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Abstract: Given a mirror pair of a symplectic manifold X and a Landau-Ginzburg potential W, we are interested
in whether the quantum cohomology of X and the Jacobian algebra of W are isomorphic. Since those can be
equipped with Frobenius algebra structures, we might ask whether they are isomorphic as Frobenius algebras.
We show that the Kodaira-Spencer map gives a Frobenius algebra isomorphism for elliptic orbispheres, under
the Floer theoretic modification of the residue pairing.
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1 Introduction

Closed string mirror symmetry predicts that quantum cohomology of a symplectic manifold and Jacobian ring
of the mirror superpotential are isomorphic. There have been results on this problem firstly for toric manifolds:
see [1-3] etc.

Fukaya-Oh-Ohta-Ono also gave a construction of the ring isomorphism in [4-6], based on the study of
closed-open map which is defined more geometrically. Though the codomain of the original closed-open map
is Hochschild cohomology which is hard to grasp, Fukaya-Oh-Ohta-Ono proved that the length-0 part of the
closed-open map (which was called Kodaira-Spencer map), whose codomain is now Jacobian ring, provides
an isomorphism in compact toric case. Their strategy was also employed by Amorim-Cho-Hong-Lau in [7] for
proving mirror symmetry for orbifold projective lines.

Since quantum cohomology ring and Jacobian ring are both Frobenius algebras with respect to the Poincaré
duality and the residue pairing respectively, we might ask whether their pairings are also related in a suitable
way. The question was dealt with in [8], and it was conjectured that if we want the Kodaira-Spencer map to be
a Frobenius algebra isomorphism, we need to modify the residue pairing by a constant which is the ratio of
”Floer volume form” and the usual volume form on a Lagrangian submanifold. The rescaling constant appeared
naturally when we consider Cardy condition (see [8] for more detail).

In this paper we focus on elliptic orbispheres with three singular points, which are quotients of 2-torus
by finite groups Z, Z, and Z; respectively. Several mirror isomorphisms of Frobenius manifolds for orbifold
projective lines have been established. In [9] Satake-Takahashi proved that there is an isomorphism of Frobenius

manifolds from Gromov-Witten theory of [P’% ;3 and the universal unfolding of the mirror potential, and also for
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Pé,z,z,z case (where the counterpart is given by the invariant theory of an elliptic Weyl group). For spherical
cases, namely for Péyb’c with é + % + % > 1 we refer readers to [10-12] etc. Towards the ultimate level of closed
string mirror symmetry such as above results, we add more elliptic orbisphere examples, namely [P’i 44 and [Ij’;&G
which are quotients of the elliptic curve by Z, and Z; respectively. Pé,g,s will be also revisited. Though we work
only at the level of Frobenius algebras, we hope that we can find a relationship with previous works, such as the
relation between the Floer theoretic rescaling constant and the choice of primitive form.

We summarize the idea. Let W be the mirror superpotential to X, so the Kodaira-Spencer map is given by
£s: QH*(X) — Jac(W). The most natural pairings for Frobenius algebra structure are Poincaré pairing and the

residue pairing respectively. We point out that the residue pairing (, ),.s on Jac(W) will be chosen as

n(n—1 'dX /\"'/\an
<fvg>res =(-1 (2 )RES fg '
O W, ....0, W

()]

whose formula appears in [13] as induced from the Mukai pairing on HH , (MF(W)), so that it is the most
canonical” in some sense. It is also remarkable that the sign (—1)m"T_“ also appears in the Cardy condition in
[6, Theorem 3.4.1].

Our main theorem is as follows.

Theorem A. Let X be an elliptic orbisphere and W be its mirror superpotential. Let L C X be the Seidel Lagrangian
with odd degree immersed generators X, Y, Z, and ¢, be the constant defined by

- p=myX,my(Y,2)), (12)
where p = m,(X, X). Then the Kodaira-Spencer map
ts: (QH*(X), <" '>PD) - (]aC(WL <CD_" Cl].')res)

is an isomorphism of Frobenius algebras.

Observe that we modified the residue pairing by suitable constant ¢, as discussed above. To compare pair-
ings we need to compute the residue of £s(pty), where pty is the Poincaré dual of point class of the symplectic
manifold X. Though £s(pty) is explicitly computed in [7] for general orbifold sphere X, it is hard to conclude that
its (rescaled) residue is indeed 1 = / Pty as expected. The difficulty arises in the comparison of two different
arithmetics of formal power series. We bypass this difficulty by computing £s(pty) in another way. Let G act on
the elliptic curve E so that X = E/G. We will use the result of [14] that the Kodaira-Spencer map on X can be lifted
to the orbifold Kodaira-Spencer map s, : H*(E) — Jac(W, G), where Jac(W, G)is the orbifold Jacobian algebra
(G is the character group of G, so it is isomorphic to G if G is abelian). By the relation

1
Es(pty) = ﬁesorh(ptEL
we can recover £s(pty) by €5, (a U ) = €5, (a) » €5, (B) for some a, f € H'(E). By a classical result on
the residue over an isolated singularity (which will be recalled in Section 4), the following is a rephrasing of

Theorem A.

Theorem B. Let X be an elliptic orbisphere E /G and W be its mirror superpotential. Then

_ det Hess(W)

13
G| - u 3

Cﬁ : Esorb(ptE) =

The organization of the paper is as follows. In Section 2 we first recall the construction of orbifold Jacobian

algebras from Floer theory. Then we briefly review (orbifold) Kodaira-Spencer maps which appear in Fukaya-

Oh-Ohta-Ono’s works and also in [14]. In Section 3 we review the product structure on orbifold Jacobian algebras

following [15], and explicitly compute the product for the mirror Landau-Ginzburg orbifold to an elliptic curve.

Finally, we prove our main result in Section 4, with a remark on nontrivial identities of arithmetics of formal
power series.
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2 Kodaira-Spencer map to an orbifold Jacobian algebra

2.1 Preliminaries

We briefly recall the deformation theory of Lagrangian submanifolds originally in [16], following every notation
in Section 4.1 of [14]. Let X be a symplectic manifold and L be its (possibly immersed) Lagrangian submani-
fold. Let CF(L, L; A) be the Fukaya A -algebra whose underlying space is the sum of de Rham algebra and the
module generated by immersed generators. Suppose that L is weakly unobstructed, i.e. the A -structure on
CF*(L,L; A) can be deformed by weak Maurer-Cartan elements. Assume further that X;, ..., X, € CF}(L,L; A)
are weak Maurer-Cartan elements such that ¢,X; + - - - + ¢,X,, is also a weak Maurer-Cartan element for any
¢; € A,. Let x; be the dual variable of X; and b: = x;X; + - - - + x,X,,. The weak Maurer-Cartan equation gives
rise to the potential W, € R = Alx,, ..., x,]. We consider the following A -algebra

B(L): = (CF*(L, L; A)®, R, {m} }).

We also denote by B(L),, the associative algebra with the same underlying space as B(L) while equipped
with the product v - w: = (—1)|U|m’2’(v, w). The following results evidently reflect the importance of the above
definition.

Proposition 2.1 ([14]). If L is the Seidel Lagrangian in an orbisphere [F"}l »c O the Lagrangian torus at the critical
point of W, then there is an algebra isomorphism

W H* (B(L) ) — Jac(W,) = R/OW] . 2.1)

Let us now recall the orbifold Jacobian algebra of an isolated singularity equipped with a group action.
Definition 2.2. Let H be a finite abelian group, which acts on R = K[x, ..., x,] and leaves W invariant. We call
the pair (W, H) a Landau-Ginzburg orbifold.

Throughout the paper, we only consider diagonal H-action, i.e. h - x; = h;x; for some h; € IK*.

Definition 2.3. Let (W, H) be a Landau-Ginzburg orbifold. Then the twisted Jacobian algebra of (W, H) is defined
as

Jac'(W,H): = @]ac( why. &,

heH

where W™ is the image of W via projection z: R — R/(x;: hx; # X,). The formal generator &, has degree |I,| € Z,
where I, = {i € {1,...,n} | hx; # x;}. The H-action on generators is defined by
[T (K ")
i€,

[1x;

iel,

W& = Sn>

and the H-invariant subalgebra
Jac(W, H): = Jac'(W, H)#

is called the orbifold Jacobian algebra of (W, H).

Theorem 2.4.
(1) Jac'(W,H)is an H-graded algebra, namely

& o &y € Jac(W") - &y
(2) The product « satisfies braided-commutativity, namely

Epoly = (—DaMwIp. &, 0 &)
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In particular, if £, and &,y are both H-invariant, then

&y oy = (=DIEENIE, o g,

which implies that Jac(W, H) is a supercommutative algebra.

We postpone the definition of the product on Jac(W, H) until Section 3. Orbifold Jacobian algebras appear
naturally in Floer theory as follows. Let X be a symplectic manifold and a finite abelian group G act on X. Sup-
pose that L C X/G is a weakly unobstructed Lagrangian submanifold with mirror superpotential W, with an
embedded Lagrangian lift L, C X. Then we can construct a new A, -algebra structure on B(L) ® AIGI, whose
G-invariant subalgebra (B(L) ® A[@])glg is isomorphic to Jac(W, G).

Proposition 2.5 ([14]). Letl = &b ¢ec8 * Lo C X be a Lagrangian submanifold with lifted weak bounding cochain
b from b. Then

1

@ (cFE.D®R ) ~ ((BL) ® AGDY, ), v, o0

Y x@vy

XEG

is an A, -isomorphism. Here v, is an element in CF(g - Ly, h - L) and v is the projection of v,.

g
Despite being vacuous, @ can be also defined in the previous nonequivariant setting (namely, endowed with
trivial group action) just by the identity.

Proposition 2.6 ([14]). Let (B(L) ® A[/G\])flg be an associative algebra with

W® 1) w® x):=D"mPw® y.we 1)

Then there is an algebra isomorphism

W H* (B ® AIGDS)—Jac(W., G). @2)
Again, in the nonequivariant setting, ¥'; is nothing but ¥ above.
Now we recall the construction of Kodaira-Spencer maps. For general weakly unobstructed Lagrangian
L C X with bounding cochain b, we use the similar configuration of holomorphic discs as Fukaya-Oh-Ohta-Ono’s
original definition.

Definition 2.7. For a moduli space of J-holomorphic discs with k + 1 boundary marked points and one interior
marked points M, (f) for f € H,(X,L) and a cycle A C X, let My 1(8,A) = My,q1(f)XxA and consider
their evaluation maps evf : My411(B, A) — L at the ith marked point. Consider the length-0 closed open map

CO": QH*(X) — H*(B(L)yg), CO(PDIAD:= Y Y (evk) ((etf) DA ... A (erf) D). 2.3)
BEH,(X,L) k=0

Definition 2.8. Let X be a symplectic manifold with finite group G acting effectively on it(G may be trivial),
and L be a G-equivariant weakly unobstructed Lagrangian. Then the orbifold Kodaira-Spencer map is £s,,: =
Y:odoCO.

Note that if G is trivial, then £s_, is just the ordinary Kodaira-Spencer map £s. It was shown in [14] that
€s,,, is well-defined, and furthermore it is a ring homomorphism.
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KODAIRA-SPENCER MAPS AND FROBENIUS ALGEBRAS
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Figure 1: Z;-equivariant Lagrangian.

2.2 Computation of orbifold Kodaira-Spencer maps from elliptic curves

We choose three different Lagrangian submanifolds on elliptic curves and compute the orbifold Kodaira-Spencer
maps with respect to them.

224 Z,

Let E = C/(Z + ¥"/37) be an elliptic curve and let Z, = {1, p = €7/3, p* = ¢*71/3} act on E by multiplication,
s0 Py,, =E/Z;. Let Ly C E be an embedded circle in E, and Ly:= pL,, Ly:= pL, as in Figure 1. Then L=
L, ® L, &L, is aweakly unobstructed Lagrangian on E with potential Ws,.

Let C, be a homology cycle representing a class (1,0). Since dim M, (8, C;)) = k + u(p), if p € Hy(E, D)
is nontrivial then there is no summand in (2.3) for §. Therefore to compute the Kodaira-Spencer map we only
consider M, (0, Cp). There is a natural orientation on M, ,(0) because it is diffeomorphic to L, and the fiber
product M, ;(0, C;) is nothing but the intersection of Land C;,- We conclude that £s(PD[C,,]) is glven by (Poincaré
dual of) the oriented intersection L N Cp,. In Figure 1 we depicted intersection points between LandC » whose
Poincaré dual 1-forms are a, b, ¢, d respectively.

Taking orientations into account, we have
cO’PDIC)=—-a+b+c—d.

To read an orbifold Jacobian algebra element from it, we need to recall the construction of an isomor-
phism H* ((B(I]_) ® A[@])is) = Jac(Wags, 2\3) for the Seidel Lagrangian L. The module CF(L, L) is generated by
{(LX,Y,ZXANY,YANZ,ZAX,X AN(Y AZ)} where X, Y and Z are odd degree immersed generators and A is the
binary A -product m, without weak bounding cochain insertions. Observe that

XAY _YAZ _ZAX _XA(YAZ) _
7 X 7 D .

for some constant ¢, as in (1.2) (recall that p = m,(X, X)).

Theorem 2.9 ([14]). The isomorphism
W HY(B(L) ® AIZ;)7 2 Jac( Wy, Z3)

in (2.2) is given by
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H(BL) ® D% - Jac(Wy) 2, fief,
2.4)

~

H*BL) ® )% > Jac(WZ,)* - &,, (XA (Y AZ)+ (lower) ®  + &,

For p = my(X,X) € CF(L, L), let p; € CF(I]_l,I]_ ) for i = 0,1, 2 such that p; projects to p. Now let us inves-
tigate the Poincaré dual of each intersection of L and C, say a for example. Seeing F1gure 1 agam p, and a
are cohomologous in the de Rham complex Q(L,), but they are not cohomologous in (CE(L, D), m” ) (in fact,
they are not even cocycles). If we consider a de Rham 0-form I whose de Rham coboundary is p, — a, then
mf(I ) = p; — a+ (lower), where (lower) means a linear sum of odd degree immersed generators. In the same
vein, we consider de Rham 0-forms ], K and L whose coboundaries are p, — b, p, — ¢ and p; — d respectively.
Then B

mI—J—K+L)=(-a+b+c—d) +(p,— py— p, + py) + (lower),

e.—a+ b+ ¢ — dis cohomologous to —2p, + p, + p, + (lower) in CF! (L, D) with respect to m? Therefore, letting
Zy = {1, y, ¥}, the image via (orbifold) Kodaira-Spencer map is

®(CO(PD[C,)) = 1((—2)((p) +1+4 (PN ® x + (=24 (p) + 1+ y2(p")p ® x*) + (lower)

(24)( =2x(P)+ 1+ 2 (pPNE, + (=2%(p) + 1+ r*(pM)E .
3¢,

LS Jac(Wyy, Zs)
Observe that there is no output on 1-sector due to degree reason. For the cycle C,, of class (0,1),

BCOUPDIC,D) = 5 ((~22(") +1+ £(PIP ® 1 + (=225 + 1+ £ (p)p ® 17) + (lower)

@ (= =2x(P) + 1+ (P&, + (=21%(p") + 1+ X (p)) 2

30, 2 €]Ja (W333»Zs)

Letting y(p) = p, we summarize

2
ts,(PDIC) = L&, — Zg o ¥s,(PDIC) =-2¢, — L&, 25)
a a a a

We hope readers notice that ¢; is involved in the computation.

222 7,

Let E = C/(Z + iZ) be an elliptic curve and Z, = {1,1, i, ©} act on E by multiplication. Let [, be an embedded
circle of homology class (1,1) and L, = il, L, = —L,, Ly = —il, as Figure 2.

Then L = Ly ® L, &L, & L, is weakly unobstructed with potential W,,,. Every technical detail involved
in the computation is just the same as Z;-case, so we only note that (Poincaré dual of) the oriented intersection
Ln Cyisa—b — ¢+ d, and it is cohomologous to p; — p, — p; + p, + (lower) in (CF(L, 1), mb) For C,, we obtain

a cycle cohomologous to p, — p; — p, + p; + (lower). If we let Zx = {1, y, ¥% %} such that y(i) = i, then

—1-i
20,

1+1i
2¢c,

=1+
2¢,

€5, (PDIC,]) = S, + & 500, (PDIC, ])——.»: + o E 2.6)

223 7,

LetE = C/(Z + e/37)and Z, = {1,{ = e™/3,£%,¢3, ¢4, £°} act on E by multiplication. Let L, be an embedded
circle of class (1,0) and L, = ¢ k Lofork =1,...,5asin Figure 3.
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KODAIRA-SPENCER MAPS AND FROBENIUS ALGEBRAS

Figure 3: Z;-equivariant Lagrangian.

Letl:= @izog k1, be a weakly unobstructed Lagrangian with potential W,,,. With the same computation
as above, we obtain

COY(PDIC,)) ~ —py + ps — Dy + Dy + (lower), CO(PDIC,]) ~ p; — p3 — P4 + Do + (lower),
hence for Z, = {1, 7, ..., °} with ¥() = ¢,

_—¢-& {+ ¢ _1+¢ 1-¢*
ts,,,(PDIC,]) = o £, + e £s, 5, (PDIC,]) = 3. £, + %

£ s Q@7
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3 Products in orbifold Jacobian algebras

Recall that our goal is to prove
det Hess(WW)
Esorb( L pE) |G|'/4

For this, we need to compute the product in the orbifold Jacobian algebra. Among various works, we follow the
construction of [15]. Other works on orbifold Jacobian algebras include [17-19] etc.
Let W € K?[xy, ..., x,], and let (W, G) be a Landau-Ginzburg orbifold. For h € G, let

Li={ilh-x;#x}C{1,...,n}, Tn=I.
Let S = K[x;, ..., Xy, X, ..., x]. For 0 < j < i < n, define

1

wh . —
W= W(x{, ,x;.,xjH, s Xy MXyq,s e ,hx,,) €S,
I/|~/h'—W<xh X, x; ,X;, hx; hx)eR
= 1o e s X Xyt oo i - > Xy .
(we define x{' = x; if hx; = x; and xlf‘ = 0 otherwise.) We also define

W= WX, . X, Xy, - ), GB.D

Whe=W(x, X W, . ). (3.2)

Fori,j € {1,...,n} with j < i, define

n _ Tk _ (wh h
h (le Wj—“) <W}1 1 W} 1,i— 1) ifiel,
- — /
ghi= () =x;) o = o)
0 otherwise,
) (3.3)
h h h h
(W _Wj 11) <W}11_W1 111) ifijEI
h. i h>
0 otherwise,
and
wh _ Trh wh  _Twh
1 . Wu Wl 1Li-1 _ Wl 1,i Wi—l,i—l ifiel
h—Ix —x x! — hx; x; — hx; h
gii' = i i i i i i (3.4)
0 otherwise.
Let 8;and 0, (for i =1, ..., n) be formal variables with |0;| = —1, |9;| =1 and

For an ordered subset I = {i,...,i} C {1,...,n}, we introduce a notation 6;: = 91'1 Gik. Now, define an S-

linear map
NpiS(0s, ..., 0,0, ...,0,) = S(6,,...,0,,0,, ...,0,),
90 n 0% 3:3)
_Nll gh
0,0, ~ Y (-1"gh I‘”ﬁzfaea[e

We also define a map
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n?
exPO) =1y + o o 1801+, 00.01 0 +.0,) > Sy, 0.0, ... ). (3.6)
For f(Xy, ..., Xp, X, ... ,x;l)e,a, € S80,,...,0,,0,,...,0,), define

ho(f-6,0)):= f(xq, ... X, X, T - h—l(ela]),
where for h; € K* such that h - x; = hyx;, h - §; = h:'6; and h - 9; = h;0;. Then for h,h’ € G, define
opy:= (M, (exp(n,)(8;)) - exp(ny) <9,h, ) 6,,)
which is GIW -coefficient of b’ " (exp(nh)(elh )) - exp(nh,) (QIM ) Let
7S —>S/(y; — hxy, ..., y, — hx,)

be the “h-twisted” quotient map for h € H. Then

Gh,h,: = Tpy (Eh’h,>
induces an element of ]ac(Whh'), and is the structure constant of &,,,&,, i.e.

She & = oS-

We present relevant multiplications inside three orbifold Jacobian algebras from elliptic curves.

3.1 (C/(Z + e¥"1/37), Z,)
The mirror superpotential is given by
W= ¢+ y* +2°) —wxyz € Alx, y, z]

and Z; = {1, y, y?} acts on A[x, y, z] by

27i/3 27i/3

Y, y-Z= eZ;ri/3Z_

Y- x=e"x, y-y=e
By I, = {1,2,3} =1, (we let x; = x,X, =Y, X3 = 2z) we deduce that £, and & . are Zs-invariant, hence are
elements of Jac(W, Z,).

To calculate &, « £,2, let us first compute exp(z ,)(6,6,05) as follows. (Let p = e27i/3 for simplicity.)

Wi, =Wx.y.2), WE, =0 +y* +2°) = pPyxyz,
Wé{z = ¢ + Y2 + 2°) — pyxyz, W(’){B = W(x,y,z),
WY, = 0" +y* +2°) - pryx'yz, WY, = ¢0" +y* +2°) — pyx'yz,
Wi, =0 +y* +2°) —yx'yz, Wi, = ¢ +y°* +2°) - pyx'y'z,
Wi, = ¢ +y° +2%) —yx'y'z, Wi =wx,y,2),
and
MNZ(’){O =W(x,y,z), W({l = ¢ + y* + 2°) — pPyxyz,
Wé{z = (3 + ¥} + 2°) — pyxyz, Wé% = W(x,y,2),

X — X — Wt — 3 3 X — WX — 43
Wi, =wi,= W1,3 = ¢y’ +2°), Wy, =Wy, = ¢z,
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Wy, =0.
Plugging W;{ ;and Wf ,into (3.3) and (3.4), we have
gh=o —p*x), gh=-pwz, gi=-wy,
gz); = ¢(y, - pZy)’ gég = _WX/’ g;; = (JS(Z, - pZZ),

x _ PYZ x _ Yy X _
LT, f13_1_p’ 2z =0

By definitions (3.5) and (3.6),

exp(r7,)(0,6,63) = ZZfI]HIa]
10 ]

+ (&S5 — 8 fis + 8515 )01 + (=85 [y + 8515 ) 0y + 853115 05
+ gﬁgz)égfg@s@zal

= 2 2 fi16:9

I#5 ]

_ vy =)+ o™Xz, | ppw(Z'z— p’7)
1-p 1-p

+ ¢ = PP = pEy)Z = p*2)050,0,
and

7[)(;(2()(1 exp(”;()(eleze?»)) = ){i exp(r];()(910293)|x’=x,y’=y,z'=z

_ 2
=X ZZerlaﬂx':x,y/:y,z':z
I#0 ]

_dw(pP =Dy +yixz
1-p
+ 3¢3(p* — p)xyz - 3;0,0;.

w1 — p)z? 2,

o0
b+ 1-p

We do not have to compute ;> 109, explicitly, because it does not contribute to EL > Which is the
coefficientof 6, , = 6, = 6y.
Xx

The same computations as above gives exp(# v )(6,6,0,) as follows.

2 2 2
exp(n,2)(6:6,05) = »° " f,0,0; + 0,6,0; — f£ 65+ £ 6, — £ 6;

I j#0
2
Z
= 2 2 fiy0i9; + 010,05 — L Y705+ ¥ 0,

This time, we do not have to compute ;> 720fy7010; explicitly because it does not contribute to E}Ms. We
conclude that

3 2(n2 — 2(p2 —
o, .= <3¢3( - >Xyz_ Py (g Dy ¢w (§ D 37

3.2 (C/(Z+i2),2Z,)
The mirror superpotential is given by

W = —qxyz + ¢*x* + a(y* + z*) + by*z* € Alx, y, 7]
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and Z, = {1, y, ¥% %} acts on Alx, y, z] by
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Y X=—=X, y-y=1y, y-z=1z

Byl, = {1,2,3} =1 r (we let x; = x, X, =y, X3 = z) we deduce that & p and z‘;)(g are Z,-invariant, hence are

elements of Jac(W, Z,).
As above we compute exp(y,)(6,60,05) from

W =W y,2),
Wg’z = ¢5x* — qixyz + ay* + az* — by’z%,
Wi =" + gX'yz + ay* + az' + by’2’,

W, = ¢*X* — X'yz + ay* + az* + by*7%,

W;{g — qﬁxlz _ qx’y’z + ay’4 + az4 + bylzzz,

and

W —
Wi, =W,y,2),

MNZ({Z = ¢°x* — qixyz + ay* + az* — by’7z%,

Wi, = ay* +az* + by’Z,
Wi, = ay* +az' + by’7,
WX —

Wi, =0.

Plugging ij ;and Wj.f ,into (3.3) and (3.4), we have

VI_/'(’)‘Y1 = ¢"x* + qxyz + ay* + az* + by*Z*,
Wi, =W(xy,2),

I/I_/f2 = ¢°x"? — qixyz + ay* + az* — by*z%,
/222,

I/I_/{2 = ¢°x"* — qix'y'z + ay™* + az* — by

Wi =wK,y,2),

W{{l = ¢"x* + qxyz + ay* + az* + by*Z*,
Wi, =Wx,y,2),
WY, = ay* + az' - by’7,

WX — X — a4
W2’2—W2’3—az ’

gh=q", gt=-qiz, gi=-q.
gh=ay + ) +iy) = bz, gh=—qX +by +y)z+iz), gf=alZ +2)(Z +iz)+by”,

r__qiz

12 2’

By definitions (3.5) and (3.6),

exp(#,)(6,6,65) = ZZfljglaj
I ]

- 7 —
37 90 Jn

—ibyz.

+(81S5 — 8uSs + 84S0 )+ (=8 s + 853/ )9 + 85311 95

+ gﬁgfzgfga3aza1

= 2 2 fi1619

I#5 ]

— ¢®biyzo, + %(qbyz2 —qa(y’ + Y)Y + iy)y + (—=gx’ + b(Y' + y)(z + i2))qiz)0,

+(aZ +i2)(Z +2)+by?) - %ag

+¢8aly + )Y +iy) — bzA)(a(Z + 2)(Z + iz) + by'™®)0,0,0;,

and
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7, (X5 exp(n,)(0:0,05)) = 1 exp(n,)0,0,05) ]y =y =
= ){i ZZf}jglaﬂx’:x,y’:y,z’:z

#4 ]

+ q°biyzo, + (—qbyz* — 2i(i + Dqay® + ¢*ixz — 2(i + 1)qbyz?) %02
ihv2
+ (—qa(i +1)2° - %)iag

+ ¢°((2i — 2)ay* — bz*)((2i — 2)az* — by*)050,0;.

We do not have to compute ;> 1709, explicitly, because it does not contribute to 51, ¢ Which is the
coefficientof 6, . =6, = 0y.
XX

The same computations as above gives exp(# 13)(019203) as follows.

exp(n,:)(010,0) = . Y f1,0,0, + 0,0,0, — f1 05+ f1 0, — f1; 6,
I J#0

= 2 2 fifi0; +6:0,0 + %93 + %92 — biyz6,.
I j#0

This time, we do not have to compute ) ;> 720f77010; explicitly because it does not contribute to Ew(s. We

conclude that \ ) ) .
o, o= DV, (q ai+1) —4q5i(i+1)ab>y4+ Fai+1)z

0Hx 4 2 2
(3.8)

2h(i_
n <2q6b2 — 8gati— q b(l2 1) >yzzz'

3.3 (C/(Z + e¥"/37),Zy)

The mirror superpotential is given by
W = —qxyz + ¢*x* + a,y® + a,2% + a,y*2* + a,yz* € Alx, y, 2]

and Zg = {1, y, ¥% 3, x* x°} acts on Alx, y, z] by

27i/3

Y X=—X, y-y=e ,){‘Z:e”iﬁl.

By I, ={1,2,3} =1, we deduce that §, and ¢ s are Zg-invariant, so they are elements of Jac(W, Z). Let { =
e/3 for simplicity. To compute &, » £ 5, we need

WE = W(x.y,2),

W, = ¢ + qxyz + a,y’ + 0,2° + a3y’ + a,y2*,

WE, = ¢ = {puz+ ay* + a,2° + FPay’2” + a,y2,
W({S =W, y,z2),

Wfl =¢x* + qX'yz + ay’ + ,2° + a3y 2* + a,y7%,

W{z =¢’x"? - Lq)X’yz + ay + 4,28 + PagyP 7t + (tayyzt,
WfB = qGX/z —qx'yz + a1y3 + azZ6 + ‘13)’222 + a4)’z4,

Wé‘z =% - L)X’y z + ay? + a,28 + (Pagy? 2 + Clayy' 2
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I/l_fé"3 =X+ 'Yz + ay? + a,2° + a3y 7 + a,y' 7,
Wﬁa =W,y z),
and
I/Tlg’o = W(x,y,2),
ﬁ/é{ L= O+ qyz+ ay + a2’ + a;y° 7 + ayzt,
Wé{z = ¢"x* — {qxyz + ay® + 4,25 + $PazyP 2 + (tayyzt,
W(’){s = W(x,y,2),
I/\N/'f1 = aq,y® + a,2° + a;y°7* + a,y7*,
W{z = aq,y® + a,2° + {a;y* 2 + $ta,yzt,
I/T/f3 = aq,y® + a,2° + a;y°7* + a,y7°,
ﬁ/{z = W{B = az*,
Wi, =0.
As above, we calculate the following:
gh=40 gy=-Cla gi=-w.
gh=ay + N+, gf=—qx +ay + )z +(2) +a,\3i2,
gk =7 =) - o) - )@ - o)+ ayy? + ay (2P + 22+ 2+ (2 + 20z + 2P,

f)(:_@ Y Z:—agyZ—Ca4z3
12 2 4 13 2’ 23 1_C

and
77”5()(1 exp(n)()(010203)) = )(i ZZfI]HIajlx’:x,y’:y,z’:Z

I ]

6 GYyzZ+{a,z
1-¢

+ ((—al\/giy - Czagzz>% + (qx +a5V/3iyz + a4\/§iz3) ng>€202

+q 9,

_ 4 4.2 4 2 @
+ (—6ayz* + a;*y* + a,(3¢* —1)yz?) 503

+ ¢*(—6ayz* + a;¢*y* + a,(3¢* - 1)yzz)<a1 V3iy + C2a322>030261.

Also, we have

gz a,yz + ¢ a,z8
exp(1,:)(610,05) = . Y f1,6,0; + 6,0,05 — ¢ 2‘7 0, + %yez + 73y1 _é;_l 2 g,
T J#0

In conclusion,
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17272
O-/Y P = <_al\/—3lq§ + q6a1a3§4\/§i>y3
’ 4
2
+ <q6ai + 30 %He ZazC — 6q6C2a2a3>26

— \/3)\db _ 2
<(9 V3 a,a, 4 (1t fl)q a, _ 6q6ala2\/§i>yz4

2

+

3
+ <2q6a§ + ¢®a,a,(3¢* - 1)\/§i)yzz2 _ Xz Zyz.

4 Main results

A Frobenius algebra is a unital associative algebra over K together with a nondegenerate bilinear form (-, -)
such that (xy, z) = (x,yz). Observe that given a nondegenerate pairing (-, -) on a Frobenius algebra, the rescal-
ing (c-, ¢-) for ¢ # 0 can be still used to define a new Frobenius algebra with the same ring structure. Given two
Frobenius algebras (4, (, ),) and (B, {, )3), f: A — B is an isomorphism of Frobenius algebras iff it is a ring iso-
morphism and an isometry with respect to nondegenerate pairings. Given unities1, € Aand1; € B, lettr,:A —
K and trg: B — K be maps (a.k.a. traces) given by (-,1,), and (-, 13) respectively. Then f: A — B is an isometry
if and only if it preserves traces.

For a compact symplectic manifold, the quantum cup product together with the Poincaré pairing (-, -)pp
gives rise to a Frobenius algebra structure on QH*(X). For an isolated singularity W € K?[x;, ..., x,], we equip
Jac(W) with the residue pairing

n(n-1 cdx A - AdX
<f,g>res=(—1>‘z’Reslfg AT A ]

O W, ....0, W

As pointed out in [8], the Kodaira-Spencer map does not intertwine pairings (-, -)pp and (-, -) s in general. Exam-
ining the Cardy condition, we are led to consider a modification of the residue pairing by the constant given by
ratio of Floer volume form and the usual volume form on the reference Lagrangian L. In Section 2.2 we denoted
such ratios by ¢; .

Theorem 4.1. Let X be an elliptic orbisphere and W € AlXx, y, z] be the LG mirror to X. Let A = (QH*(X), (-, *)pp)
and B = (Jac(W), (¢, -, C; -)1es) be Frobenius algebras where ¢, is the rescaling constant of Seidel Lagrangian L C X.
Then

_ det Hess(W)

c - ts(pty) = (C%))

where yu = dim Jac(W). As a result, €s: A — B is an isomorphism of Frobenius algebras, i.e. it preserves traces as
follows:

(Pty. Ix)pp = (cp - €5(Pty), €p - 1y

Provided (4.1), the second statement follows immediately from a classical result on the residue over an
isolated singularity (the author thanks Cheol-Hyun Cho for pointing out this fact).

Theorem 4.2 (Section 17, [20]).

det Hess(W) - dx; A - - - Adx,
Res = U.
O W,....0, W
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We can easily compare £s: QH*(X) — Jac(W) and €s,,,: H*(E) — Jac(W, G) as follows. Basically, holomor-
phic discs employed in the computation of €5, (pt;) are same as those used for £s(pty), but the discs which
are related by G-action on E are identified as the same disc on X. Thus, |G| different discs which are used for
€s,.,,(pt) project to a single disc for £s(pty). We conclude that

1

Gl Es(pty).

Eﬁorb(ptI:‘) =

The rest of the paper is thus devoted to prove

__det Hess(W)
Gl -’

where G = Z3, Z, or Zg acts on E, with W given accordingly with respect to G-equivariant Seidel Lagrangian.

an_ : Esorb(ptlf) =

4.1 Z;-case
Recall from (2.5) that (with p = e71/3)
¢ - 85, (PDIC,]) = —p&, — p* 2, € - €50 (PDIC,]) = —p?, — pE 2,
hence by (3.7)
¢ €5, (pty) = €5, (PDIC,]) o €51, (PDIC,])
= (PP =), o &y

3 20,2 _ 202 _
=(p2—ﬂ)'<<3¢3(p2—p)—q;>Xyz—¢u/(p 1)y3_¢ll/(ﬂ 1)Zs>'

3 3

Observe that we used supercommutativity of the product for the second identity. The Jacobian ideal 0W is given
by
OW = (3¢x* — wyz,3¢py* — wxz,3¢pz* — wxy),

soy =2 = % modulo oW, and

2 5, y*
¢ - B5o(pty) = (—9(1) + 7>xyz.

On the other hand,
6px —wx —yy
Hess(W)=|-wz 6¢y —wyx|,
—yy -—-wx 6¢z
hence det Hess(W) = (216¢° — 8y3)xyz in Jac(W). By s = 8 and |G| = 3, we easily verify (4.1).

4.2 7,-case

From (2.6) we have
Ci . Esorb(ptE) = _ié}( L3 513 = _ia)(,f’

where o, s as (3.8). Modulo OW = (2¢°x — qyz, 4ay* — qxz + 2byz*, 4az> — qxy + 2by’z), we have relations
xyz =2q°x%, 7' =4q¢"%%, 2ay* = 2az* = (¢° — 4bq"°)x?,

hence in Jac(W),

P8
—io, = —i<“§ — 4ig"?b + 8ig'b? — 32iq16a2)x2
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8
— <qz —4q12b+8q16b2 32q16 2>

By
2q° —qz —qy
Hess(W) =|—qz 12ay*+2bz*> —qx + 4byz
—qy —qx+4byz 12az* + 2by*
we have

det Hess(W)
= (48¢°ab — 2¢*a)(y* + z*) — 2¢®x* + (288¢°a® — 244°D* + 4¢*b)y*z* + (16q¢’b — 2¢°)xyz
= (—18¢® + 144¢"b — 288¢'® + 1152¢™%a?)x>.

This time, |G| = 4 and u = 9, and it is straightforward that (4.1) holds.

4.3 Zg4-case
From (2.7) we have
¢} - E5qun(Pty) = \f‘ &yl = —ﬁ
We also compute
det Hess(W) = (120¢°a,a; — 32¢°@ — 30¢*a,)z° + (360¢°a,a, — 16q°asa, — 4q*a,)yz*

+ (144¢°aya, — 244°a% + 4q°a;) y*2* + 16q axz* + (24¢°a,a; — 6q°a,) y?
+ (16q’a; — 2¢°)xyz — 2¢°x*

The relations modulo 0W needed for our purpose are as follows:

—8q"a;@% — 16q"aa; + 32" a,a% — 24" ayaya, + 24°°d% + 2¢°a, 2
4q*az + 3a, — 12q*a,a;

xyz =20°x%, a)y®=

. ¢*(—8q*a; — 48¢°a,a, + 16¢°a% + 1) 2. yrt= 24" (36q*aya, — 4q*asa, + a4)X2.
4q*a: + 3a, — 12q*a,a, 4q*az + 3a, — 12q*a,a,

’

The result (4.1) follows from |G| = 6 and 4 = 10. We omit the tedious computation which involves substitutions
of above relations to det Hess(W) and 5, ,s

4.4 Nontrivial identitites of formal power series

Recall from [7] that 5
_1,. 0w
ts(pty) = 2q- 5 - R

where X is an orbisphere P}z be with area 1 (If the area is A, then we take é instead of %). Hence we also have

1 ow

Escnrb(ptls) 8|G|q aq

We computed €5, (pt;) in another way, namely by orbifold Jacobian algebra structure. Let Wss, Wy, and W,
be mirror superpotentials from Seidel Lagrangians Lygs C P2, ., Lyyy C Pé’ 40 @0d Loy C P%,s,e respectively.

Let us consider IP% 3.3 Recall that

333

Wags = ¢OC + y* + 2°) — wxyz
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with its coefficients are
b= Z( 1)k+1<k+ >q(6k+3)2, W= Z(_l)k+l(6k+1)q(6k+l)z.
kez kez

We also have
_ Z vk (6k+1)?
Cly = (-D%q :

kez
By the following
3 o oy o %
333 333 4 ﬂ a¢ all/ 3
24 1 < O +y 420 - qu> 241 <¢0q aq)yz_< Wt )Xyz

we derive an identity of two arithmetics of formal power series

Ay (wop ow P
g (G- = ()

Note that the identity was first proved in [8] using theory of modular forms, and now we have a new proof
without appealing to number theory.
The same argument can be applied to other two cases. For W,,,, we have

— <qz —4q12b+8q16b2 32q16 2>

which implies

¢ 10a 10 100b ¢ 12 16,2 1662,
1oa (o4 4g02%) =T 4 2
32<q+ -(q° — 4bq™®) + 4q 2 3 q°b+8q°b” — 32q"°a

where a and b are formal power series given by

= Z(2r+ Do+ 4 Z (27 + 25 + 2)qlSr+DEs -4

r>0 s>r>0

b= Z (—(4r + 45 — 2)q'®—V2=4 4 (or 4 23)q64r5—4),

r>1,s>1

We note that ¢, = %q, so its square is q%. For W, we can obtain a similar type of identity which is omitted.
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