−l
dk−l[xi, xi+1]A𝜇,i(x)

||||||
≤ (C1 + C2 )C0𝜅

m

N∑
i=1

m∑
k=1

k∑
l=0

rm+1−k
(xi+1 − xi )

k

2k!

(
k

l

)||||El
(
1

2

)||||
×

(
1

xi+1 − xi

)k−l
dk−l[xi, xi+1]A𝜇,i(x)

≤ C1,0r
m
𝜅
m

N∑
i=1

d[xi, xi+1]A𝜇,i(x)+ C1,1r
m
𝜅
m

N∑
i=1

rA𝜇,i(x)+ C2,0r
m−1

𝜅
m

×
N∑
i=1

d2[xi, xi+1]A𝜇,i(x)+ C2,1r
m
𝜅
m−1

N∑
i=1

rd[xi, xi+1]A𝜇,i(x)

+ C2,2r
m−1

𝜅
m

N∑
i=1

r2A𝜇,i(x)+ · · · + Cm,0r𝜅
m

N∑
i=1

dm[xi, xi+1]A𝜇,i(x)

+ Cm,1r𝜅
m

N∑
i=1

rdm−1[xi, xi+1]A𝜇,i(x)+ · · · + Cm,mr𝜅
m

N∑
i=1

rmA𝜇,i(x)

≤ (C1,1 + C2,2 + · · · + Cm,m )𝜅
mrm+1

N∑
i=1

A𝜇,i(x)

+ (C1,0 + C2,1 + · · · + Cm,m−1 )𝜅
mrm

N∑
i=1

d[xi, xi+1](x)A𝜇,i(x)

+ (C2,0 + C3,1 + · · · + Cm,m−2 )𝜅
mrm−1

N∑
i=1

d2[xi, xi+1](x)A
𝜇,i(x)

+ · · · + Cm,0𝜅
mr

N∑
i=1

dm[xi, xi+1](x)A𝜇,i(x).
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By applying (36) and (37), we have

|||SEm [ f ](x)− S̃Em [ f ](x)
|||

≤ (C1,1 + C2,2 + · · · + Cm,m )𝜅
mrm+1 + (C1,0 + C2,1 + · · · + Cm,m−1 )𝜅

mrm

×

⎛⎜⎜⎜⎜⎝
∑
xi∈T0

|x − xi|−𝜇d[xi, xi+1](x)
N∑
k=1

|x − xk|−𝜇
+

n∑
j=1

∑
xi∈T j

|x − xi|−𝜇d[xi, xi+1](x)
N∑
k=1

|x − xk|−𝜇
⎞⎟⎟⎟⎟⎠

+ (C2,0 + C3,1 + · · · + Cm,m−2 )𝜅
mrm−1

×

⎛⎜⎜⎜⎜⎝
∑
xi∈T0

|x − xi|−𝜇d2[xi, xi+1](x)
N∑
k=1

|x − xk|−𝜇
+

n∑
j=1

∑
xi∈T j

|x − xi|−𝜇d2[xi, xi+1](x)
N∑
k=1

|x − xk|−𝜇
⎞⎟⎟⎟⎟⎠

+ · · · + Cm,0𝜅
mr

×

⎛⎜⎜⎜⎜⎝
∑
xi∈T0

|x − xi|−𝜇dm[xi, xi+1](x)
N∑
k=1

|x − xk|−𝜇
+

n∑
j=1

∑
xi∈T j

|x − xi|−𝜇dm[xi, xi+1](x)
N∑
k=1

|x − xk|−𝜇
⎞⎟⎟⎟⎟⎠

≤ (C1,1 + C2,2 + · · · + Cm,m )𝜅
mrm+1 ++(C1,0 + C2,1 + · · · + Cm,m−1 )𝜅

mrm

×
⎛⎜⎜⎝
∑
xi∈T0

d[xi, xi+1](x)+ |x − xd|𝜇 n∑
j=1

∑
xi∈T j

|x − xi|𝜇d[xi, xi+1](x)⎞⎟⎟⎠
+ (C2,0 + C3,1 + · · · + Cm,m−2 )𝜅

mrm−1

×
⎛⎜⎜⎝
∑
xi∈T0

d2[xi, xi+1](x)+ |x − xd|𝜇 n∑
j=1

∑
xi∈T j

|x − xi|−𝜇d2[xi, xi+1](x)⎞⎟⎟⎠
+ · · · + Cm,0𝜅

mr

×
⎛⎜⎜⎝
∑
xi∈T0

dm[xi, xi+1](x)+ |x − xd|𝜇 n∑
j=1

∑
xi∈T j

|x − xi|−𝜇dm[xi, xi+1](x)⎞⎟⎟⎠
≤ (C1,1 + C2,2 + · · · + Cm,m )𝜅

mrm+1 + (C1,0 + C2,1 + · · · + Cm,m−1 )𝜅
mrm

×
(
M(3r)+ 2Mr𝜇

n∑
j=1

((2 j − 1)r)−𝜇((2 j + 3)r)

)

+ (C2,0 + C3,1 + · · · + Cm,m−2 )𝜅
mrm−1

×
(
M(3r)2 + 2Mr𝜇

n∑
j=1

((2 j − 1)r)−𝜇((2 j + 3)r)2

)

+ · · · + Cm,0𝜅
mr ×

(
M(3r)m + 2Mr𝜇

n∑
j=1

((2 j − 1)r)−𝜇((2 j + 3)r)m

)
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≤ (C1,1 + C2,2 + · · · + Cm,m )𝜅
mrm+1 + (C1,0 + C2,1 + · · · + Cm,m−1 )𝜅

mrm

×
(
M(5r)

(
1+ 2

n∑
j=1

j 1−𝜇
))

+ (C2,0 + C3,1 + · · · + Cm,m−2 )𝜅
mrm−1

(
M(5r)2

(
1+ 2

n∑
j=1

j 2−𝜇
))

+ · · · + Cm,0𝜅
mr

(
M(5r)m

(
1+ 2

n∑
j=1

j m−𝜇
))

≤ C‖ f (m+1)‖∞M
(
5mrm+1

(
1+ 2

n∑
j=1

j m−𝜇
))

.

By applying formulas (50), (52), and the results above, we can obtain

|SEm [ f ](x)− f (x)|
≤ C<E>M‖ f (m+1)‖∞

(
5m+1rm+1

(
1+ 2

n∑
j=1

j m+1−𝜇
))

+ C‖ f (m+1)‖∞M
×

(
5mrm+1

(
1+ 2

n∑
j=1

j m−𝜇
))

≤ CM‖ f (m+1)‖∞rm+1
(
1+ 2

n∑
j=1

j m+1−𝜇
)
.

Case 1: (𝜇 > 1)

If 1 < 𝜇 < m+ 2, then

rm+1

(
1+ 2

n∑
j=1

j m+1−𝜇
)
= 

(
r𝜇−1

)
.

If 𝜇 = m+ 2, then
n∑
j=1

j m+1−𝜇 = 
(| ln r|).

If 𝜇 > m+ 2, then
∑n

j=1j
m+1−𝜇 is bounded.

Case 2:(𝜇 = 1)

|SEm [ f ](x)− f (x)|
≤ |̃SEm [ f (x)− f (x)]|+ |SEm [ f ](x)− S̃Em [ f ](x)|
≤ (C1,1 + C2,2 + · · · + Cm,m )𝜅

mrm+1 + (C1,0 + C2,1 + · · · + Cm,m−1 )𝜅
mrm

×

⎛⎜⎜⎜⎜⎝

∑
xi∈T0

|x − xi|−1d[xi, xi+1](x)+ n∑
j=1

∑
xi∈T j

|x − xi|−1d[xi, xi+1](x)∑
xk∈T0

|x − xk|−1 + C′

r
| ln r|

⎞⎟⎟⎟⎟⎠
+ (C2,0 + C3,1 + · · · + Cm,m−2 )𝜅

mrm−1
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×

⎛⎜⎜⎜⎜⎝

∑
xi∈T0

|x − xi|−1d2[xi, xi+1](x)+ n∑
j=1

∑
xi∈T j

|x − xi|−1d2[xi, xi+1](x)∑
xk∈T0

|x − xk|−1 + C′

r
| ln r|

⎞⎟⎟⎟⎟⎠
+ · · · + Cm,0𝜅

mr

×

⎛⎜⎜⎜⎜⎝

∑
xi∈T0

|x − xi|−1dm[xi, xi+1](x)+ n∑
j=1

∑
xi∈T j

|x − xi|−1dm[xi, xi+1](x)∑
xk∈T0

|x − xk|−1 + C′

r
| ln r|

⎞⎟⎟⎟⎟⎠
+ C<E>‖ f (m+1)‖∞
×

⎛⎜⎜⎜⎜⎝

∑
xi∈T0

|x − xi|−1dm+1[xi, xi+1](x)+ n∑
j=1

∑
xi∈T j

|x − xi|−1dm+1[xi, xi+1](x)∑
xk∈T0

|x − xk|−1 + C′

r
| ln r|

⎞⎟⎟⎟⎟⎠
≤ (C1,1 + C2,2 + · · · + Cm,m )𝜅

mrm+1

+ (C1,0 + C2,1 + · · · + Cm,m−1 )𝜅
mrm

×
⎛⎜⎜⎝M(3r)+ C′r| ln r|

n∑
j=1

∑
xi∈T j

(2 j − 1)−1((2 j + 3)r)

⎞⎟⎟⎠
+ (C2,0 + C3,1 + · · · + Cm,m−2 )𝜅

mrm−1

×
⎛⎜⎜⎝M(3r)2 + C′r| ln r|

n∑
j=1

∑
xi∈T j

(2 j − 1)−1((2 j + 3)r)2
⎞⎟⎟⎠

+ Cm,0𝜅
mr

⎛⎜⎜⎝M(3r)m + C′r| ln r|
n∑
j=1

∑
xi∈T j

(2 j − 1)−1((2 j + 3)r)m
⎞⎟⎟⎠

+ C<E>‖ f (m+1)‖∞⎛⎜⎜⎝M(3r)m+1 + C′r| ln r|
n∑
j=1

∑
xi∈T j

(2 j − 1)−1((2 j + 3)r)m+1
⎞⎟⎟⎠

≤ (C1,1 + C2,2 + · · · + Cm,m )𝜅
mrm+1 + (C1,0 + C2,1 + · · · + Cm,m−1 )𝜅

mrm

×
(
M(5r)

(
1+ C′| ln r|

n∑
j=1

j 0

))

+ (C2,0 + C3,1 + · · · + Cm,m−2 )𝜅
mrm−1

(
M(5r)2

(
1+ C′| ln r|

n∑
j=1

j

))

+ Cm,0𝜅
mr

(
M(5r)m

(
1+ C′| ln r|

n∑
j=1

j m−1
))

+ C<E>‖ f (m+1)‖∞
(
M(5r)m+1

(
1+ C′| ln r|

n∑
j=1

j m

))

= 
(| ln r|−1).

□
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5 Numerical examples

5.1 Verification of approximation capacity

We consider the following functions on the interval [0,1]:

Saddle f1 =
1.25

6+ 6(3x − 1)2
,

Sphere f2 =
√
64− 81(x − 0.5)2

9
− 0.5,

Cliff f3 =
tanh(−9x + 1)

2
+ 0.5,

Gentle f4 =
exp

(
− 81

16
(x − 0.5)2

)
3

,

Steep f5 =
exp

(
− 81

4
(x − 0.5)2

)
3

,

Exponential f6 = 0.75 exp

(
− (9x − 2)2

4

)
+ 0.75 exp

(
− (9x + 1)2

49

)

+ 0.5 exp

(
− (9x − 7)2

4

)
+ 0.2 exp

(
−(9x − 4)2

)
.

These functions were first introduced in [9] and result from adapting to the univariate case test functions

generally used in the multivariate interpolation of large sets of scattered data in [22]. For each function fi, i =
1, 2,… , 6 we will compare the numerical results of our new operators S̃Em [ f ] and SEm [ f ] with the Shepard-

Bernoulli operator SBm [ f ] in [9].

We adopt uniform grids of 17 points for SB1 , S̃E1 , and SE1 ; at the same time we use grids of 11 points for SB2 ,

S̃E2 , and SE2 , and finally grids of 8 points for SB3 , S̃E3 , and SE3 . To have as accurate an estimation of the error as

possible, we compute the approximation functions at the points i

101
, i = 1, 2,… , 100. Tables 1–6 showmean and

max absolute errors for different values of the parameters𝜇 andm. Numerical results show that the approxima-

tion accuracy of our new operators S̃Em and SEm is comparable with the accuracy of Shepard-Bernoulli operator

SBm .

In Figure 1, we plot the absolute error graphs of SEm fi (i = 1, 2,… , 6) as the parameters 𝜇 = 3 andm = 2.

Table 1: Saddle.

(𝝁, m) S
B
m
f1 S̃

E
m
f1 S

E
m
f1

𝜺mean 𝜺max 𝜺mean 𝜺max 𝜺mean 𝜺max

(2,1) 0.001050 0.004954 0.001067 0.005139 0.001050 0.004955

(2,2) 0.001062 0.004715 0.001100 0.004430 0.001004 0.003710

(2,3) 0.001490 0.005153 0.001516 0.005141 0.001771 0.007104

(3,1) 0.000476 0.003314 0.000496 0.003220 0.000477 0.003315

(3,2) 0.000333 0.002302 0.000313 0.001076 0.000280 0.001071

(3,3) 0.000206 0.001096 0.000391 0.001568 0.000550 0.003165

(4,1) 0.000457 0.003233 0.000476 0.003158 0.000457 0.003234

(4,2) 0.000259 0.001908 0.000259 0.001042 0.000295 0.001007

(4,3) 0.000136 0.001460 0.000358 0.001649 0.000505 0.003001
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Table 2: Sphere.

(𝝁, m) S
B
m
f2 S̃

E
m
f2 S

E
m
f2

𝜺mean 𝜺max 𝜺mean 𝜺max 𝜺mean 𝜺max

(2,1) 0.002145 0.005623 0.002151 0.005592 0.002145 0.005624

(2,2) 0.000312 0.000842 0.000326 0.000839 0.000222 0.000534

(2,3) 0.000586 0.002344 0.000583 0.002392 0.000176 0.000888

(3,1) 0.000583 0.001620 0.000586 0.001576 0.000584 0.001620

(3,2) 0.000058 0.000247 0.000825 0.000171 0.000056 0.000198

(3,3) 0.000079 0.000323 0.000082 0.000315 0.000055 0.000167

(4,1) 0.000510 0.001447 0.000513 0.001512 0.000510 0.001448

(4,2) 0.000039 0.000255 0.000044 0.000171 0.000053 0.000209

(4,3) 0.000025 0.000113 0.000039 0.000130 0.000063 0.000195

Table 3: Cliff.

(𝝁, m) S
B
m
f3 S̃

E
m
f3 S

E
m
f3

𝜺mean 𝜺max 𝜺mean 𝜺max 𝜺mean 𝜺max

(2,1) 0.006604 0.038815 0.006867 0.041552 0.006604 0.038816

(2,2) 0.004710 0.031367 0.005681 0.032557 0.005213 0.042274

(2,3) 0.013455 0.062821 0.019834 0.067441 0.012252 0.084868

(3,1) 0.002522 0.021627 0.002466 0.023453 0.002523 0.021627

(3,2) 0.002466 0.027527 0.002539 0.020448 0.003466 0.028998

(3,3) 0.002138 0.016732 0.008360 0.049557 0.009664 0.072554

(4,1) 0.002405 0.021752 0.002307 0.021369 0.002406 0.021753

(4,2) 0.002170 0.034048 0.002481 0.021815 0.003451 0.028254

(4,3) 0.001542 0.024101 0.007482 0.049916 0.009573 0.071607

Table 4: Gentle.

(𝝁, m) S
B
m
f4 S̃

E
m
f4 S

E
m
f4

𝜺mean 𝜺max 𝜺mean 𝜺max 𝜺mean 𝜺max

(2,1) 0.002590 0.007116 0.002585 0.007136 0.002591 0.007116

(2,2) 0.001897 0.005956 0.001897 0.005475 0.001640 0.004237

(2,3) 0.001138 0.006015 0.000982 0.005419 0.000096 0.009007

(3,1) 0.000681 0.003277 0.000695 0.003216 0.000681 0.003278

(3,2) 0.000378 0.001727 0.000355 0.001089 0.000290 0.000703

(3,3) 0.000175 0.000940 0.000174 0.000854 0.000376 0.001751

(4,1) 0.000618 0.002978 0.000630 0.002926 0.000618 0.002979

(4,2) 0.000270 0.001163 0.000257 0.000606 0.000279 0.000622

(4,3) 0.000089 0.000575 0.000162 0.000425 0.000329 0.000983

5.2 Comparison of computational cost

Suppose that Exponential. f6(x) is still the approximated function, thenwe choose the different shape parameter

𝜇 and different positive integer m to compare the computational cost of our operators S̃Em [ f6] and SEm [ f6] with

that of SBm [ f6]. The laptop which we use to compute the max errors have the following properties: processor

type is Intel Core i5-5200U, CPU frequency is 2.2 GHz, memory capacity is 4 GB. In Tables 7 and 8, we observe the

computational time(s) of each operator.
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Table 5: Steep.

(𝝁, m) S
B
m
f5 S̃

E
m
f5 S

E
m
f5

𝜺mean 𝜺max 𝜺mean 𝜺max 𝜺mean 𝜺max

(2,1) 0.002358 0.012532 0.002542 0.013477 0.002359 0.012532

(2,2) 0.002950 0.015868 0.003583 0.013701 0.003489 0.011714

(2,3) 0.004950 0.019728 0.004996 0.022482 0.004876 0.018069

(3,1) 0.001930 0.011016 0.002034 0.010647 0.001930 0.011016

(3,2) 0.001501 0.009079 0.001521 0.004408 0.001338 0.004893

(3,3) 0.000909 0.005278 0.002128 0.007668 0.003780 0.012462

(4,1) 0.001945 0.011413 0.002014 0.010619 0.001945 0.014433

(4,2) 0.001323 0.008184 0.001322 0.004414 0.001390 0.004782

(4,3) 0.000815 0.006381 0.002138 0.006357 0.003766 0.012590

Table 6: Exponential.

(𝝁, m) S
B
m
f6 S̃

E
m
f6 S

E
m
f6

𝜺mean 𝜺max 𝜺mean 𝜺max 𝜺mean 𝜺max

(2,1) 0.007669 0.034757 0.008035 0.036003 0.007670 0.034958

(2,2) 0.005271 0.025436 0.008158 0.026378 0.007703 0.030519

(2,3) 0.025296 0.067861 0.022226 0.059885 0.019342 0.072922

(3,1) 0.005122 0.021099 0.005439 0.022252 0.005123 0.021100

(3,2) 0.004379 0.024620 0.005992 0.015731 0.006238 0.020148

(3,3) 0.003523 0.020488 0.015247 0.058286 0.017772 0.046858

(4,1) 0.005026 0.022762 0.005276 0.021013 0.005026 0.022762

(4,2) 0.004233 0.024080 0.005834 0.015174 0.006435 0.019645

(4,3) 0.003020 0.018326 0.015702 0.058286 0.017589 0.043494

From Tables 7 and 8, we find that for the different 𝜇 and m, our Shepard-Euler operator SEm [ f6] without

derivatives cost a less time(s) than the Shepard-Bernoulli operator SBm [ f6]. Hence, we believe that it is really a

good idea to move up to high-order scheme.
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Figure 1: Absolute error graphs using operator SEm withm = 2 and 𝜇 = 3 for functions fi , i = 1, 2,… , 6. (a) Absolute error graph of

SE2 f1. (b) Absolute error graph of SE2 f2. (c) Absolute error graph of SE2 f3. (d) Absolute error graph of SE2 f4. (e) Absolute error graph of

SE2 f5. (f) Absolute error graph of SE2 f6.
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Table 7: Computational time(s) of the max errors of operators approximating f6 asm = 2.

(𝝁, m) (2, 2) (3, 2) (4, 2)

SBm f6 21.023985 21.106101 21.276911

S̃Em f6 42.213025 42.838780 44.621109

SEm f6 0.146423 0.124507 0.105130

Table 8: Computational time(s) of the max errors of operators approximating f6 asm = 3.

(𝝁, m) (2, 3) (3, 3) (4, 3)

SBm f6 31.562475 30.887780 32.220974

S̃Em f6 47.240185 47.940174 47.033827

SEm f6 0.202907 0.248268 0.217616

6 Conclusions

In this paper, a kind of univariate Shepard-Euler operators S̃Em is constructed by combining a known Shepard

operator with the expansion in univariate Euler polynomials. However, it requires the derivatives of approx-

imated function at endpoints, which is not very convenient for practical purposes. Using linear combinations

of the shifts of approximated function to approximate the derivatives of approximated function, we propose

another kind of improved Shepard-Euler operators SEm which do not need values of the derivatives at nodes.

Meanwhile, we have also proven that the operator SEm possesses the mth degree polynomial reproduction

property and good convergence capacity. Furthermore, Numerical results show that it uses less computational

cost. So the method is also applicable for people in applications.

In the following work, on the one hand, we want to use it to the fitting of discrete solutions of the initial

value problems of ODEs. On the other hand, the univariate Shepard-Euler operators can be extended to the

multivariate case.
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