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Abstract: Given amirror pair of a symplectic manifold X and a Landau-Ginzburg potentialW , we are interested

in whether the quantum cohomology of X and the Jacobian algebra of W are isomorphic. Since those can be

equipped with Frobenius algebra structures, we might ask whether they are isomorphic as Frobenius algebras.

We show that the Kodaira-Spencer map gives a Frobenius algebra isomorphism for elliptic orbispheres, under

the Floer theoretic modification of the residue pairing.
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1 Introduction

Closed string mirror symmetry predicts that quantum cohomology of a symplectic manifold and Jacobian ring

of themirror superpotential are isomorphic. There have been results on this problem firstly for toric manifolds:

see [1–3] etc.

Fukaya-Oh-Ohta-Ono also gave a construction of the ring isomorphism in [4–6], based on the study of

closed-open map which is defined more geometrically. Though the codomain of the original closed-open map

is Hochschild cohomology which is hard to grasp, Fukaya-Oh-Ohta-Ono proved that the length-0 part of the

closed-open map (which was called Kodaira-Spencer map), whose codomain is now Jacobian ring, provides

an isomorphism in compact toric case. Their strategy was also employed by Amorim-Cho-Hong-Lau in [7] for

proving mirror symmetry for orbifold projective lines.

Since quantum cohomology ring and Jacobian ring are both Frobenius algebraswith respect to the Poincaré

duality and the residue pairing respectively, we might ask whether their pairings are also related in a suitable

way. The question was dealt with in [8], and it was conjectured that if we want the Kodaira-Spencer map to be

a Frobenius algebra isomorphism, we need to modify the residue pairing by a constant which is the ratio of

”Floer volume form” and the usual volume form on a Lagrangian submanifold. The rescaling constant appeared

naturally when we consider Cardy condition (see [8] for more detail).

In this paper we focus on elliptic orbispheres with three singular points, which are quotients of 2-torus

by finite groups ℤ3, ℤ4 and ℤ6 respectively. Several mirror isomorphisms of Frobenius manifolds for orbifold

projective lines have been established. In [9] Satake-Takahashi proved that there is an isomorphismof Frobenius

manifolds from Gromov-Witten theory of ℙ1
3,3,3

and the universal unfolding of the mirror potential, and also for
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ℙ1
2,2,2,2

case (where the counterpart is given by the invariant theory of an elliptic Weyl group). For spherical

cases, namely for ℙ1
a,b,c

with 1

a
+ 1

b
+ 1

c
> 1 we refer readers to [10–12] etc. Towards the ultimate level of closed

stringmirror symmetry such as above results, we addmore elliptic orbisphere examples, namelyℙ1
2,4,4

andℙ1
2,3,6

which are quotients of the elliptic curve byℤ4 andℤ6 respectively. ℙ1
3,3,3

will be also revisited. Though we work

only at the level of Frobenius algebras, we hope that we can find a relationship with previous works, such as the

relation between the Floer theoretic rescaling constant and the choice of primitive form.

We summarize the idea. LetW be the mirror superpotential to X, so the Kodaira-Spencer map is given by

ks:QH∗(X )→ Jac(W ). The most natural pairings for Frobenius algebra structure are Poincaré pairing and the

residue pairing respectively. We point out that the residue pairing ⟨, ⟩res on Jac(W) will be chosen as

⟨ f , g⟩res = (−1)
n(n−1)

2 Res

[
f g ⋅ dx1 ∧ · · · ∧ dxn

𝜕x1W ,… , 𝜕xnW

]
(1.1)

whose formula appears in [13] as induced from the Mukai pairing on HH
∗
(MF(W)), so that it is ”the most

canonical” in some sense. It is also remarkable that the sign (−1)
n(n−1)

2 also appears in the Cardy condition in

[6, Theorem 3.4.1].

Our main theorem is as follows.

Theorem A. Let X be an elliptic orbisphere andW be itsmirror superpotential. Let𝕃 ⊂ X be the Seidel Lagrangian

with odd degree immersed generators X, Y , Z, and c𝕃 be the constant defined by

c𝕃 ⋅ p = m2(X,m2(Y , Z)), (1.2)

where p = m2(X, X̄ ). Then the Kodaira-Spencer map

ks:
(
QH∗(X ), ⟨⋅, ⋅⟩PD)→ (

Jac(W ), ⟨c𝕃⋅, c𝕃⋅⟩res)
is an isomorphism of Frobenius algebras.

Observe that we modified the residue pairing by suitable constant c𝕃 as discussed above. To compare pair-

ings we need to compute the residue of ks(ptX ), where ptX is the Poincaré dual of point class of the symplectic
manifold X. Though ks(ptX ) is explicitly computed in [7] for general orbifold sphere X, it is hard to conclude that
its (rescaled) residue is indeed 1 = ∫

X
ptX as expected. The difficulty arises in the comparison of two different

arithmetics of formal power series. We bypass this difficulty by computing ks(ptX ) in another way. Let G act on

the elliptic curve E so that X = E∕G. Wewill use the result of [14] that the Kodaira-Spencermap onX can be lifted

to the orbifold Kodaira-Spencer map ksorb:H
∗(E)→ Jac(W , Ĝ), where Jac(W , Ĝ) is the orbifold Jacobian algebra

(Ĝ is the character group of G, so it is isomorphic to G if G is abelian). By the relation

ks(ptX ) =
1|G|ksorb(ptE ),

we can recover ks(ptX ) by ksorb(𝛼 ∪ 𝛽 ) = ksorb(𝛼 ) ∙ ksorb(𝛽 ) for some 𝛼, 𝛽 ∈ H1(E). By a classical result on

the residue over an isolated singularity (which will be recalled in Section 4), the following is a rephrasing of

Theorem A.

Theorem B. Let X be an elliptic orbisphere E∕G and W be its mirror superpotential. Then

c2𝕃 ⋅ ksorb(ptE ) = −det Hess(W )|G| ⋅ 𝜇 . (1.3)

The organization of the paper is as follows. In Section 2 we first recall the construction of orbifold Jacobian

algebras from Floer theory. Then we briefly review (orbifold) Kodaira-Spencer maps which appear in Fukaya-

Oh-Ohta-Ono’s works and also in [14]. In Section 3we review the product structure on orbifold Jacobian algebras

following [15], and explicitly compute the product for the mirror Landau-Ginzburg orbifold to an elliptic curve.

Finally, we prove our main result in Section 4, with a remark on nontrivial identities of arithmetics of formal

power series.
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2 Kodaira-Spencer map to an orbifold Jacobian algebra

2.1 Preliminaries

We briefly recall the deformation theory of Lagrangian submanifolds originally in [16], following every notation

in Section 4.1 of [14]. Let X be a symplectic manifold and 𝕃 be its (possibly immersed) Lagrangian submani-

fold. Let CF(𝕃,𝕃; Λ) be the Fukaya A∞-algebra whose underlying space is the sum of de Rham algebra and the

module generated by immersed generators. Suppose that 𝕃 is weakly unobstructed, i.e. the A∞-structure on

CF∗(𝕃,𝕃; Λ) can be deformed by weak Maurer-Cartan elements. Assume further that X1,… ,Xn ∈ CF1(𝕃,𝕃; Λ)
are weak Maurer-Cartan elements such that c1X1 + · · · + cnXn is also a weak Maurer-Cartan element for any

ci ∈ Λ+. Let xi be the dual variable of Xi and b:= x1X1 + · · · + xnXn. The weak Maurer-Cartan equation gives

rise to the potentialW𝕃 ∈ R = Λ[x1,… , xn]. We consider the following A∞-algebra

(𝕃):= (CF∗(𝕃,𝕃; Λ)⊗Λ0
R,

{
mb
k

}
).

We also denote by (𝕃)alg the associative algebra with the same underlying space as (𝕃) while equipped
with the product 𝑣 ⋅𝑤:= (−1)|𝑣|mb

2
(𝑣,𝑤). The following results evidently reflect the importance of the above

definition.

Proposition 2.1 ([14]). If 𝕃 is the Seidel Lagrangian in an orbisphere ℙ1
a,b,c

or the Lagrangian torus at the critical

point of W𝕃, then there is an algebra isomorphism

Ψ:H∗((𝕃)alg )
≃
←←←←←←←←←←←→Jac(W𝕃 ) = R∕𝜕W𝕃. (2.1)

Let us now recall the orbifold Jacobian algebra of an isolated singularity equipped with a group action.

Definition 2.2. Let H be a finite abelian group, which acts on R =𝕂[x1,… , xn] and leavesW invariant. We call

the pair (W ,H) a Landau-Ginzburg orbifold.

Throughout the paper, we only consider diagonal H-action, i.e. h ⋅ xi = hixi for some hi ∈ 𝕂∗.

Definition 2.3. Let (W ,H) be a Landau-Ginzburg orbifold. Then the twisted Jacobian algebra of (W ,H) is defined

as

Jac′(W ,H ):=
⨁
h∈H

Jac(Wh ) ⋅ 𝜉h,

whereWh is the image ofW via projection 𝜋:R→ R∕(xi: hxi ≠ xi). The formal generator 𝜉h has degree |Ih| ∈ ℤ2

where Ih = {i ∈ {1,… , n} ∣ hxi ≠ xi}. The H-action on generators is defined by

h′ ⋅ 𝜉h =

∏
i∈Ih

(
h′−1xi

)
∏
i∈Ih

xi
𝜉h,

and the H-invariant subalgebra

Jac(W ,H ):= Jac′(W ,H )H

is called the orbifold Jacobian algebra of (W ,H).

Theorem 2.4.

(1) Jac′(W ,H) is an H-graded algebra, namely

𝜉h ∙ 𝜉h′ ∈ Jac(Wh ) ⋅ 𝜉hh′ .

(2) The product ∙ satisfies braided-commutativity, namely

𝜉h ∙ 𝜉h′ = (−1)|𝜉h|⋅|𝜉h′ |h ⋅ 𝜉h′ ∙ 𝜉h.
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In particular, if 𝜉h and 𝜉h′ are both H-invariant, then

𝜉h ∙ 𝜉h′ = (−1)|𝜉h|⋅|𝜉h′ |𝜉h′ ∙ 𝜉h,
which implies that Jac(W ,H) is a supercommutative algebra.

We postpone the definition of the product on Jac(W ,H) until Section 3. Orbifold Jacobian algebras appear

naturally in Floer theory as follows. Let X be a symplectic manifold and a finite abelian group G act on X. Sup-

pose that 𝕃 ⊂ X∕G is a weakly unobstructed Lagrangian submanifold with mirror superpotential W , with an

embedded Lagrangian lift 𝕃0 ⊂ X. Then we can construct a new A∞-algebra structure on (𝕃)⊗Λ[Ĝ], whose
Ĝ-invariant subalgebra ((𝕃)⊗Λ[Ĝ])Ĝ

alg
is isomorphic to Jac(W , Ĝ).

Proposition 2.5 ([14]). Let 𝕃̃ = ⨁
g∈Gg ⋅ 𝕃0 ⊂ X be a Lagrangian submanifold with lifted weak bounding cochain

b̃ from b. Then

Φ:
(
CF(𝕃̃, 𝕃̃)⊗ R,mb̃

k

)
→

(
((𝕃)⊗Λ[Ĝ])Ĝ,mb⊗1

k

)
, 𝑣g ↦

1|G| ∑
𝜒∈Ĝ

𝜒 (g )𝑣 ⊗ 𝜒

is an A∞-isomorphism. Here 𝑣g is an element in CF(g ⋅ 𝕃0, h ⋅ 𝕃0 ) and 𝑣 is the projection of 𝑣g.
Despite being vacuous,Φ can be also defined in the previous nonequivariant setting (namely, endowedwith

trivial group action) just by the identity.

Proposition 2.6 ([14]). Let ((𝕃)⊗Λ[Ĝ])Ĝ
alg

be an associative algebra with

(𝑣 ⊗ 𝜒 ) ⋅ (𝑤⊗𝜒 ′ ):= (−1)|𝑣|mb⊗1

2
(𝑣 ⊗ 𝜒,𝑤⊗ 𝜒 ′ ).

Then there is an algebra isomorphism

Ψ
Ĝ
:H∗(((𝕃)⊗Λ[Ĝ])Ĝ

alg
)
≃
←←←←←←←←←←←→Jac(W , Ĝ). (2.2)

Again, in the nonequivariant setting,Ψ
Ĝ
is nothing butΨ above.

Now we recall the construction of Kodaira-Spencer maps. For general weakly unobstructed Lagrangian

L ⊂ X with bounding cochain b, we use the similar configuration of holomorphic discs as Fukaya-Oh-Ohta-Ono’s

original definition.

Definition 2.7. For a moduli space of J-holomorphic discs with k + 1 boundary marked points and one interior

marked points k+1,1(𝛽 ) for 𝛽 ∈ H2(X, L) and a cycle A ⊂ X, let k+1,1(𝛽,A) = k+1,1(𝛽 )×XA and consider

their evaluation maps e𝑣k
i
:k+1,1(𝛽,A)→ L at the ith marked point. Consider the length-0 closed open map

0:QH∗(X )→ H∗((L)alg ), 
0(PD[A]):=

∑
𝛽∈H2(X,L)

∞∑
k=0

(
e𝑣k

0

)
!(
(
e𝑣k

1

)∗
b ∧…∧

(
e𝑣k

k

)∗
b). (2.3)

Definition 2.8. Let X be a symplectic manifold with finite group G acting effectively on it(G may be trivial),

and L be a G-equivariant weakly unobstructed Lagrangian. Then the orbifold Kodaira-Spencer map is ksorb:=
Ψ

Ĝ
⚬Φ⚬0.

Note that if G is trivial, then ksorb is just the ordinary Kodaira-Spencer map ks. It was shown in [14] that

ksorb is well-defined, and furthermore it is a ring homomorphism.
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Figure 1: ℤ3-equivariant Lagrangian.

2.2 Computation of orbifold Kodaira-Spencer maps from elliptic curves

Wechoose three different Lagrangian submanifolds on elliptic curves and compute the orbifoldKodaira-Spencer

maps with respect to them.

2.2.1 ℤ3

Let E = ℂ∕(ℤ+ e2𝜋i∕3ℤ) be an elliptic curve and let ℤ3 = {1, 𝜌 = e2𝜋i∕3, 𝜌2 = e4𝜋i∕3} act on E by multiplication,
so ℙ1

3,3,3
= E∕ℤ3. Let 𝕃0 ⊂ E be an embedded circle in E, and 𝕃1:= 𝜌𝕃0, 𝕃2:= 𝜌2𝕃0 as in Figure 1. Then 𝕃̃:=

𝕃0⊕ 𝕃1⊕ 𝕃2 is a weakly unobstructed Lagrangian on E with potentialW333.

Let Ch be a homology cycle representing a class (1,0). Since dimk+1,1(𝛽, Ch ) = k + 𝜇(𝛽 ), if 𝛽 ∈ H2(E, 𝕃̃)
is nontrivial then there is no summand in (2.3) for 𝛽 . Therefore to compute the Kodaira-Spencer map we only

consider 1,1(0, Ch ). There is a natural orientation on 1,1(0) because it is diffeomorphic to 𝕃̃, and the fiber
product1,1(0, Ch ) is nothing but the intersection of 𝕃̃ and Ch. We conclude that ks(PD[Ch]) is given by (Poincaré
dual of) the oriented intersection 𝕃̃ ∩ Ch. In Figure 1 we depicted intersection points between 𝕃̃ and Ch whose

Poincaré dual 1-forms are a, b, c, d respectively.

Taking orientations into account, we have

0(PD[Ch]) = −a+ b+ c − d.

To read an orbifold Jacobian algebra element from it, we need to recall the construction of an isomor-

phismH∗
(
((𝕃)⊗Λ[ℤ̂3])

ℤ̂3

)
≅ Jac(W333, ℤ̂3 ) for the Seidel Lagrangian 𝕃. The module CF(𝕃,𝕃) is generated by

{1,X, Y , Z,X ∧ Y , Y ∧ Z, Z ∧ X,X ∧ (Y ∧ Z)}where X, Y and Z are odd degree immersed generators and∧ is the

binary A∞-productm2 without weak bounding cochain insertions. Observe that

X ∧ Y

Z̄
= Y ∧ Z

X̄
= Z ∧ X

Ȳ
= X ∧ (Y ∧ Z)

p
= c𝕃

for some constant c𝕃, as in (1.2) (recall that p = m2(X, X̄ )).

Theorem 2.9 ([14]). The isomorphism

Ψℤ̂3
:H∗((𝕃)⊗Λ[ℤ̂3])

ℤ̂3 ≅ Jac(W333, ℤ̂3 )

in (2.2) is given by
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H∗((𝕃)⊗ 1)ℤ̂3 → Jac(W333 )
ℤ̂3 , f ⋅ 1 ↦ f ,

H∗((𝕃)⊗𝜒 )ℤ̂3 → Jac
(
W
𝜒
333

)ℤ̂3 ⋅ 𝜉𝜒 ,
(
X ∧ (Y ∧ Z)+ (lower)

)
⊗𝜒 ↦ 𝜉𝜒 .

(2.4)

For p = m2(X, X̄ ) ∈ CF(𝕃,𝕃), let pi ∈ CF(𝕃i,𝕃i ) for i = 0, 1, 2 such that pi projects to p. Now let us inves-

tigate the Poincaré dual of each intersection of 𝕃̃ and Ch, say a for example. Seeing Figure 1 again, p1 and a

are cohomologous in the de Rham complex Ω∗
(𝕃1 ), but they are not cohomologous in (CF(𝕃̃, 𝕃̃),mb̃

1
) (in fact,

they are not even cocycles). If we consider a de Rham 0-form I whose de Rham coboundary is p1 − a, then

mb̃
1
(I ) = p1 − a+ (lower), where (lower) means a linear sum of odd degree immersed generators. In the same

vein, we consider de Rham 0-forms J, K and L whose coboundaries are p0 − b, p2 − c and p1 − d respectively.

Then

mb̃
1
(I − J − K + L) = (−a+ b+ c − d)+ ( p1 − p0 − p2 + p1 )+ (lower),

i.e.−a+ b+ c − d is cohomologous to−2p1 + p0 + p2 + (lower) inCF(𝕃̃, 𝕃̃)with respect tomb̃
1
. Therefore, letting

ℤ̂3 = {1, 𝜒, 𝜒 2}, the image via (orbifold) Kodaira-Spencer map is

Φ(0(PD[Ch])) =
1

3

(
(−2𝜒 (𝜌)+ 1+ 𝜒 (𝜌2 ))p⊗𝜒 + (−2𝜒 2(𝜌)+ 1+ 𝜒 2(𝜌2 ))p⊗𝜒 2

)
+ (lower)

(2.4)
↦

(−2𝜒 (𝜌)+ 1+ 𝜒 (𝜌2 ))𝜉𝜒 + (−2𝜒 2(𝜌)+ 1+ 𝜒 2(𝜌2 ))𝜉𝜒 2

3c𝕃
∈ Jac(W333, ℤ̂3 ).

Observe that there is no output on 1-sector due to degree reason. For the cycle C𝑣 of class (0,1),

Φ(0(PD[C𝑣])) =
1

3

(
(−2𝜒 (𝜌2 )+ 1+ 𝜒 (𝜌))p⊗𝜒 + (−2𝜒 2(𝜌2 )+ 1+ 𝜒 2(𝜌))p⊗𝜒 2

)
+ (lower)

(2.4)
↦

(−2𝜒 (𝜌2 )+ 1+ 𝜒 (𝜌))𝜉𝜒 + (−2𝜒 2(𝜌2 )+ 1+ 𝜒 2(𝜌))𝜉𝜒 2

3c𝕃
∈ Jac(W333, ℤ̂3 ).

Letting 𝜒 (𝜌) = 𝜌, we summarize

ksorb(PD[Ch]) = − 𝜌
c𝕃
𝜉𝜒 −

𝜌2

c𝕃
𝜉𝜒 2 , ksorb(PD[C𝑣]) = −𝜌

2

c𝕃
𝜉𝜒 −

𝜌
c𝕃
𝜉𝜒 2 . (2.5)

We hope readers notice that c𝕃 is involved in the computation.

2.2.2 ℤ4

Let E = ℂ∕(ℤ+ iℤ) be an elliptic curve andℤ4 = {1, i, i2, i3} act on E by multiplication. Let 𝕃0 be an embedded
circle of homology class (1,1) and 𝕃1 = i𝕃0, 𝕃2 = −𝕃0, 𝕃3 = −i𝕃0 as Figure 2.

Then 𝕃̃ = 𝕃0⊕ 𝕃1⊕ 𝕃2⊕ 𝕃3 is weakly unobstructed with potentialW244. Every technical detail involved

in the computation is just the same as ℤ3-case, so we only note that (Poincaré dual of) the oriented intersection

𝕃̃ ∩ Ch is a− b− c + d, and it is cohomologous to p3 − p0 − p1 + p2 + (lower) in (CF(𝕃̃, 𝕃̃),mb̃
1
). For C𝑣, we obtain

a cycle cohomologous to p0 − p1 − p2 + p3 + (lower). If we let ℤ̂4 = {1, 𝜒, 𝜒 2, 𝜒 3} such that 𝜒 (i) = i, then

ksorb(PD[Ch]) =
−1− i

2c𝕃
𝜉𝜒 +

−1+ i

2c𝕃
𝜉𝜒 3 , ksorb(PD[C𝑣]) =

1− i

2c𝕃
𝜉𝜒 +

1+ i

2c𝕃
𝜉𝜒 3 . (2.6)

2.2.3 ℤ6

Let E = ℂ∕(ℤ+ e2𝜋i∕3ℤ) andℤ6 = {1, 𝜁 = e𝜋i∕3, 𝜁 2, 𝜁 3, 𝜁 4, 𝜁 5} act on E bymultiplication. Let𝕃0 be an embedded
circle of class (1,0) and 𝕃k = 𝜁 k𝕃0 for k = 1,… , 5 as in Figure 3.
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Figure 2: ℤ4-equivariant Lagrangian.

Figure 3: ℤ6-equivariant Lagrangian.

Let 𝕃̃:= ⨁5

k=0𝜁
k𝕃0 be a weakly unobstructed Lagrangian with potentialW236. With the same computation

as above, we obtain

0(PD[Ch]) ∼ −p2 + p5 − p1 + p4 + (lower), 0(PD[C𝑣]) ∼ p1 − p3 − p4 + p0 + (lower),

hence for ℤ̂6 = {1, 𝜒,… , 𝜒 5} with 𝜒 (𝜁 ) = 𝜁 ,

ksorb(PD[Ch]) =
−𝜁 − 𝜁 2
3c𝕃

𝜉𝜒 +
𝜁 + 𝜁 2
3c𝕃

𝜉𝜒 5 , ksorb(PD[C𝑣]) =
1+ 𝜁
3c𝕃

𝜉𝜒 +
1− 𝜁 2
3c𝕃

𝜉𝜒 5 . (2.7)
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3 Products in orbifold Jacobian algebras

Recall that our goal is to prove

ksorb
(
c2𝕃 ⋅ ptE

)
= −det Hess(W )|G| ⋅ 𝜇 .

For this, we need to compute the product in the orbifold Jacobian algebra. Among various works, we follow the

construction of [15]. Other works on orbifold Jacobian algebras include [17–19] etc.

LetW ∈ 𝕂?[x1,… , xn], and let (W , Ĝ) be a Landau-Ginzburg orbifold. For h ∈ Ĝ, let

Ih:= {i ∣ h ⋅ xi ≠ xi} ⊂ {1,… , n}, Ih:= Ic
h
.

Let S = 𝕂
[
x1,… , xn, x

′
1
,… , x′

n

]
. For 0 ≤ j < i ≤ n, define

Wh
j,i
:= W

(
x′
1
,… , x′

j
, x j+1,… , xi, hxi+1,… , hxn

)
∈ S,

W̃h
j,i
:= W

(
xh
1
,… , xh

j
, x j+1,… , xi, hxi+1,… , hxn

)
∈ R.

(we define xh
i
= xi if hxi = xi and x

h
i
= 0 otherwise.) We also define

Wh
i,i
:= W

(
x′
1
,… , x′

i
, hxi+1,… , hxn

)
, (3.1)

W̃h
i,i
:= W

(
xh
1
,… , xh

i
, hxi+1,… , hxn

)
. (3.2)

For i, j ∈ {1,… , n} with j < i, define

gh
ji
:=

⎧⎪⎪⎨⎪⎪⎩

(
Wh

j,i
−Wh

j−1,i

)
−

(
Wh

j,i−1 −Wh
j−1,i−1

)
(
x′
j
− x j

)
(xi − hxi )

if i ∈ Ih,

0 otherwise,

f h
ji
:=

⎧⎪⎪⎨⎪⎪⎩

(
W̃h

j,i
− W̃h

j−1,i

)
−

(
W̃h

j,i−1 − W̃h
j−1,i−1

)
(x j − hx j )(xi − hxi )

if i, j ∈ Ih,

0 otherwise,

(3.3)

and

gh
ii
:=

⎧⎪⎪⎨⎪⎪⎩
1

x′
i
− xi

⋅

(
Wh

i,i
−Wh

i−1,i−1
x′
i
− hxi

−
Wh

i−1,i −Wh
i−1,i−1

xi − hxi

)
if i ∈ Ih,

0 otherwise.

(3.4)

Let 𝜃i and 𝜕i (for i = 1,… , n) be formal variables with |𝜃i| = −1, |𝜕i| = 1 and

𝜃i𝜃 j = −𝜃 j𝜃i, 𝜕i𝜕 j = −𝜕 j𝜕i, 𝜕i𝜃 j = −𝜃 j𝜕i + 𝛿i j.

For an ordered subset I = {i1,… , ik} ⊂ {1,… , n}, we introduce a notation 𝜃I := 𝜃i1 … 𝜃ik . Now, define an S-

linear map

𝜂h: S⟨𝜃1,… , 𝜃n, 𝜕1,… , 𝜕n⟩→ S⟨𝜃1,… , 𝜃n, 𝜕1,… , 𝜕n⟩,
𝜃I𝜕 J ↦

∑
(−1)|I|gh

ji

𝜕𝜃I
𝜕𝜃i

𝜕 j𝜕 J +
∑ h

f
ji

𝜕2𝜃I
𝜕𝜃 j𝜕𝜃i

𝜕 J .
(3.5)

We also define a map



S. Lee: Kodaira-Spencer maps and Frobenius algebras — 9

exp(𝜂h ):= 1+ 𝜂h +
𝜂2
h

2! + · · · : S⟨𝜃1, · · · , 𝜃n, 𝜕1, · · · , 𝜕n⟩→ S⟨𝜃1,… , 𝜃n, 𝜕1,… , 𝜕n⟩. (3.6)

For f (x1,… , xn, x
′
1
,… , x′

n
)𝜃I𝜕 J ∈ S⟨𝜃1,… , 𝜃n, 𝜕1,… , 𝜕n⟩, define
h

∗
( f ⋅ 𝜃I𝜕 J ):= f (x1,… , xn, h

−1x′
1
,… , h−1x′

n
) ⋅ h−1(𝜃I𝜕 J ),

where for hi ∈ 𝕂∗ such that h ⋅ xi = hixi, h ⋅ 𝜃i = h−1
i
𝜃i and h ⋅ 𝜕i = hi𝜕i. Then for h, h

′ ∈ Ĝ, define

𝜎h,h′ := ⟨h′
∗
(exp(𝜂h )(𝜃Ih )) ⋅ exp

(
𝜂h′

)(
𝜃Ih′

)
, 𝜃Ihh′ ⟩

which is 𝜃Ihh′ -coefficient of h′
∗
(exp(𝜂h )(𝜃Ih )) ⋅ exp

(
𝜂h′

)(
𝜃Ih′

)
. Let

𝜋h: S→ S∕(y1 − hx1,… , yn − hxn )

be the “h-twisted” quotient map for h ∈ H. Then

𝜎h,h′ := 𝜋hh′
(
𝜎h,h′

)
induces an element of Jac(Whh′ ), and is the structure constant of 𝜉h∙𝜉h′ , i.e.

𝜉h ∙ 𝜉h′ = 𝜎h,h′ ⋅ 𝜉hh′ .

We present relevant multiplications inside three orbifold Jacobian algebras from elliptic curves.

3.1 (ℂ∕(ℤ+ e2𝝅i∕3ℤ),ℤ3)

The mirror superpotential is given by

W = 𝜙(x3 + y3 + z3 )− 𝜓xyz ∈ Λ[x, y, z]

and ℤ3 = {1, 𝜒, 𝜒 2} acts onΛ[x, y, z] by

𝜒 ⋅ x = e2𝜋i∕3x, 𝜒 ⋅ y = e2𝜋i∕3y, 𝜒 ⋅ z = e2𝜋i∕3z.

By I𝜒 = {1, 2, 3} = I𝜒 2 (we let x1 = x, x2 = y, x3 = z) we deduce that 𝜉𝜒 and 𝜉𝜒 2 are ℤ3-invariant, hence are

elements of Jac(W ,ℤ3 ).

To calculate 𝜉𝜒 ∙ 𝜉𝜒 2 , let us first compute exp(𝜂𝜒 )(𝜃1𝜃2𝜃3) as follows. (Let 𝜌 = e2𝜋i∕3 for simplicity.)

W
𝜒
0,0

= W(x, y, z), W
𝜒
0,1

= 𝜙(x3 + y3 + z3 )− 𝜌2𝜓xyz,

W
𝜒
0,2

= 𝜙(x3 + y3 + z3 )− 𝜌𝜓xyz, W
𝜒
0,3

= W(x, y, z),

W
𝜒
1,1
= 𝜙(x′3 + y3 + z3 )− 𝜌2𝜓x′yz, W

𝜒
1,2

= 𝜙(x′3 + y3 + z3 )− 𝜌𝜓x′yz,

W
𝜒
1,3

= 𝜙(x′3 + y3 + z3 )− 𝜓x′yz, W
𝜒
2,2

= 𝜙(x′3 + y′3 + z3 )− 𝜌𝜓x′y′z,

W
𝜒
2,3

= 𝜙(x′3 + y′3 + z3 )− 𝜓x′y′z, W
𝜒
3,3

= W(x′, y′, z′ ),

and

W̃
𝜒
0,0

= W(x, y, z), W̃
𝜒
0,1

= 𝜙(x3 + y3 + z3 )− 𝜌2𝜓xyz,

W̃
𝜒
0,2

= 𝜙(x3 + y3 + z3 )− 𝜌𝜓xyz, W̃
𝜒
0,3

= W(x, y, z),

W̃
𝜒
1,1
= W̃

𝜒
1,2

= W̃
𝜒
1,3

= 𝜙(y3 + z3 ), W̃
𝜒
2,2

= W̃
𝜒
2,3

= 𝜙z3,
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W̃
𝜒
3,3

= 0.

PluggingW
𝜒

j,i
and W̃

𝜒

j,i
into (3.3) and (3.4), we have

g
𝜒
11
= 𝜙(x′ − 𝜌2x), g

𝜒
12
= −𝜌𝜓z, g

𝜒
13
= −𝜓 y,

g
𝜒
22
= 𝜙(y′ − 𝜌2y), g

𝜒
23
= −𝜓x′, g

𝜒
33
= 𝜙(z′ − 𝜌2z),

f
𝜒
12
= 𝜌𝜓z

1− 𝜌 , f
𝜒
13
= 𝜓 y

1− 𝜌 , f
𝜒
23
= 0.

By definitions (3.5) and (3.6),

exp(𝜂𝜒 )(𝜃1𝜃2𝜃3 ) =
∑
I≠∅

∑
J

fI J𝜃I𝜕 J

+
(
g
𝜒
11
f
𝜒
23
− g

𝜒
12
f
𝜒
13
+ g

𝜒
13
f
𝜒
12

)
𝜕1 +

(
−g𝜒

22
f
𝜒
13
+ g

𝜒
23
f
𝜒
12

)
𝜕2 + g

𝜒
33
f
𝜒
12
𝜕3

+ g
𝜒
11
g
𝜒
22
g
𝜒
33
𝜕3𝜕2𝜕1

=
∑
I≠∅

∑
J

fI J𝜃I𝜕 J

− 𝜙𝜓 (y′y− 𝜌2y2 )+ 𝜌𝜓 2x′z
1− 𝜌 𝜕2 +

𝜌𝜙𝜓 (z′z− 𝜌2z2 )
1− 𝜌 𝜕3

+ 𝜙3(x′ − 𝜌2x)(y′ − 𝜌2y)(z′ − 𝜌2z)𝜕3𝜕2𝜕1

and

𝜋𝜒𝜒 2

(
𝜒 2

∗
exp(𝜂𝜒 )(𝜃1𝜃2𝜃3 )

)
= 𝜒 2

∗
exp(𝜂𝜒 )(𝜃1𝜃2𝜃3 )|x′=x,y′=y,z′=z

= 𝜒 2
∗

∑
I≠∅

∑
J

fI J𝜃I𝜕 J |x′=x,y′=y,z′=z

− 𝜙𝜓 (𝜌2 − 1)y2 + 𝜓 2xz

1− 𝜌 𝜕2 +
𝜙𝜓 (1− 𝜌)z2

1− 𝜌 𝜕3

+ 3𝜙3(𝜌2 − 𝜌)xyz ⋅ 𝜕3𝜕2𝜕1.

We do not have to compute
∑

I≠∅
∑

J fIJ𝜃I𝜕 J explicitly, because it does not contribute to 𝜎𝜒,𝜒 2 which is the

coefficient of 𝜃I
𝜒𝜒2

= 𝜃I1 = 𝜃∅.
The same computations as above gives exp

(
𝜂𝜒 2

)
(𝜃1𝜃2𝜃3 ) as follows.

exp
(
𝜂𝜒 2

)
(𝜃1𝜃2𝜃3 ) =

∑
I

∑
J≠∅

fI J𝜃I𝜕 J + 𝜃1𝜃2𝜃3 − f
𝜒 2

12
𝜃3 + f

𝜒 2

13
𝜃2 − f

𝜒 2

23
𝜃1

=
∑
I

∑
J≠∅

fI J𝜃I𝜕 J + 𝜃1𝜃2𝜃3 −
𝜌2𝜓z
1− 𝜌2 𝜃3 +

𝜓 y

1− 𝜌2 𝜃2.

This time, we do not have to compute
∑

I

∑
J≠∅ fIJ𝜃I𝜕 J explicitly because it does not contribute to 𝜎𝜒,𝜒 3 . We

conclude that

𝜎𝜒,𝜒 3 =
(
3𝜙3(𝜌2 − 𝜌)− 𝜓 3

3

)
xyz− 𝜙𝜓 2(𝜌2 − 1)

3
y3 − 𝜙𝜓 2(𝜌2 − 1)

3
z3. (3.7)

3.2 (ℂ∕(ℤ+ iℤ),ℤ4)

The mirror superpotential is given by

W = −qxyz+ q6x2 + a(y4 + z4 )+ by2z2 ∈ Λ[x, y, z]
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and ℤ4 = {1, 𝜒, 𝜒 2, 𝜒 3} acts onΛ[x, y, z] by

𝜒 ⋅ x = −x, 𝜒 ⋅ y = iy, 𝜒 ⋅ z = iz.

By I𝜒 = {1, 2, 3} = I𝜒 3 (we let x1 = x, x2 = y, x3 = z) we deduce that 𝜉𝜒 and 𝜉𝜒 3 are ℤ4-invariant, hence are

elements of Jac(W ,ℤ4 ).

As above we compute exp(𝜂𝜒 )(𝜃1𝜃2𝜃3) from

W
𝜒
0,0

= W(x, y, z), W
𝜒
0,1

= q6x2 + qxyz+ ay4 + az4 + by2z2,

W
𝜒
0,2

= q6x2 − qixyz+ ay4 + az4 − by2z2, W
𝜒
0,3

= W(x, y, z),

W
𝜒
1,1
= q6x′2 + qx′yz+ ay4 + az4 + by2z2, W

𝜒
1,2

= q6x′2 − qixyz+ ay4 + az4 − by2z2,

W
𝜒
1,3

= q6x′2 − qx′yz+ ay4 + az4 + by2z2, W
𝜒
2,2

= q6x′2 − qix′y′z+ ay′4 + az4 − by′2z2,

W
𝜒
2,3

= q6x′2 − qx′y′z+ ay′4 + az4 + by′2z2, W
𝜒
3,3

= W(x′, y′, z′ ),

and

W̃
𝜒
0,0

= W(x, y, z), W̃
𝜒
0,1

= q6x2 + qxyz+ ay4 + az4 + by2z2,

W̃
𝜒
0,2

= q6x2 − qixyz+ ay4 + az4 − by2z2, W̃
𝜒
0,3

= W(x, y, z),

W̃
𝜒
1,1
= ay4 + az4 + by2z2, W̃

𝜒
1,2

= ay4 + az4 − by2z2,

W̃
𝜒
1,3

= ay4 + az4 + by2z2, W̃
𝜒
2,2

= W̃
𝜒
2,3

= az4,

W̃
𝜒
3,3

= 0.

PluggingW
𝜒

j,i
and W̃

𝜒

j,i
into (3.3) and (3.4), we have

g
𝜒
11
= q6, g

𝜒
12
= −qiz, g

𝜒
13
= −qy,

g
𝜒
22
= a(y′ + y)(y′ + iy)− bz2, g

𝜒
23
= −qx′ + b(y′ + y)(z+ iz), g

𝜒
33
= a(z′ + z)(z′ + iz)+ by′2,

f
𝜒
12
= −qiz

2
, f

𝜒
13
= qy

2
, f

𝜒
23
= −ibyz.

By definitions (3.5) and (3.6),

exp(𝜂𝜒 )(𝜃1𝜃2𝜃3 ) =
∑
I≠∅

∑
J

fI J𝜃I𝜕 J

+
(
g
𝜒
11
f
𝜒
23
− g

𝜒
12
f
𝜒
13
+ g

𝜒
13
f
𝜒
12

)
𝜕1 +

(
−g𝜒

22
f
𝜒
13
+ g

𝜒
23
f
𝜒
12

)
𝜕2 + g

𝜒
33
f
𝜒
12
𝜕3

+ g
𝜒
11
g
𝜒
22
g
𝜒
33
𝜕3𝜕2𝜕1

=
∑
I≠∅

∑
J

fI J𝜃I𝜕 J

− q6biyz𝜕1 +
1

2

(
qbyz2 − qa(y′ + y)(y′ + iy)y+ (−qx′ + b(y′ + y)(z+ iz))qiz

)
𝜕2

+ (a(z′ + iz)(z′ + z)+ by′2 ) ⋅
qiz

2
𝜕3

+ q6(a(y′ + y)(y′ + iy)− bz2 )(a(z′ + z)(z′ + iz)+ by′2 )𝜕3𝜕2𝜕1,

and
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𝜋𝜒𝜒 3

(
𝜒 3

∗
exp(𝜂𝜒 )(𝜃1𝜃2𝜃3 )

)
= 𝜒 3

∗
exp(𝜂𝜒 )(𝜃1𝜃2𝜃3 )|x′=x,y′=y,z′=z

= 𝜒 3
∗

∑
I≠∅

∑
J

fI J𝜃I𝜕 J |x′=x,y′=y,z′=z

+ q6biyz𝜕1 +
(
−qbyz2 − 2i(i+ 1)qay3 + q2ixz− 2(i+ 1)qbyz2

) i
2
𝜕2

+
(
−qa(i+ 1)z3 − qiby2z

2

)
i𝜕3

+ q6((2i− 2)ay2 − bz2 )((2i− 2)az2 − by2 )𝜕3𝜕2𝜕1.

We do not have to compute
∑

I≠∅
∑

J fIJ𝜃I𝜕 J explicitly, because it does not contribute to 𝜎𝜒,𝜒 3 which is the

coefficient of 𝜃I
𝜒𝜒3

= 𝜃I1 = 𝜃∅.
The same computations as above gives exp

(
𝜂𝜒 3

)
(𝜃1𝜃2𝜃3 ) as follows.

exp
(
𝜂𝜒 3

)
(𝜃1𝜃2𝜃3 ) =

∑
I

∑
J≠∅

fI J𝜃I𝜕 J + 𝜃1𝜃2𝜃3 − f
𝜒 3

12
𝜃3 + f

𝜒 3

13
𝜃2 − f

𝜒 3

23
𝜃1

=
∑
I

∑
J≠∅

fI J𝜃I𝜕 J + 𝜃1𝜃2𝜃3 +
qiz

2
𝜃3 +

qy

2
𝜃2 − biyz𝜃1.

This time, we do not have to compute
∑

I

∑
J≠∅ fIJ𝜃I𝜕 J explicitly because it does not contribute to 𝜎𝜒,𝜒 3 . We

conclude that

𝜎𝜒,𝜒 3 = −q3xyz

4
+

(
q2a(i+ 1)

2
− 4q6i(i+ 1)ab

)
y4 + q2a(i+ 1)z4

2

+
(
2q6b2 − 8q2a2i− q2b(i− 1)

2

)
y2z2.

(3.8)

3.3 (ℂ∕(ℤ+ e2𝝅i∕3ℤ),ℤ6)

The mirror superpotential is given by

W = −qxyz+ q6x2 + a1y
3 + a2z

6 + a3y
2z2 + a4yz

4 ∈ Λ[x, y, z]

and ℤ6 = {1, 𝜒, 𝜒 2, 𝜒 3, 𝜒4, 𝜒 5} acts onΛ[x, y, z] by

𝜒 ⋅ x = −x, 𝜒 ⋅ y = e2𝜋i∕3y, 𝜒 ⋅ z = e𝜋i∕3z.

By I𝜒 = {1, 2, 3} = I𝜒 5 we deduce that 𝜉𝜒 and 𝜉𝜒 5 are ℤ6-invariant, so they are elements of Jac(W ,ℤ6 ). Let 𝜁 =
e𝜋i∕3 for simplicity. To compute 𝜉𝜒 ∙ 𝜉𝜒 5 , we need

W
𝜒
0,0

= W(x, y, z),

W
𝜒
0,1

= q6x2 + qxyz+ a1y
3 + a2z

6 + a3y
2z2 + a4yz

4,

W
𝜒
0,2

= q6x2 − 𝜁qxyz+ a1y
3 + a2z

6 + 𝜁 2a3y2z2 + a4yz
4,

W
𝜒
0,3

= W(x, y, z),

W
𝜒
1,1
= q6x′2 + qx′yz+ a1y

3 + a2z
6 + a3y

2z2 + a4yz
4,

W
𝜒
1,2

= q6x′2 − 𝜁qx′yz+ a1y
3 + a2z

6 + 𝜁 2a3y2z2 + 𝜁 4a4yz4,

W
𝜒
1,3

= q6x′2 − qx′yz+ a1y
3 + a2z

6 + a3y
2z2 + a4yz

4,

W
𝜒
2,2

= q6x′2 − 𝜁qx′y′z+ a1y
′3 + a2z

6 + 𝜁 2a3y′2z2 + 𝜁 4a4y′z4,
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W
𝜒
2,3

= q6x′2 + qx′y′z+ a1y
′3 + a2z

6 + a3y
′2z2 + a4y

′z4,

W
𝜒
3,3

= W(x′, y′, z′ ),

and

W̃
𝜒
0,0

= W(x, y, z),

W̃
𝜒
0,1

= q6x2 + qxyz+ a1y
3 + a2z

6 + a3y
2z2 + a4yz

4,

W̃
𝜒
0,2

= q6x2 − 𝜁qxyz+ a1y
3 + a2z

6 + 𝜁 2a3y2z2 + 𝜁 4a4yz4,

W̃
𝜒
0,3

= W(x, y, z),

W̃
𝜒
1,1
= a1y

3 + a2z
6 + a3y

2z2 + a4yz
4,

W̃
𝜒
1,2

= a1y
3 + a2z

6 + 𝜁 2a3y2z2 + 𝜁 4a4yz4,

W̃
𝜒
1,3

= a1y
3 + a2z

6 + a3y
2z2 + a4yz

4,

W̃
𝜒
2,2

= W̃
𝜒
2,3

= az4,

W̃
𝜒
3,3

= 0.

As above, we calculate the following:

g
𝜒
11
= q6, g

𝜒
12
= −𝜁qz, g

𝜒
13
= −qy,

g
𝜒
22
= a1(y

′ + 𝜁 y)+ 𝜁 2a3z2, g
𝜒
23
= −qx′ + a3(y

′ + y)(z+ 𝜁z)+ a4

√
3iz3,

g
𝜒
33
= a2(z

′ − 𝜁 2z)(z′ − 𝜁 3z)(z′ − 𝜁 4z)(z′ − 𝜁 5z)+ a3y
′2 + a4y

′(z′2 + z′z+ z2 + (z′ + z)𝜁z+ 𝜁 2z2 ),

f
𝜒
12
= −𝜁qz

2
, f

𝜒
13
= qy

2
, f

𝜒
23
= −a3yz− 𝜁a4z3

1− 𝜁

and

𝜋𝜒𝜒 5

(
𝜒 5

∗
exp(𝜂𝜒 )(𝜃1𝜃2𝜃3 )

)
= 𝜒 5

∗

∑
I≠∅

∑
J

fI J𝜃I𝜕 J |x′=x,y′=y,z′=z

+ q6 ⋅
a3yz+ 𝜁a4z3

1− 𝜁 𝜕1

+
((

−a1
√
3iy− 𝜁 2a3z2

)
qy

2
+

(
qx + a3

√
3iyz+ a4

√
3iz3

)
𝜁qz
2

)
𝜁 2𝜕2

+
(
−6a2z4 + a3𝜁

4y2 + a4(3𝜁
4 − 1)yz2

)𝜁 2qz
2
𝜕3

+ q6(−6a2z4 + a3𝜁
4y2 + a4(3𝜁

4 − 1)yz2 )
(
a1

√
3iy+ 𝜁 2a3z2

)
𝜕3𝜕2𝜕1.

Also, we have

exp
(
𝜂𝜒 5

)
(𝜃1𝜃2𝜃3 ) =

∑
I

∑
J≠∅

fI J𝜃I𝜕 J + 𝜃1𝜃2𝜃3 −
𝜁−1qz
2

𝜃3 +
qy

2
𝜃2 +

a3yz+ 𝜁−1a4z3
1− 𝜁−1 𝜃1.

In conclusion,
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𝜎𝜒,𝜒 5 =
(
−a1

√
3iq2𝜁 2

4
+ q6a1a3𝜁

4
√
3i

)
y3

+
(
q6a2

4
+ 3q2a2𝜁

2
− 6q6𝜁 2a2a3

)
z6

+
(
(9−

√
3i)q6a3a4
2

+ (−1+
√
3i)q2a4

4
− 6q6a1a2

√
3i

)
yz4

+
(
2q6a2

3
+ q6a1a4(3𝜁

4 − 1)
√
3i
)
y2z2 − q3xyz

4
.

4 Main results

A Frobenius algebra is a unital associative algebra over 𝕂 together with a nondegenerate bilinear form ⟨⋅, ⋅⟩
such that ⟨xy, z⟩ = ⟨x, yz⟩. Observe that given a nondegenerate pairing ⟨⋅, ⋅⟩ on a Frobenius algebra, the rescal-
ing ⟨c⋅, c⋅⟩ for c ≠ 0 can be still used to define a new Frobenius algebra with the same ring structure. Given two

Frobenius algebras (A, ⟨, ⟩A) and (B, ⟨, ⟩B), f :A→ B is an isomorphism of Frobenius algebras iff it is a ring iso-

morphism and an isometry with respect to nondegenerate pairings. Given unities 1A ∈ A and 1B ∈ B, let trA:A→

𝕂 and trB:B→𝕂 be maps (a.k.a. traces) given by ⟨⋅, 1A⟩A and ⟨⋅, 1B⟩B respectively. Then f :A→ B is an isometry

if and only if it preserves traces.

For a compact symplectic manifold, the quantum cup product together with the Poincaré pairing ⟨⋅, ⋅⟩PD
gives rise to a Frobenius algebra structure on QH∗(X). For an isolated singularityW ∈ 𝕂?[x1,… , xn], we equip

Jac(W) with the residue pairing

⟨ f , g⟩res = (−1)
n(n−1)

2 Res

[
f g ⋅ dx1 ∧ · · · ∧ dxn

𝜕x1W ,… , 𝜕xnW

]
.

As pointed out in [8], the Kodaira-Spencermap does not intertwine pairings ⟨⋅, ⋅⟩PD and ⟨⋅, ⋅⟩res in general. Exam-
ining the Cardy condition, we are led to consider a modification of the residue pairing by the constant given by

ratio of Floer volume form and the usual volume form on the reference Lagrangian 𝕃. In Section 2.2 we denoted
such ratios by c𝕃.

Theorem 4.1. Let X be an elliptic orbisphere and W ∈ Λ[x, y, z] be the LG mirror to X. Let A = (QH∗(X), ⟨⋅, ⋅⟩PD)
andB = (Jac(W ), ⟨c𝕃⋅, c𝕃⋅⟩res ) be Frobenius algebraswhere c𝕃 is the rescaling constant of Seidel Lagrangian𝕃 ⊂ X.

Then

c2𝕃 ⋅ ks(ptX ) = −det Hess(W )

𝜇
, (4.1)

where 𝜇 = dim Jac(W). As a result, ks:A→ B is an isomorphism of Frobenius algebras, i.e. it preserves traces as

follows: ⟨ptX , 1X⟩PD = ⟨c𝕃 ⋅ ks(ptX ), c𝕃 ⋅ 1⟩res.
Provided (4.1), the second statement follows immediately from a classical result on the residue over an

isolated singularity (the author thanks Cheol-Hyun Cho for pointing out this fact).

Theorem 4.2 (Section 17, [20]).

Res

[
det Hess(W ) ⋅ dx1 ∧ · · · ∧ dxn

𝜕x1W ,… , 𝜕xnW

]
= 𝜇.
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We can easily compare ks:QH∗(X )→ Jac(W ) and ksorb:H
∗(E)→ Jac(W , Ĝ) as follows. Basically, holomor-

phic discs employed in the computation of ksorb(ptE ) are same as those used for ks(ptX ), but the discs which
are related by G-action on E are identified as the same disc on X. Thus, |G| different discs which are used for
ksorb(ptE ) project to a single disc for ks(ptX ). We conclude that

ksorb(ptE ) =
1|G| ⋅ ks(ptX ).

The rest of the paper is thus devoted to prove

c2𝕃 ⋅ ksorb(ptE ) = −det Hess(W )|G| ⋅ 𝜇 ,

where G = ℤ3,ℤ4 or ℤ6 acts on E, withW given accordingly with respect to G-equivariant Seidel Lagrangian.

4.1 ℤ3-case

Recall from (2.5) that (with 𝜌 = e2𝜋i∕3)

c𝕃 ⋅ ksorb(PD[Ch]) = −𝜌𝜉𝜒 − 𝜌2𝜉𝜒 2 , c𝕃 ⋅ ksorb(PD[C𝑣]) = −𝜌2𝜉𝜒 − 𝜌𝜉𝜒 2 ,

hence by (3.7)

c2𝕃 ⋅ ksorb(ptE ) = c2𝕃ksorb(PD[Ch]) ∙ ksorb(PD[C𝑣])

= (𝜌2 − 𝜌)𝜉𝜒 ∙ 𝜉𝜒 2

= (𝜌2 − 𝜌) ⋅
((

3𝜙3(𝜌2 − 𝜌)− 𝜓 3

3

)
xyz− 𝜙𝜓 2(𝜌2 − 1)

3
y3 − 𝜙𝜓 2(𝜌2 − 1)

3
z3
)
.

Observe that we used supercommutativity of the product for the second identity. The Jacobian ideal 𝜕W is given

by

𝜕W = (3𝜙x2 − 𝜓 yz, 3𝜙y2 − 𝜓xz, 3𝜙z2 − 𝜓xy),

so y3 = z3 = 𝜓xyz

3𝜙
modulo 𝜕W , and

c2𝕃 ⋅ ksorb(ptE ) =
(
−9𝜙3 + 𝜓 3

3

)
xyz.

On the other hand,

Hess(W ) =
⎛⎜⎜⎜⎝
6𝜙x −𝜓x −𝜓 y

−𝜓z 6𝜙y −𝜓x
−𝜓 y −𝜓x 6𝜙z

⎞⎟⎟⎟⎠,
hence det Hess(W) = (216𝜙3 − 8𝜓 3)xyz in Jac(W). By 𝜇 = 8 and |G| = 3, we easily verify (4.1).

4.2 ℤ4-case

From (2.6) we have

c2𝕃 ⋅ ksorb(ptE ) = −i𝜉𝜒 ∙ 𝜉𝜒 3 = −i𝜎𝜒,𝜒 3 ,

where 𝜎𝜒,𝜒 3 as (3.8). Modulo 𝜕W = (2q6x − qyz, 4ay3 − qxz+ 2byz2, 4az3 − qxy+ 2by2z), we have relations

xyz = 2q5x2, y2z2 = 4q10x2, 2ay4 = 2az4 = (q6 − 4bq10 )x2,

hence in Jac(W),

−i𝜎𝜒,𝜒 3 = −i
(
iq8

2
− 4iq12b+ 8iq16b2 − 32iq16a2

)
x2
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=
(
q8

2
− 4q12b+ 8q16b2 − 32q16a2

)
x2.

By

Hess(W ) =
⎛⎜⎜⎜⎝
2q6 −qz −qy
−qz 12ay2 + 2bz2 −qx + 4byz

−qy −qx + 4byz 12az2 + 2by2

⎞⎟⎟⎟⎠
we have

det Hess(W )

= (48q6ab− 12q2a)(y4 + z4 )− 2q8x2 + (288q6a2 − 24q6b2 + 4q2b)y2z2 + (16q7b− 2q3 )xyz

= (−18q8 + 144q12b− 288q16 + 1152q16a2 )x2.

This time, |G| = 4 and 𝜇 = 9, and it is straightforward that (4.1) holds.

4.3 ℤ6-case

From (2.7) we have

c2𝕃 ⋅ ksorb(ptE ) = −
√
3i

3
𝜉𝜒 ∙ 𝜉𝜒 5 = −

√
3i

3
𝜎𝜒,𝜒 5 .

We also compute

det Hess(W ) =
(
120q6a2a3 − 32q6a2

4
− 30q2a2

)
z6 +

(
360q6a1a2 − 16q6a3a4 − 4q2a4

)
yz4

+
(
144q6a1a4 − 24q6a2

3
+ 4q2a3

)
y2z2 + 16q7a4xz

3 +
(
24q6a1a3 − 6q2a1

)
y3

+
(
16q7a3 − 2q3

)
xyz− 2q8x2.

The relations modulo 𝜕W needed for our purpose are as follows:

xyz = 2q5x2, a1y
3 =

−8q14a3a24 − 16q10a2a3 + 32q14a2a
2
3
− 24q14a1a2a4 + 2q10a2

4
+ 2q6a2

4q4a2
4
+ 3a2 − 12q4a2a3

x2,

z6 =
q6
(
−8q4a3 − 48q8a1a4 + 16q8a2

3
+ 1

)
4q4a2

4
+ 3a2 − 12q4a2a3

x2, yz4 = 2q10
(
36q4a1a2 − 4q4a3a4 + a4

)
4q4a2

4
+ 3a2 − 12q4a2a3

x2.

The result (4.1) follows from |G| = 6 and 𝜇 = 10. We omit the tedious computation which involves substitutions

of above relations to det Hess(W) and 𝜎𝜒,𝜒 5 .

4.4 Nontrivial identitites of formal power series

Recall from [7] that

ks(ptX ) =
1

8
q ⋅
𝜕W
𝜕q
,

where X is an orbisphere ℙ1
a,b,c

with area 1 (If the area is A, then we take
1

8A
instead of

1

8
). Hence we also have

ksorb(ptE ) =
1

8|G|q ⋅ 𝜕W𝜕q .

We computed ksorb(ptE ) in another way, namely by orbifold Jacobian algebra structure. LetW333,W244 andW236

be mirror superpotentials from Seidel Lagrangians 𝕃333 ⊂ ℙ1
3,3,3

, 𝕃244 ⊂ ℙ1
2,4,4

and 𝕃236 ⊂ ℙ1
2,3,6

respectively.

Let us consider ℙ1
3,3,3

. Recall that

W333 = 𝜙(x3 + y3 + z3 )− 𝜓xyz
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with its coefficients are

𝜙 =
∑
k∈ℤ

(−1)k+1
(
k + 1

2

)
q(6k+3)

2

, 𝜓 =
∑
k∈ℤ

(−1)k+1(6k + 1)q(6k+1)
2

.

We also have

c𝕃333 =
∑
k∈ℤ

(−1)kq(6k+1)2 .

By the following

c2𝕃333
24

q ⋅
(
𝜕𝜙
𝜕q

(x3 + y3 + z3 )− 𝜕𝜓
𝜕q

xyz

)
=

c2𝕃333
24

q ⋅
(
𝜓
𝜙
𝜕𝜙
𝜕q

− 𝜕𝜓
𝜕q

)
xyz =

(
−9𝜙3 + 𝜓 3

3

)
xyz,

we derive an identity of two arithmetics of formal power series

c2𝕃333
24

q ⋅
(
𝜓
𝜙
𝜕𝜙
𝜕q

− 𝜕𝜓
𝜕q

)
=

(
−9𝜙3 + 𝜓 3

3

)
.

Note that the identity was first proved in [8] using theory of modular forms, and now we have a new proof

without appealing to number theory.

The same argument can be applied to other two cases. ForW244, we have

q3

32

(
6q5x2 − xyz+ 𝜕a

𝜕q
(y4 + z4 )+ 𝜕b

𝜕q
y2z2

)
= q3

32

(
4q5 + 1

a

𝜕a
𝜕q

⋅ (q6 − 4bq10 )+ 4q10
𝜕b
𝜕q

)
x2

=
(
q8

2
− 4q12b+ 8q16b2 − 32q16a2

)
x2

which implies

q3

32

(
4q5 + 1

a

𝜕a
𝜕q

⋅ (q6 − 4bq10 )+ 4q10
𝜕b
𝜕q

)
= q8

2
− 4q12b+ 8q16b2 − 32q16a2,

where a and b are formal power series given by

a =
∑
r≥0

(2r + 1)q16(2r+1)
2−4 +

∑
s>r≥0

(2r + 2s+ 2)q16(2r+1)(2s+1)−4,

b =
∑

r≥1,s≥1

(
−(4r + 4s− 2)q16(2r−1)2s−4 + (2r + 2s)q64rs−4

)
.

We note that c𝕃2,4,4 = ±q, so its square is q2. ForW236 we can obtain a similar type of identity which is omitted.
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