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Abstract: For a given graph G, a subset S of E(G) is an edge general position set of G if no triple of S is contained

in a common shortest path. The cardinality of a largest edge general position set of G is called the edge general

position number ofG, denoted by gpe(G). In the paper, sharp upper and lower bounds of the edge general position

number are obtained among cactus graphs. Moreover, we characterize all graphs that attained these bounds.

Keywords: general position set; edge general position set; cut vertex; cactus graph

MSC 2020: 05C12; 05C35; 05C70

1 Research background

Let G = (V(G), E(G)) be a finite simple graph with vertex set V(G) and edge set E(G). As usual, |V(G)| and |E(G)|

are called the order and the size of G, respectively. If uv ∈ E(G), then we say that u is a neighbor of 𝑣 in G and vice

versa. For a vertex 𝑣 ∈ V(G), set NG(𝑣) = {u ∈ V(G)|uv ∈ E(G)} is regarded as the open neighborhood of 𝑣. The
degree of a vertex 𝑣 ∈ V(G) is dG(𝑣) = |NG(𝑣)|. The general position problem in graph theory is to find a largest

set of vertices S ⊆ V(G), called a gp-set of G, such that no shortest path of G contains three vertices of S, which

was first proposed by Manuel and Klavžar [1]. The general position number (gp-number for short) of G, denoted

by gp(G), is the cardinality of a gp-set of G. In fact, they researched the basic properties and the bounds of gp-

number in some special graphs, meanwhile, they proved that the general position problem is NP-complete. Note

that the classical general position problem is traced back close to the celebrated century-old problem named as

the no-three-in-line problem, first introduced by Dudeney [2] in 1917. Recently, Payne andWood [3] extended the

no-three-in-line problem to the general position subset selection problem in discrete geometry. For progress in

this regard, see [4,5] and references therein.

Now we focus on the general position problem in graph theory. Patkós [6] studied the gp-number of Kneser

graphs, and determined the exact value of gp-number of some special Kneser graphs by using a generalization

of Bollobás’s inequality on intersecting set pair systems. Klavžar et al. [7] and Tian and Xu [8] studied the gp-

number of Cartesian products. Tian et al. [9] determined the gp-numbers of maximal outerplanar graphs. For

further results, see the recent survey on gp-number [10].

The edge general position set of a graph is the edge version of the general position set of a graph, see the

seminal paper [11]. We now introduce formally its definition as follows. Let G = (V(G), E(G)) be a graph and

S ⊆ E(G). We say that S is an edge general position set if no three edges of S lie on a common shortest path. The
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Figure 1: The two examples of cyclic paths.

subset S is also called a maximum edge general position set if it has the largest cardinality in all edge general

position sets. We also call S a gpe-set of G for short. The edge general position number (gpe-number for short) of

G, denoted by gpe(G), is the cardinality of a gpe-set in G. An edge general position problem is to find a gpe-set

of graphs. And then it should be added that the edge general position set has been recently extended to k-edge

general position sets in [12]. Klavžar and Tan [13] obtained the sharp bounds of gpe-number on Fibonacci and

Lucas Cubes. Note that many researchers concerned the extremal problems of cactus graphs, cf. [14–17]. Hence,

it is interesting to study the gpe-number of cactus graphs. In the paper, we continue the research in this direction.

For convenience, we now introduce some notations. A block of G is a maximal connected subgraph of G

without cut vertex. A connected graph G is called a cactus graph if its any block is either a cycle or an edge. Let

C k

n
be the set of all cactus graphs of order n with k ≥ 1 cycles. Let C k,t

n
be the set of cactus graphs on order n

with k cycles and t leaves, where t ≥ 0 and k ≥ 1.

Let G ∈ C k,t

n
be a graph. A cyclic path is a path connecting two cycles in G such that except two end vertices,

any internal vertex (if it exists) does not belong to any cycle of G. Note that two cyclic paths can overlap, and

internal vertices of a cyclic path do not necessarily have degree 2. As shown in Figure 1, (x, y)-path, (u, 𝑣)-path,

(u,𝑤)-path and (𝑤,𝑣)-path are cyclic paths. We use P(G) to denote the set of cyclic paths of G. Let P and C be

a cyclic path in G and a cycle of G, respectively. For a cut vertex u of G contained in V(C) ∪ V(P), by removing

all edges in E(C) ∪ E(P) incident with u, the component containing u, denoted by Tu, is named as a root tree of G

with root u if Tu does not contain cycles. A root tree of G is a tree with roots on a cycle or a cyclic path. We use

T (G) to denote the set of all root trees of G. Moreover, a vertex𝑤 of a root tree is called a leaf if𝑤 has degree

one and is not the root. Clearly, the number of leaves in T (G) equals t. A vertex 𝑣 ∈ V(G) is called a cut vertex

if removing 𝑣 increases the number of connected components. An inner cut vertex is a vertex of a cycle shared

by another cycle or a cyclic path. Clearly, an inner cut vertex is indeed a cut vertex. We use c(C) to denote the

number of cut vertices of C and p
e
(C) to denote the number of pendant edges of root trees on C such that they

are not shared by other cycles or cyclic paths.

In the paper, sharp upper and lower bounds of gpe-number are obtained among cactus graphs with k cycles

and t pendant leaves. Moreover, we characterize the structures of these graphs that attain the bounds.

2 Edge general position sets of cactus graphs

In the section, we first give some notations which will be useful in showing our main results. We will obtain the

upper bound of gpe-number in C k,t

n
and characterize the graphs attaining the bound. And then, we will show

the lower bounds of gpe-number in cactus graphs, meanwhile, the extremal graphs are obtained completely.

2.1 Notations

2.1.1 An inner cycle and an outer cycle

We now define several types of cycles of G by means of the cut vertices contained in these cycles. A cycle Cl
is an inner cycle if there are at least two subgraphs of G− E(Cl) containing cycles, an outer cycle otherwise. In

particular, an outer cycle with exactly one cut vertex is an end-block.
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Figure 2: A root chain cactus graph.

2.1.2 A chain cactus and a root chain cactus

A chain cactus G is a cactus graph in which all blocks have at most two cut vertices, and each cut vertex is

exactly shared by two blocks. Clearly, a chain graph G has exactly two outer cycles and at most two leaves. We

call a graph G′
a root chain cactus if it is obtained from G by changing at least one outer cycle of G such that

it contains exactly one root tree with two leaves at a vertex other than the inner cut vertex, see Figure 2. The

subgraph of G formed from two outer cycles and the inner cycles and cyclic paths connecting them is called a

subchain cactus of G. A subchain cactus of the chain cactus graph presented in Figure 3 is obtained from it by

removing two leaves.

2.1.3 A cut-path of Cl and Dc(Cl)

Let ui and uj be two vertices of Cl, clearly, Cl can be regarded as consisting of two (ui, uj)-paths. If all cut vertices

lying on Cl belong to one (ui, uj)-path, then the path is referred to as a (ui, uj)-cut-path (or a cut-path for short) and

then denote dc(ui, uj) the number of edges contained in it, e.g., dc(z1, z3) = 4 see Figure 4. In particular, suppose

now that a cycle Cl of G has at least three cut vertices. If there are three cut vertices satisfying the following:

two cut vertices xi and xj form a (xi, xj)-cut-path only containing the third cut vertex xk while it is the root

vertex of a root tree Txk with a leaf, then we name it a (xi, xj)-root-cut-path (or a root-cut-path for short) and

denote the number of edges on the path by dr(xi, xj). And then the vertex u is referred to as a bad vertex if either

dr(xi, x j ) ≥
l

2
+ 1 for even l or dr(xi, x j ) ≥ ⌊

l

2
⌋+ 1 otherwise. As shown in Figure 4, dr(x1, x3) = 4 and x2 is a bad

vertex. Set Dc(Cl ) = minui,u j∈V(Cl )dc(ui, uj ) (Dc for short), e.g., Dc(C
4) = 3, see Figure 4.

2.1.4 A good cycle, a normal cycle and a bad cycle

We now give a classification of cycles in G under the assumption that if Cl is an outer cycle then c(Cl) ≥ 4. We

call the cycle Cl a normal I cycle if Dc is no more than
l

2
− 1 for even l or ⌊

l

2
⌋ for odd l. Conversely, assume now

that Dc ≥
l

2
for even l or Dc ≥ ⌊

l

2
⌋+ 1 for odd l. The cycle Cl is named as either a normal II cycle if there exists a

root-cut-path having a bad vertex or a bad cycle otherwise. For example, C3 is a normal II cycle, see Figure 5.

In particular, suppose next that Cl is an outer cycle with c(Cl) ≤ 3. For c(Cl) = 1, clearly, Cl is an end-block.

Then Cl is either a normal I cycle for even order, or a good cycle otherwise. Assume now that 2 ≤ c(Cl) ≤ 3.

Figure 3: A chain cactus graph.

Figure 4: Illustrative examples of cut-path, root cut-path and Dc .
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Figure 5: Illustrative examples of different kinds of cycles.

Let the order of Cl be even. The cycle Cl is a normal I cyclewith the conditionDc ≤
l

2
− 1. Under the condition

Dc ≥
l

2
+ 1, Cl is a normal II cycle if it contains a root-cut-path with a bad vertex or a bad cycle otherwise. For the

case Dc = l

2
and c(Cl) = 3, we call that Cl is a normal II cycle if there exists a root-cut-path with a bad vertex, a

bad cycle otherwise, such as, a normal II cycle C1 and a bad cycle C4 of G4 shown in Figure 5. For the case Dc = l

2

and c(Cl) = 2, we call Cl either a bad cycle if pe(Cl) ≥ 2 or a normal II cycle otherwise. We can check that C6 of G4
is a bad cycle, see Figure 5.

Suppose the order of Cl is odd. The cycle Cl is a normal I cycle if Dc ≤ ⌊
l

2
⌋. Moreover, Cl with Dc ≥ ⌊

l

2
⌋+ 1

and c(Cl) = 3 is a normal II cycle if a root-cut-path of Cl has a bad vertex, a bad cycle otherwise.

2.2 The upper bounds of the edge general position number

From [18], we know the following proposition.

Proposition 2.1. gpe(Cn) = n if n ∈ {3, 4, 5}, and gpe(Cn) = 4 otherwise.

Observation 2.1. For arbitrary graph G ∈ C k,t

n
with k ≥ 2, let T (G) be the set of root trees with t leaves in G,

then there exists a gpe-set S such that |S ∩ E(T (G))| ≤ t.

Lemma 2.1. Let G ∈ C k,t

n
be a graphwith k ≥ 2 andP(G) be the set of cyclic paths of G. Then there exists a gpe-set

S such that |S ∩ E(P(G))| = 0.

Proof. Suppose G ∈ C k,t

n
is a cactus graph. Assume that S is a gpe-set of G having edges from outer cycles and

T (G) as more as possible. Let P(G) be the set of cyclic paths of G and an edge e ∈ E(P(G)). By contradiction,

assume that S is a gpe-set of Gwith e ∈ S. LetH1 andH2 be two components of G− {e}. Observe thatHi contains

at least one outer cycle from the definition of a cyclic path, and every shortest path from V(H1) to V(H2) goes

through e. In addition, if C is an end-block of G, then we observe that either |S ∩ E(C)| ≤ 3 for odd order of C

or |S ∩ E(C)| ≤ 2 for even order of C. Based on the types of outer cycles, we will take three cases to proceed the

proof.

Case 1 H1 and H2 contain end-blocks.

Let Ci be an end-block of Hi and ui be the unique cut vertex for i = 1, 2. We first consider that the lengths

of C1 and C2 have the same parity. If |V(C1)| and |V(C2)| are odd, then they are good cycles. From the maximum

of S and e ∈ S, we deduce that one of |S ∩ E(C1)| and |S ∩ E(C2)| equals 1 and the other equals 3. Without loss of

generality, assume that |S ∩ E(C1)| = 1 and |S ∩ E(C2)| = 3. Let S1 = (S − {e}) ∪ {e1, e2}, where e1 and e2 are two
edges incident with u1 in C1, as shown in Figure 6. It follows that S1 is a new edge general position set of G larger

Figure 6: Used to illustrate Case 1, both C1 and C2 are odd cycles.
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Figure 7: Used to illustrate Case 1, both C1 and C2 are even cycles.

than S, a contradiction. If |V(C1)| and |V(C2)| are even, then they are normal I cycles. By the choice of S, we obtain

that one of |S ∩ E(C1)| and |S ∩ E(C2)| equals 0 and the other equals 2. Without loss of generality, assume that

|S ∩ E(C1)| = 0 and |S ∩ E(C2)| = 2. Let S2 = (S − {e}) ∪ {e1, e2}, where e1 and e2 are two edges incident with u1
in C1, as shown in Figure 7. Obviously, |S2| > |S|. In addition, observe that S2 is also an edge general position set

of G, contradicting our assumption. We now assume that the lengths of C1 and C2 have different parity. Using the

similar way of the first case, we also have done. So we omit the process here.

Case 2 H1 and H2 contain no end-blocks.

Assume that C′
1
and C′

2
are two outer cycles of H1 and H2, respectively. Let ui be an inner cut vertex of C

′
i
for

i = 1, 2. Since they are not end-blocks, C′
i
contains at least one root of some root tree for i = 1, 2. Let Li be the set

of pendant edges belonging to root trees on Ci for i = 1, 2. From the maximum of S and e ∈ S, we conclude that

at least one of S ∩ L1 = ∅ and S ∩ L2 = ∅ is valid.
We now consider that S ∩ L1 = ∅ and S ∩ L2 = ∅ hold simultaneously. So we deduce that |S ∩ E

(
C′
i

)
| ∈

{2, 3} according to the parity of the lengths of these two cycles. In particular, if |S ∩ E
(
C′
1

)
| = |S ∩ E

(
C′
2

)
| = 3,

then we will find three edges of S lying a shortest path, a contradiction. If there is one cycle, say C′
1
, such that

|S ∩ E
(
C′
1

)
| = 2, thenwededuce thatC′

1
has exactly two cut verticeswithDc

(
C′
1

)
= |C′

1
|

2
. So there is a contradiction

again. We thus assume that one of S ∩ L1 = ∅ and S ∩ L2 = ∅ is correct, say S ∩ L1 = ∅ and S ∩ L2 ≠ ∅. Hence,
|S ∩ E

(
C′
1

)
| ∈ {2, 3} and |S ∩ E(L2)| ≥ 2. Using the similar argument of the first case, we obtain that S contains

three edges lying on a shortest path through e of G. We thus get a contradiction.

Case 3 One of H1 and H2 contains end-blocks.

Assume thatH1 contains an end-block, denoted byC3. Let u3 be the inner cut vertex inC3. ThenC3 is a normal

I cycle for even order or a good cycle otherwise. Let C4 be an outer cycle inH2 and L3 be the set of pendant edges

belonging to root trees of C4. Then one of S ∩ L3 = ∅ and S ∩ L3 ≠ ∅ holds. For each case, the choice of S and

e ∈ S imply that |S ∩ C3| ∈ {0, 1}. Let S3 = (S − {e}) ∪ {e31, e32}with |S3| > |S|, where e31 and e32 incident with

u3 of C3. It follows that S3 is also an edge general position set of G, a contradiction.

Therefore, we finish the proof. □

Lemma 2.2. Suppose G ∈ C k,t

n
with k ≥ 2 cycles. Let C0 be a cycle of G. Then there exists a gpe-set S such that

|E(C0) ∩ S| ≤ 3 and |E(C0) ∩ S| ∈ {0, 2, 3}. In addition, the following assertions hold.

(i) |E(C0) ∩ S| = 3 if and only if C0 is a good cycle.

(ii) |E(C0) ∩ S| = 2 if and only if C0 is a normal I cycle or a normal II cycle.

(iii) |E(C0) ∩ S| = 0 if and only if C0 is a bad cycle.

Proof. Let G be a cactus graph with k ≥ 2 cycles and t leaves. Let S be a gpe-set containing pendant edges and

these edges from outer cycles as more as possible. By means of Lemma 2.1, the elements of S are derived from

cycles and root trees of G. Assume that C0 is a cycle of G. We first prove the following claim. □

Claim 1. |S ∩ E(C0)| ≤ 3.

Proof. By contradiction, suppose |S ∩ E(C0)| ≥ 4. Together with Proposition 2.1, we conclude that |S| = |S ∩
E(C0)| ∈ {4, 5}.

If C0 is an inner cycle, then we deduce that G is a chain cactus by the maximum of S. Assume that C1 and

C2 are two outer cycles of G with two inner cut vertices u1 and u2, respectively. In addition, by the choice of S,
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Figure 8: Used to illustrate Case 1.

|S ∩ E(Ci)| = 0 for i = 1, 2. Clearly, C0 is an even cycle. Otherwise, Dc(C0 ) ≤ ⌊
|C0|

2
⌋. Then by choosing the two end

edges of cut-path of C0 with length |C0|− Dc(C0), say e0, e
′
0
, we get a new edge set S′ from S by removing all

edges from C0 and adding two edges e0, e
′
0
and four edges from C1 and C2 respectively incident with u1 and u2.

Evidently, S′ is an edge general position set of G with |S′| > |S|, we get a contradiction with the maximum of S.

Hence, |S| = 4, which infers that C1 and C2 are even cycles. We thus deduce that Dc(C0 ) = |C0|

2
. For each Ci, if Ci

has two cut vertices, then Dc(Ci ) = |Ci|

2
, which contradicts the choice of S.

If C0 is an outer cycle with the inner cut vertex u0, then by the choice of S we have that G is a chain cactus

graph. In other words, all inner cycles are bad. Let C′
0
be another outer cycle with an inner cut vertex u′

0
. But we

find that |S ∩ E
(
C′
0

)
| = 0, which contradicts the choice of S.

Hence, |S ∩ E(C0)| ≤ 3 is true. □

We now divide the following cases to finish the remaining proof.

Case 1 C0 is an inner cycle of G.

In the case, we know that k ≥ 3. Note that, for each inner cycle C0, there are two outer cycles C1 and C2
of G for which C0 is lying on its unique subchain cactus between C1 and C2. Let u1 and u2 be the two inner cut

vertices of C0 belonging to the subchain cactus. By the maximum of S, we can claim that |S ∩ E(C0)| ≤ 2. Assume

to the contrary that |S ∩ E(C0)| ≥ 3. Recall that |S ∩ E(C0)| ≤ 3. So |S ∩ E(C0)| = 3. Set {e1, e2, e3} ⊆ S ∩ E(C0). So

there exists an edge, say e1, such that it lies on a (u1, u2)-path with length no more than
|C0|

2
− 1 for even order

(or
|C0|−1

2
for odd order). In addition, the choice of S implies that one of |S ∩ E(C1)| and |S ∩ E(C2)| equals zero,

say |S ∩ E(C2)| = 0. Set S′ = (S − e1) ∪ {e4, e5}, where e4, e5 ∈ E(C2) with the same distance to e1, as shown in

Figure 8. Evidently, S′ is an edge general position set with larger size than that of S, a contradiction.

Observe that, if Dc(C0 ) ≤
|C0|

2
− 1 for even order (or

|C0|−1
2

for odd order), we obtain that |S ∩ E(C0)| = 2.

In fact, there is a (𝑤1,𝑤2)-cut-path with length Dc(C0) in C0. Conversely, for another (𝑤1,𝑤2)-path of C0, we can

choose its two end edges as the elements of S. Thus, C0 is a normal I cycle. Furthermore, assume thatDc(C0 ) ≥
|C0|

2

for even order (or
|C0|−1

2
+ 1 for odd order). If there is a bad vertex u for which a root-cut-path containing u has

length greater than
|C0|

2
+ 1 for even order (or

|C0|−1
2

+ 1 for odd order). Then |S ∩ E(C0)| = 2 and C0 is a normal

II cycle. Otherwise, |S ∩ E(C0)| = 0 and C0 is a bad cycle. Hence, in the case, |E(C0) ∩ S| ≠ 1.

Case 2 C0 is an outer cycle of G.

Note that c(C0) ≥ 1. Assume now that c(C0) = 1, which implies that C0 is an end-block. The choice of S results

in either |S ∩ E(C0)| = 3 for odd order or |S ∩ E(C0)| = 2 for even order.

We now assume that c(C0) ≥ 4. According to the values of Dc(C0), we conclude that |S ∩ E(C0)| = 2 with

Dc(C0 ) ≤
|C0|

2
− 1 for even order (or

|C0|−1
2

for odd order). Thus, C0 is a normal I cycle. Suppose that Dc(C0 ) ≥
|C0|

2

for even order (or
|C0|−1

2
+ 1 for odd order). If there is a bad vertex u such that a root-cut-path containing u has the

length no less than
|C0|

2
+ 1 for even order (or

|C0|−1
2

+ 1 for odd order). Then |S ∩ E(C0)| = 2 and C0 is a normal

II cycle. Otherwise, |S ∩ E(C0)| = 0 and C0 is a bad cycle.

Assume next that c(C0) = 3. By the values of Dc(C0), we deduce that |S ∩ E(C0)| = 2 with Dc(C0 ) ≤
|C0|

2
− 1

for even order (or
|C0|−1

2
for odd order) and C0 is a normal I cycle. Suppose now that Dc(C0 ) ≥

|C0|

2
for even order

(or
|C0|−1

2
+ 1 for odd order). If there is a root-cut-path with a bad vertex, then |S ∩ E(C0)| = 2 and C0 is a normal

II cycle. Otherwise, |S ∩ E(C0)| = 0 by the choice of S, so C0 is a bad cycle.

We now consider the case c(C0) = 2. It is clear that Dc(C0 ) ≤
|C0|

2
for even order (or |C0|−1

2
for odd order). If

C0 is an odd cycle, then we deduce that |S ∩ E(C0)| = 2 and C0 is a normal I cycle, as shown in Figure 9. Assume

that C0 is an even cycle. We can verify that, if Dc(C0 ) ≤
|C0|

2
− 1, then |S ∩ E(C0)| = 2 and C0 is a normal I cycle,
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Figure 9: Used to illustrate Case 2 with c(C0) = 2 and C0 is a normal I cycle.

Figure 10: Used to illustrate Case 2 with c(C0) = 2 and C0 is a bad cycle.

Figure 11: Used to illustrate Case 2 with c(C0) = 2 and C0 is a normal II cycle.

as shown in Figure 9. Otherwise Dc(C0 ) ≥
|C0|

2
. We deduce that C0 is either a normal II cycle with |S ∩ E(C0)| = 2

and p
e
(C0) = 1 or a bad cycle with |S ∩ E(C0)| = 0 and p

e
(C0) ≥ 2, as shown in Figures 10 and 11. Clearly, in the

case, |E(C0) ∩ S| ≠ 1.

Therefore, we have done as required. □
Based on the above conclusions, we deduce the following result.

Theorem 2.1. For k ≥ 2, let G ∈ C k,t

n
be a graph with r odd cycles and k − r even cycles. Then gpe(G) ≤ 2(k − r)+

3r + t with equality only if all odd cycles are good and all even cycles are normal I.

Proof. Suppose thatG ∈ C k,t

n
is a graphwith r odd cycles and k − r even cycles and let S be a gpe-set ofG contain-

ing asmany pendant edges and edges from end-blocks as possible. Let Cl be a cycle ofGwith length l. Combining

Lemmas 2.1, 2.2 and Observation 2.1, we obtain that

|S| ≤ 2(k − r)+ 3r + t.

Hence, we next show the second part of the conclusion. Assume now that G is a cactus graph such that

gpe(G) = |S| = 2(k − r)+ 3r + t. FromLemma 2.2, we have that |S ∩ E(Cl)| ≤ 3, and then, |S ∩ E(Cl)| ≤ 2 for even

l. We first claim that each odd cycle Cl is an end-block. If it is not an end-block, then |S ∩ E(Cl)| ≤ 2 by Lemma 2.2.

So we get that.

|S| = |S ∩ E(Cl )|+ |S ∩ (E(G)− E(Cl ))|

≤ 2+ |S ∩ (E(G)− E(Cl ))|

≤ 2+ 2(k − r)+ 3(r − 1)+ t

< 2(k − r)+ 3r + t,

a contradiction. We next claim that each even cycle Cl is a normal I cycle. Contrary to our claim, suppose that

Cl is not normal I. Hence, Cl is either a normal II cycle or a bad cycle. From by Lemma 2.2, we deduce that

either |S| ≤≤ 2+ 2(k − r)+ 3(r − 1)+ t − 1 < 2(k − r)+ 3r + t for the first case, or |S| ≤≤ 0+ 2(k − r)+ 3(r −
1)+ t < 2(k − r)+ 3r + t otherwise. We get a contradiction.

Combining the above two cases, |S| = 2(k − r)+ 3r + t implies that G contains r good odd cycle and k − r

even normal I cycle. In other words, all root trees are lying on cut-paths with length less than a half of the order

of each even cycle. Consequently, |S ∩ E(T (G))| = t. Therefore, we verify the conclusion as claimed. □
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The following two results hold directly from Theorem 2.1.

Corollary 2.2. Let G ∈ C k,t

n
be a graph with k ≥ 2, then gpe(G) ≤ 3k + t with equality only if G has k good odd

cycles.

Corollary 2.3. Suppose that G ∈ C k,t

n
is a graph with k (≥ 2) even cycles. We have gpe(G) ≤ 2k + t with equality

if and only if all even cycles of G are normal I.

Theorem 2.4. Let G ∈ C k,t

n
be a graph with k ≥ 1, then

gp
e(G) ≤ max{5, 3k + t},

where equality holds if and only if all cycles of G are good odd cycles.

Proof. Suppose thatG ∈ C k,t

n
is a graphwith k ≥ 1 and t ≥ 0. Let Cl be a cycle ofGwith length l. Wewill consider

three cases to proceed with the proof.

Case 1 k = 1 and t ≤ 1.

In fact,G is a unicyclic graphwith a unique cycle Cl. Clearly, 3k + t ≤ 4 < 5. It is easy to check that gpe(G) ≤ 5

with equality holds if and only if G ≅ C5. At the time, C5 is a good odd cycle of G.

Case 2 k = 1 and t ≥ 2.

Note that Cl is a unique cycle of G. In addition, 5 ≤ 3k + t. By direct checking, we obtain that gpe(G) ≤ 3k + t

with equality if and only if the length of Cl is odd and Cl has a unique root tree with t leaves. So Cl is a good odd

cycle.

Case 3 k ≥ 2.

Observe that 5 < 3k + t. Meanwhile, from Corollary 2.2, we obtain gpe(G) ≤ 3k + t with equality only if G

contains k good odd cycles. □

2.3 The lower bounds of the edge general position number

Note that if a chain cactus G has two even end-blocks and its every inner cycle is bad and has two cut vertices,

then gpe(G) = 4, as an example G ≅ Gk see Figure 12. The graph Gk also appeared in [18, Figure 2]. Observe that

a cactus graph Gwith at least two outer cycles has gpe(G) ≥ 4. In addition, if G has t leaves, then there is an edge

general position set ofG consisting of t pendant edges. It follows that gpe(G) ≥ t. Observe that gpe(Gk,t) = t, where

Gk,t contains k − 2 triangles, 2 C4 and t leaves such that each cycle has at least two leaves, as shown in Figure 12.

Are they the lower bounds of the cactus graphs? In the following subsection, we will confirm the observations

and obtain two sharp lower bounds of the cactus graphs.

Theorem 2.5. Let G ∈ C k,t

n
be a graph with k ≥ 2 and t ≥ 4. We have that gpe(G) ≥ t with equality if and only if

all cycles of G are bad.

Proof. Let G ∈ C k,t

n
be a graph with gpe(G) as small as possible. Recall that T (G) represents a set of root trees

of G and L represents the set of pendant edges in T (G). Let S be a gpe-set of G such that it contains as many

pendant edges as possible. We observe that L is actually an edge general position set, which infers gpe(G) ≥ t. On

Figure 12: Two examples used in Theorems 2.5 and 2.6.
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the other hand, we can check that gpe(Gk,t) = t in which L is indeed a gpe-set, whereGk,t is illustrated in Figure 6.

Hence, |S| = t by the choice of G. In fact, we can claim that S = L. We assume to the contrary that |S ∩ L| ≤ t − 1.

Case 1 |S ∩ L| = t − 1.

From the assumption, we know that all outer cycles of G are not end-block. Assume that e1 is the unique

pendant edge with e1 ∈ (L− S) and e2 is the unique edge with e2 ∈ (S − L). If e1 and e2 are lying on the same

pendant path of G, then S′ = (S − e2) ∪ {e1} is also a gpe-set of G. We get a contradiction with the choice of S.

Hence, e2 is one edge of some cycle in G. Clearly, e2 belongs to a normal I cycle or a normal II cycle. (Otherwise, it

is contained in some outer cycle, it follows thatG has a bigger edge general position set S ∪ {e1}, a contradiction.)
By Lemma 2.2, we also get a contradiction with the choice of S.

Case 2 |S ∩ L| ≤ t − 2.

Let e1 and e2 be two pendant edges not contained in S. From Case 1, we can assume that the edges in S that

are not pendant edges lie on cycles. Let e3 and e4 be two elements of S not contained in L. The strategy of choosing

these two edges is to make them come from the same cycle as much as possible. We can assume that e3 and e4
are contained in some cycle by Case 1. Hence, the cycle is either an outer cycle or an inner cycle of G, say C0.

So, from Lemma 2.2 we get a contradiction to the choice of S. Therefore, we confirm that S = L. Together with

Lemma 2.2, we deduce that all cycles of G are bad. □

Theorem 2.6. If G ∈ C k

n
has k ≥ 2 cycles, then gpe(G) ≥ 4with equality only if G is either a chain cactus or a root

chain cactus for which each cycle is even. In particular, each cycle with two cut vertices has Dc equaling half the

number of its vertices.

Proof. LetG ∈ C k

n
be a graphwith theminimum gpe-number. Suppose S is a gpe-set ofG. Recall that gpe(Gk) = 4,

so gpe(G) ≤ 4. In addition,G has at least two outer cycles, which implies that gpe(G) ≥ 4. Hence, gpe(G) = |S| = 4.

Let t denote the number of leaves in G. Clearly, t ≤ 4. (Otherwise, gpe(G) ≥ 5.) Furthermore, G has exactly two

even outer cycles for which each outer cycle includes at most two root trees.

Case 1 Outer cycles contain no root trees.

By our assumption, each outer cycle of G is an end-block. Hence, G is a chain cactus with two even end-

blocks. Otherwise, gpe(G) ≥ 5 by Lemma 2.2, a contradiction. Evidently, S contains four proper edges from two

end-blocks. Recall that |S| = 4, which infers that all inner cycles contribute 0 edge to S. By Lemma 2.2, all inner

cycles are bad and even.

Case 2 An outer cycle contains a root tree, say T .

Observe that T has at most 2 leaves. We first claim that all inner cycles are bad. Otherwise, there is an inner

cycle which contributes two edges to S by Lemma 2.2. Together with proper four edges in two outer cycles, we

get |S| ≥ 6, a contradiction. Hence, the four edges of S are derived from the two outer cycles, where one outer

cycle, denoted by C0, has the root tree T . Mark the root of T as u′ and the inner cut vertex of C0 as 𝑣0. We can

deduce that u′ and 𝑣0 are diagonal of C0.

Case 3 An outer cycle contains two root trees, denoted by T1 and T2.

Let C0 be the outer cycle. Let 𝑣1 and 𝑣2 be the roots of T1 and T2, and let 𝑣3 be the inner cut vertex of C0.

Using the same argument as in Case 1, we deduce that all inner cycles of G are bad. Observe that T1 and T2 are

pendant paths by the minimality of S. We find that C0 is a normal II cycle by the three cut vertices 𝑣1, 𝑣2 and 𝑣3.

But we can get another edge general position set with size larger than |S|, a contradiction.

Combining the above three cases, the conclusion is verified. □

3 Conclusions

As we know, the topological indices and other graph invariants have been explored on cactus graphs. In this

paper, we research the edge general position number of cactus graphs, and bound it with the number of cycles

and pendant vertices. Moreover, we obtain the lower bound and the upper bound by means of the number

of good cycles, bad cycles and pendant vertices. We think that determining the formula of the edge general
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position number of cactus graphs regarding the number of cycles and pendant vertices is an interesting work

in the future.
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