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1 Introduction

El-Nouty and Journé [1] introduced the process S-X = {STK(¢t), t = 0} with H € (0, 1) and K € (0, 1], named
the sub-bifractional Brownian motion (shfBm) and defined by

S™() = S BTO) + BTE-0),

where {B®K(t),t € R} is a bifractional Brownian motion (bfBm) with H € (0, 1) and K € (0, 1]. Clearly,
the sbfBm is a centered Gaussian process such that S¥-X(0) = 0, with probability 1, and Var(S¥X(t)) =
(2K — 22HK-1yt2HK = Note that (2H - 1DK-1<K-1<0, we have 2HK - 1< K. We can prove that S#X
is self-similar with index HK. When K = 1, S¥-1 is the subfractional Brownian motion (sfBm). We can easily
obtain that for all s, t > 0,

E(SHK()SHK(s)) = (¢ + s2H)K - %(t + §)2HK — % |t - s|HK (Y]
and
Ci |t - sPHK < E[(SHK(t) - SHK($))?] < G, |t - s|?K, 1.2)
where
C; = min{2K - 1,2K - 22HK-11* ¢, = max{l, 2 — 22HK-1},
(See [1]).

El-Nouty and Journé [1] proved that the shfBm is a quasi-helix in the sense of Kahane, and the upper
classes of some of its increments are characterized by an integral test. Kuang [2] investigated the collision local
time of two independent shfBms. Kuang and Li [3] obtained Berry-Esséen bounds and proved the almost sure
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central limit theorem for the quadratic variation in the shfBm. Finally, Kuang and Xie [4] studied least squares-
type estimators for the drift parameters in the sub-bifractional Vasicek processes.

In this article, we investigate p-variation and Chung’s law of the iterated logarithm (Chung’s LIL) of shfBm.
In addition, we give some applications of these properties.

Throughout this article, some specific constants in Section i are numbered as ¢; 1, ¢;2, ...

This study is organized as follows: In Section 2, we study p-variation. Section 3 is devoted to Chung’s LIL.
Section 4 contains some applications of its properties.

2 p-variation

The variation in Gaussian processes was studied extensively since the works of [5], which proved almost sure

convergence to 1 of the quadratic variation Z?illB( j12Y = B((j - 1)/2®)]? of the Brownian motion B on [0, 1].
Many new results about the variation in Gaussian processes with stationary increments were obtained (refer
[6-9] and references therein). Wang [10] studied the p-variation in bfBm. Shen et al. [11] obtained the power
variation in the sfBm.

We will consider p-variation in shfBm by using the ideas of Wang [10] and Shen et al. [11]. However, the
increments of shfBm are not independent and not stationary, this causes some difficulties to investigate the
variation in the process. In order to overcome the difficulties, we develop a stochastic integral representation
of shfBm.

Now, we state our main results in this section as follows.

Theorem 2.1. Let T > 0, a > 0, and v, = n® Then, for any p =2 1, we have, as n — o,

J-1
Vn

p zp/ZI*(pT”)
et s, @1
I';)

SH,K i - SH,K

Vn

1 [l

w2

Vr}—pHK =

where [x] denotes the integer part of x > 0, and I'(x) = j: t*e7tdt for x > 0, which is a Gamma function.

Corollary 2.2. Let T > 0,a > 0, and v, = n Then, for any p = 1, we have, as n - =,

. . p Gp)/2pPrIN T
1 vl j Z ]_12 20PP1(57)
Vl_w Z SH.K V_ - |SH.K v i Til‘ﬂsH’K(X)V]dX, as. (2_2)
n ]:1 n n r Z 0

Theorem 2.3. Let T > 0, a > 0, and v, = n% Then, we have, as n — o,

1 [Tva]
—ic 2. sup  ISPE(t) - SHK(u)| — 2E

Vn j=1J-1 j
7 sty

sup  SHK(t)

0<t<TYHEK)

N a.s. 2.3)

In order to prove Theorems 2.1 and 2.3, we give some technical lemmas. Lemma 2.1 is a Fernique-type
inequality for SHX,

Lemma 2.1. For any € > 0, there exists a positive constant ¢; = ¢1(¢) > 0 such that

P, sup sup |[STX(t + s) — SEK(t)| = xatK
0<t<T 0<s<a

T X2
< 62’1[5 + 1]e*m, 24)

forany T>0,a > 0, and x = x, > 0 with some x, > 0.
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x2
Proof. By (1.2) and the inequality for the normal distribution function ®(x) : 1 - ®(x) < %e‘? for all x > 0,
we obtain that

2

P{|SEK(t + h) - SEX(t)| 2 xhHK} < g2
foranyt > 0,h > 0, and x = x* > 0 with some x* > 0. Therefore, by Lemmas 2.1 and 2.2 in [8] (when applied
to gy(h) = kK and o,(-) = 0), we obtain (2.4) immediately. O

Lemma 2.2 is from [12].

Lemma 2.2. Let X = {X(t), t € R} be a centered Gaussian process in R and let F C R be a closed set equipped
with the canonical metric defined by
d(s, t) = [E(X(s) - X())*]/2. 2.5)

Then, there exists a positive constant ¢35 such that for allu > 0,

P < exp

D
sup|X(s) - X(8)| = q3lu + I,/ logNy(F, €) de
0

S,tEF

uZ
—ﬁ], (2.6)

where Ny(F, €) denotes the smallest number of open d-balls of radius € needed to cover F and where
D = sup{d(s, t) : s, t € F} is the diameter of F.

Lemma 2.3. If X(t) and Y (t) are a.s. bounded, centered Gaussian processes on A such that E(X?(t)) = E(Y2(t))
forallt € A, and
E[(X(t) - X(5))*] S E[(Y(t) - Y(5))*], Vs, tEA,

then for all real A,

Plsup X (t) > A| < P|sup Y(t) > A
teA teA
and
E|supX(t)| < E[sup Y(?)|.
teEA teEA
Proof. It is Slepian’s inequality (see, p. 49 in [13]). O

In order to solve the dependence structure of SX and to create independence, we will develop the
stochastic integral representation of S™-X. By Lamperti’s transformation [14], we define Gaussian process
Y = {Y(¢t), t € R} as follows:

Y(t) = e HKIGHK(o) € R, 2.7

The covariance function r(t) = E(Y(0)Y(t)) is given by

1 1
r(t) = e—HKt[(l + eZHt)K - E(l + et)ZHK - E |1 - et|2HK

(2.8)
= pHKt

1+ e—ZHt)K - %(1 + e—t)ZHK - % 11- e—t|2HK

=r(-t).



4 —— Nenghui Kuang and Huantian Xie DE GRUYTER

Hence, r(t) is an even function and, by (2.8) and the Taylor expansion, we verify that r(t) = O(e?") ast - o,
where B = H(2 - K). It follows that r(-) € Li(R). By (2.8) and the Taylor expansion we obtain

1
r(t) ~ 2K — 22HK-1 _ 2 [t)2HK .t —> 0. 2.9
By Bochner’s theorem [15], Y has the stochastic integral representation:

v(t) = [eédw(dd), VeeR, (2.10)
R

where W is a complex Gaussian measure with control measure A, whose Fourier transform is r(-).
The measure A is called the spectral measure of Y.

Since r(-) € LY(R), the spectral measure 4 of Y has a continuous density function f(A), which can be
represented as the inverse Fourier transform of r(-)

[

1
) = ;{r(t) cos(tA)dt. @.11)

Similar to the proof of (2.10) in [16], we can obtain

fQ) ~ @ |ATAHEO | ag A — oo (2.12)

where ¢4 > 0 is an explicit constant depending only on HK.
By (2.7) and (2.10), we obtain

SHK(t) = (K [l w(dn), Ve > 0, 213)
R

We list two properties of the spectral density f(A) of Y. They follow from (2.12), or from (2.9) and the
truncation inequalities in [17], page 209, refer also [18].

Lemma 2.4. There exist positive constants ¢5 and 6,¢ such that for u > 1,

_[ RF)AA < 5u21-HO 2.14)
[A]<u
and
[ rnaa < ez, 215)
A|2u

Proof of Theorem 2.1. Without loss of generality, we suppose Tv, is an integer. For integersn and j > 1, we take
an;j = (jn)P, where B > 0 is a constant. Define two Gaussian processes

Xrglj)(t) = tHK I e Bt (dA)
|AI€(an,j, anj+1]
and
xBwy = [ etlotw(an).
[A|€(an,j,anj+]
Clearly, by (2.13), we have

SHE() = X0 + X2(6), forall t 2 0. (2.16)



DE GRUYTER p-variation and Chung’s LIL of sbfBm and applications == 5

It is important to note that for a fixed n, the Gaussian processes X,f,lj)(t), j=1,2,..., are independent; moreover,
for every j 2 1, X,f,lj)(t) and X,E?j)(t) are also independent. Since

v, . .\ 20121 p*1
1 ZSH,KL_SH,K] 1 -T &)
1-pHK 1
Vo T =1 Vn Vn ;)
1Y j -1 j j-1)
< — Y ypHK |gHK| L | - gHK|L = _ X(l) J|_ X(l)
Vn ng ! Vn Vn v "1 v
1 Tvp . . 1 14 1
+— Y K |E [stk| L - g ]—] -E X,?}[ / ] - X,g};[f ]
Vn 15 Vn Vn v
13 j i-1) j -1
+ — Y ypHK X(l.)[_ - X(l?[ —E |xO L - x®
Vn ]Z=1 ! " n A " vy vy
Tvy : C_N\P opi2p(2ly
L S WPHKE |SH.K J|_ guxk|’ 1] _ =
n j=1 Vn Vn I(;)

= 11+Iz+13+14.

In the following, we will show that the terms ; and I3 almost surely converge to zero, I, and I; converge to zero,
as n — o, respectively.
First, we prove fora > 0,T> 0,and p 21, as n - o,

1 Tvn . i1 14 . i1 D)
L=—Y ik lsmr| LI grx ]—” - X,E}}[i] - X,E}}[]—] —0, as. @17)
Vn j5 Vn Vn Vn Vn
In fact,
. . 14 . . 14
J j-1 | J mlj -1
vaKgH,K__sH,K_ — XYL - x M —
! Vn Vn ” M) T (2.18)
< g sup [STK@OPT + sup (X (OP P VY, ),
0<t<T 0<t<T
where
V= wlsup X0 - Xpjl, 219)
’v—n<t,u<vin
and where we use the fact
[IXP = lyP| < p2P~Y|xP~2 + [yP7|x - yI.
We have
. . 14 . . 14
VPHK |E | GH K J ~ SHK J-10 E [x® J - x® J-1
" Vn Vn ) T
) (2.20)
2
< qgE sup [STX(H)PD + E sup |X,$,1}(t)|2<!’-1>] v VK (EYZ )2,
0<t<T 0<tsT

For ¥, ;, by Lemmas 2.2 and 2.4, elementary calculus can show that there exists ny such that for any n 2 n,,
for every 1 <j < Tv, and for any ¢t > 0,

P(Y,; > t) < g on®F exp(-gyon?PHK-24t2), (2.21)
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Thus, for any € > 0, we obtain

v,
p|— 2 WPVEKY, > g| < P| max ¥, > £ vk
Vn = 1<j<Tvy, T"

Tvp
E o
$24%°—WWMK
=1 T
< C2,11n2a+ﬁ exp(—Cz,lznzﬁHK'Z“'Z“(P'l)HK).

Taking § > 0 large enough such that 28HK - 2a - 2a(p - 1)HK > 0, by the Borel-Cantelli lemma, we have

lim — Zv(” DHKy =0, as. (2.22)
n—o Vn] -1

Combining (2.18) and (2.22), we prove that (2.17) holds.
Second, we prove fora>0,T> 0,and p 21, asn — o,

Tvy

B= LY g s L| - gux| ] x“)[ ] X(l)[ ] — 0, 2.23)
Vniq n Vn
In fact, for any 1 < j < Tv, and r > 2, by (2.21) and Hélder’s inequality, we obtain
(E(Y,)?) < (E(Y,)) )"
1
= [ty > 9)as
‘ 2.24)

1
¥

00

2

< ‘cz,gn‘“ﬂj— exp| -6 1on?PHK ‘zasF]ds
0

_ a*p
= ggn PHKrar

where we use by letting st = t, then

ro(.r
I exp|—6,1n?PHK ‘Zas%]ds =3 Iti‘l exp (—6,1on?PHE-2at)dt
0
J- eVdy
o ngﬂHK 2a 0, on2PHK 2
"1\ (-BHK +a)
) Zr(z)n BHK+a)r
(G102
Hence,
Tvp s
— Z P _1)HK(E(K1J)2)% < GpqnPmDHK-PHK a7
n j=1

. . a+p
Taking first § > 0 large enough and then taking r > 2 large enough such thata(p - 1)HK - BHK + a + —— < 0.
Therefore, we obtain

1
lim — Y v DK (E(Y, )2 = 0. (2.25)

n—oo Vn ]»=1
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Similar to (2.24), by using (2.4), for any p > 1, we have that

E

sup |SH’K(t)|2(p_1)] < G5
0<t<T

Since, for any j 2 1,¢ > 0, h > 0, we have
EX( + h) - X)) < E(SEK(¢ + h) - SEK())2.

Then, (2.4) remains true for X,(,lj) Thus, similar to (2.26), we obtain for any 1 < j < Ty,

E[sup [X(ORPD

0<t<T

< G116

Hence, combining (2.20) and (2.25), we have that (2.23) holds.
Third, we prove that fora > 0,7 > 0,and p 21, asn > o,

] -1 J j-1
x| 4| - xo|) x| L| - x®
n,j vn nj v n,j vn n,j v

n n

P 14

1 D
L =—) vk -E

— 0, a.s.
Vn j5

—_— 7

(2.26)

2.27)

In fact, since for a fixed n, the processes {X,S,lj)(t), t20}j=12,..,Tv, are independent and so are

p
W J|_ y@i-1
X"J[vn] X"J[ Vn ]

of partial sums of independent random variables, we have

Ty, . . 14 . . D
i |y | -yl 7 [yl L] - pff 1
Pjév,{’ Xy Vn] x| 50 ]‘ E Xn,j[vﬂ Xl ||| > &
™, . . p . . ol
G17 - | J plJ -1 ol J nlJj =1
< gl 3y 50 —] ; x,g,;[—] E x,g,;[—] . x,f,;[—
1=t Vn Vn Vn Vn
Gig -1 1 1 i
Vn j=1 n n n
Tv . . p|r
G < ax | »@®| J wlJ -1
< =5 2 E| [vP X5 poul .1 el [
Vn ]:1 n n
Since
. . . 2
2 ol _ ol tu kI emx|] T Y
an = E[Xn’][ ] nf Ve E|S v S Ve
and
HK|1*E HK[]1tU
E[S " S " ]

= (2K = 22K (j + )+ (26 = 22D+ w) K= 2((j + O + ( + wy?)X
+ (2 + t + WK + |t - uPHK

—|t-uHK, asj- oo,
]

forany t,u € [0, 1] and n > 1.
Hence, for t = 1, u = 0, there exists j; = 1 such that for any j = j,

. i1
x| L| - xols
n,j Vn n,j Vn

pr

rHK Pr
< G0y < O,

E J

v rg)HK

,j=12,..,Tv,. For any ¢ > 0 and r > 1, by Markov inequality and the moment inequality

(2.29)
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where we have used the fact: let X be a random variable following an N(0, g2), then for any y > 0,

)y
E(X]) = — LoV, 2.30)
W
t
Therefore,
Tv, . . 14 . . D)
n - 1 - 1 ar
B3 K X,g}}[i]-x,g};[f—] i x,g};[i] -X,g};[f—] s eva| < .
ia Vn Vn Vn Vn

Taking r > 1 large enough such that % > 1 and by Borel-Cantelli lemma, we obtain (2.27) holds.

Finally, we prove that fora>0,T> 0,and p 21, asn — o,

p+1
1 Tvy . i—1 14 2p/2r(7)
I = — Y vpikE |sok| L] - g ] - 2o, 2.31)
Vn j=1 n Vn ()
In fact, by (2.29) and (2.30), we have for large j,
. .\ 20121 p+1
VPHKE |gk| L | _ grk|] 1] N PR
! Vn v I;)
Hence, (2.31) holds. Thus, the proof of Theorem 2.1 is complete. O

Proof of Corollary 2.2. By Theorem 2.1, following the same lines as the proof of Theorem 1.2 in [19], we can
easily prove the corollary, and omit the details. O

Proof of Theorem 2.3. For simplicity, we assume that Tv, is an integer. For a > 0, we denote

fuj= &u(S", @)= sup [SK() - STKw),

j-1 J
v—n<t,u<‘7n

— — ,HK
r]n,j - nn,j(sHJKx a) =V En,j-

We first prove that for every a > 0,
1
lim 7 2 16— E&jl = 0,  as. (2.32)
|

Denote {uj = & (XY, @), Yuj = WKE (XD, @) (v, is actually defined by (2.19)). In order to show (2.32),
it is enough to prove that

1
im — == D 6o = Byl = 0, ass., (2.33)
n—e Vy j=1
R
lim—) [%,; =0, as., (2.34)
n-co Vp j=1
and
1 D
lim ——7 Z |E¢nj — E&yjl = 0, (2.35)
n-o Vy j=1

By equalities (2.22) and (2.23), we can obtain equalities (2.34) and (2.35), respectively. We are preparing
to prove (2.33).
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In fact, since for a fixed n, X,(fj), j=1,2,..,Tv, are independent; so are v,f’K

to (2.28), for any € > 0 and r > 1, we have

GnjpJ = 1,2,..., Tvy, similar

Tv, Tv,
4 623 <

P| 2 v Gy = B Gl > £vn| < =7 D EI(w G ) (236)
j=1 Wi et

By Lemma 2.1, we obtain for every ¢t > t, with some ¢, > 0 and 1 < j < Tv,,

P(n,;>t) =P sup |SHK(t) = SHEW)| 2 tv, K| < cz,z4vne‘02v25t2.

j-1 j
o by

Hence, by (2.16) and (2.21), we obtain

t
PG> 1) < P[qn,j > E] +P

t
Yoj> E] < Gaen*Pe-cart’,

Therefore, for every 1 < j < Ty,

G,y = [Rlvie, > ti]dt
0

<t + J'P[v,f"((n,j > trde

ty

©

<ty + Czyzgnm—BJ' EXp(—Cg,ggtz/r)dt < C2)30ﬂa+'3.
0

Hence, by (2.36), we obtain

S’ i HK ganh @
P X Vi Gy = BTGl > evn| < =—— = gpn 20,
j=1 W2

Taking r > 1 large enough such that —% + @+ B < -1, by the Borel-Cantelli lemma, we have
1Y
1-HK Z|(n,j -E{j — 0, as.,
n j=1

as n — o, Thus, (2.33) holds.
In order to finish the proof of Theorem 2.3, by the self-similarity of S¥-X, we only need to show

1
lim - 2 E(1,) = 2TE

n—e Vn j=1

sup STK(t)
0<t<1

. (2.37)

By (2.29), there exists j, > 0 such that for every ¢, u € [0, 1] and all j 2 j,

2
K| _ oHK|ITY
E|S Vn § Vn ]
i [ u P =1
v2HK
Hence, by Lemma 2.3, for every j 2 j,
-1+t -1
lim E| sup [S7X L) Y8 ]—] = lim E| sup |STX[—]|[.
n=e |o<t<1 Vn Vn n-e fgocq Vn
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Therefore,
-1+t -1 j-1+u -1
limE(E,) = imE| sup ||sTK[L——"| - siK ]—] S R AN ] 8 R ]
n-—e n—e o<t u<t Vn Vn Vn Vn
= limE| sup ||s#X JZ1*t  enk Q] PN Pl Ry 1]
n->o o<t y<1 Vn Vn Vn Vn
-1+t -1
= lim 2E| sup |sHK| L= | - k| L2
n-—oo 0<t<1 Vn Vn
. t
= lim 2E| sup [S7K| —
n-o 0<t<1 n
Hence, by the self-similarity of S#:X, for any j = jj,
. — 1 HK
,132 E(n,;) = ,132 E(v"&n,)
— 921 HK H,K| t
=2lim v, E| sup [S7H*|—
n-o 0<t<1 Vn
= 2E| sup (STK(1))|.
0<t<1

By (2.26), we have

maxE(n, ) <E vK sup  [SEK(E) - SEE(w)

1)),
0 0<t,u<‘],—2

= 2E|vK sup SHK(t)
Jo

0<t<v—n
= 2j7FE| sup STK(t)
0<t<1
< G33
Therefore,
. 1 T, ) 1 jo . 1 Tv,
lim — E(n,) = lim —  E(p, ) + lim — } E(y,;) = 2TE| sup (S*X(0))|.
n—-o Vp j=1 n-o Vp j=1 n—oo n j=j,+1 0<t<1
The proof of Theorem 2.3 is completed. O

3 Chung’s LIL

In [16,18,20,21] the authors established Chung’s LIL for fBm and other strongly locally nondeterministic
Gaussian processes with stationary increments. Luan [22] obtained Chung’s LIL for sbfBm. In this section,
we prove the Chung’s LIL for sbfBm S¥-X in R.

Theorem 3.1. Let SHX = {SHK(t), t = 0} be the sbfBms in R, with H € (0, 1) and K € (0, 1]. Then, there exists
a positive and finite constant ¢;3 such that
maXiejo,r] |SH‘K(t)|

imi - 5. 31
i K Qoglogmyx ~ @b 5 G
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In order to prove Theorem 3.1, we need several lemmas. Lemma 3.1 shows that the sbfBms S7X has strong
local nondeterminism. Lemma 3.2 gives estimates on the small ball probability of S?X,

Lemma 3.1. For all constants 0 <a <b, STX is strongly locally ¢-nondeterministic on I = [a,b] with
o(r) = r?HK_That is, there exist positive constants ¢3, and ry such that for allt € T and all 0 < r < min{t, r},

Var{SHEK(t)|SEX(s) : s € I, r < |s = t| < 1y} 2 G300(T). (3.2)
Proof. See the proof of Proposition 2.1 in [2], the proof follows the same line as Proposition 2.1 in [16]. O

Lemma 3.2. There exist positive constants ¢;3 and ¢s4 such that for all ty € [0, 1] and x € (0, 1),

Ga

;;Tﬂiﬁ?s . 3.3)

exp < exp

3,3
-———[ < P{max |SEX(t) - SEX(ty)| < x
X1/ (HEK) ltE[O, 1]' ( ) ( 0)|

Proof. By Lemma 3.1 and (1.2), we know that S¥X satisfies conditions (C1) and (C2) of [23]. Hence, this lemma
holds by Theorem 3.1 of [23]. d

The following Lemma 3.3 is from [16], which provides a zero-one law for ergodic self-similar processes.

Lemma 3.3. Let X = {X;, t € R} be a separable, self-similar process with index k. We assume that X, = 0 and that
X is ergodic. Then, for any increasing function i : R, — R,, we have P(Ey ) = 0 or 1, where

Exy={w: there exists § > 0 such that sup |X| = t<y(t) for all 0 < t < §}.

0<s<t

By a result of [24] on ergodicity and mixing properties of stationary Gaussian processes, we see that S7-X
is mixing. Hence, we can obtain the following lemma.

Lemma 3.4. There exists a constant ;5 € [0, ] such that

loglog(1/t))HK
liminf %max |ISTE(S)| = &5, as. (3.4)
t-04 0<sst

Proof. We take y,(t) = c(loglog(1/t))™ and define ¢5 = sup{c > 0 : P(Eyy,) = 1}. Then, (3.4) holds from
Lemma 3.3. ]

Theorem 3.1 will be established if we prove ;5 € (0, ©) from Lemma 3.4. This is where Lemmas 3.2 and 2.2
are needed.
Now, we proceed to prove Theorem 3.1.

Proof of Theorem 3.1. We prove the lower bound first. For any integer n > 1, let , = e™ Let 0 <y < ¢34
be a constant and consider the event

A, = {max|STK(s)| < yHErHEK (loglog(1/r,))HK . (3.5)
0<s<m,
Then, by the self-similarity of S¥X and Lemma 3.2,
P{A,} = Pymax |STX(s)| < yHKr{K(log log(1/m))"™
0<s<r,
(3.6)

= Pimax|S?X(r;8)| < yPXrEK |(loglog(1/my,))HK

0<s<1
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= P[r,fm max|SHK(s)| < yHErHK [(1oglog(1/r,))HK ]

0<s<1

= Pimax|S7X(s)| < yHK/(loglog(1/nr))HK
0<s<1 (3.6)

<exp

Ga ]
-——1logn
y
=nCsaly,
Since Z:=1P{An} < oo, by the Borel-Cantelli lemma, we obtain

liming maXo<s<r, |STK ()|
min
e 1K [(loglog(1/r) ¥

> G4 AS. 3.7

By (3.7) and a standard monotonicity argument, we have

L max SHK(g
liming 0<s<r|S™(8)]

> s. 38
N B (log log(1/r))FK = @6 @S B8

We will prove the upper bound by the following stochastic integral representation of S*-X, For everyt > 0,
by (2.13), we have

SH’K(l’) = tHKIem"g‘W(dA).
R
For every integer n > 1, we take
th=n" and d,=nb, (3.9

where > 0 is a constant whose value will be determined later. It is sufficient to prove that there exists a finite
constant ¢;7 such that

liminf maXosSstn|sH’K(s)|
imin
n-o  tIK/(loglog(1/t,))HK

<@ as. (3.10)

Define two Gaussian processes, X! and X2, by

X,}(t) = tHK J ei’“‘)gtW(d)t) (3.11)
Mle(dn—l:dn]
and
X,%(t) = tHK I ei“‘)gtW(d)t), (312)
|/1|e(dn,1,d"]

respectively. Clearly, SZ-X(t) = X}(t) + X2(t) for all t > 0. It is important to note that the Gaussian processes
X'(n = 1,2, ..) are independent; moreover, for every n > 1, the processes X; and X? are also independent.
Let h(r) = rfX(loglog(1/r)) X . We make the following two claims:
(i) There is a constant y > 0 such that

n=1 [S€[0,t

Zpl max IX1(s)| < yHKh(tn)’ = o, (3.13)

(ii) For every € > 0,

©

>P

n=1

moax] IX%(s)| > eh(tn)] < oo, (3.14)
t;

S€[0,tn
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Since the events in (3.13) are independent, we see that (3.10) follows from (3.13), (3.14), and a standard Borel-
Cantelli argument.
It remains to verify the claims (i) and (ii) above. By Lemma 3.2 and Anderson’s inequality [25], we obtain

P n}ax 1X1(s)| < yPXR(t,)} > P n}ax]|SH’K(s)| < yHKh(tn)]
SE€|0. n €[0,tp

=P max |SHK(t s)| < yHER(t, )]

s€[0,

= PitHK max |SHX(s)| < yHKh(tn)’

s€0, 1] (3.15)

=Py max |[S7X(s)| < yHK/(loglog(1/t,))"¥
s€[0, 1]

> exp

- % log(nlogn)

= (nlogn)css/v,

Thus, (1) holds for y = ¢3.
In order to prove (i), we divide [0,t,] into p, +1 non-overlapping subintervals J,; = [an-1, an;l,

j=0,1,..,p, and then apply Lemma 2.2 to X* on each of Jnj- Let B> 0 be the constant in (3.9) and take
Juo = [0, t,nP). After Jno has been defined, we take a1 = an (1 + nF). It can be verified that the number
of such subintervals of [0, t,] satisfies the following bound:

p, + 1< cnflogn. (3.16)

Moreover, for every j > 1, if s, t € ]n)/» and s < t, then we have t/s - 1 < n™? and this yields

k. (317

t
t-s<sn? and log[; <n
(1.2) implies that the canonical metric d for the process X satisfies

d(s,t) < c|s - t|FK foralls,t>0 (3.18)

and d(0, s) < ct,n"PHK for every s € J, .. It follows that Dy = sup{d(s, t); s, t € J o} < ct,"n"PHK, and

tyn P
Ny, €) < IO (3.19)

Some simple calculations yield

Dy ct KPR >
thn
I logNd(]n 0’ d8 = J. lOg (8/;)1/(HK)

0
X 1/(HK)
HK,-BHK
Ict n log[ du (320)

0

1
= c1/(HK) t,ffKn-BHKj / log[%] du
0

= Gyt nPHK,

de
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It follows from Lemma 2.2 and (3.20) that

P[max IX2(s)| > eh(ty)

se]n,o

= Pimax |XZ(s) - X3(0)| > eh(tn)]

sejn,O

< P{max |X2(s) - X(t)| > C3,92“]

S, t 0
Dy

u+ I logNy(J,, o, €) de
0

< Py max |X2(s) - XZ(t)| > a9
510 (3.21)

u® ]
<exp|-——
oSz
t2H#K (log(n logn)) 2K
S eXp - tr%HKn_zﬂHK
) n2BHK
= P\ 7 (og(n logn))ZK |

where u = %wh(tn), which is larger than _[;) * J10gNy(J, o, €) de.
For every 1<j<p,, we estimate the d-diameter of Sy 1t follows from (3.12) that for any s,t € hj

with s < ¢,

E(X,%(S) _ X,%(t))z = J |tHKei/\logt _ SHKei/llogslz f()t)d/l

[Al<dn-1
+ I |tHKei)L10gt - SHKe'Mlogslz f(ﬂ)dﬂ (3.22)
[A>dn
= T1 + TZ
For T;, we have, for all s, t € hjp
TZ < 4t,%HK I f()l)dA < C3,10t,%HKn_2ﬂHK, (323)
[A]>dn

where the last inequality follows from (2.15).
For Ti, we use the elementary inequalities 1 — cosx < x? for every x € R and x* - 1< (x - 1)* for x > 1
and 0 < a <1 to derive that, for all s, t € ]n,j with s < ¢,

T = J |tHKei/\10gt _ sHKeiMogslz f()l)d/\

|A|gdn-1
- J’ (¢HK — gHK)2 4 9¢HKGHK|] — COS[A logémf(ﬁ)dﬁ
[A|<dp-1
HK 2 t
<g2K||Z| -1 Jfa)dA + t2HK I [1 - cos[/l log—]y()t)d/l (3.24)
R M|Sdn_1 s
¢ 2HK t)?
ssu Lo " v aemiogt] [ wrovm

I<dnt
< t2HKp-2BHK 4 94 2HK -2 (p — 1)280-HK)
2HK
< gyt n K,

where in deriving the last but one inequality, we have used (3.17) and (2.14), respectively.
It follows from (3.22), (3.23), and (3.24) that the d-diameter of ]n,]- satisfies

D]' < 03,12t,f{Kn'ﬁHK. (3.25)
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Hence, similar to (3.21), we use Lemma 2.2 and (3.25) to deduce

) nZﬁHK 396
< -c— .
P rstéan)}( |X2(s)| > eh(ty); < exp|-c (log(n logm)) 2% | (3.26)
By (3.16), (3.21), and (3.26), we deduce that for every ¢ > 0,
[ [ pn
> P{ max [X2(s)| > eh(t,,)] < ) D Pimax [X2(s)| > eh(ty)
n=1 |S€[0.k] n=1j=0 hj
© n2BHK (3.27)
< B —_—_
<c Zl(n logn) exp C(log(n Togn))ZK
< 00,
This proves (3.14) and hence the theorem. d

By the decomposition of sbfBm and Chung’s LIL for the sfBm, we give simple proof of Theorem 3.1.

Lemma 3.5. Let S¥X be an sbfBm, and assume that {W, t = 0} is a standard Brownian motion independent
of STK_ Let XX be the process defined by

XK = j(1 - e 09~ A (328)
0

Then, the processes [ r(lK_le’§H+SH’K(t),t20] and {SFX,t> 0} have the same distribution, where

{SHX t > 0} is an sfBm with Hurst parameter HK.

Proof. See the proof of Lemma 2.1 in [26]. For the convenience of readers, we give the proof. By (3.28), we know
that X¥ is a centered Gaussian process with covariance

EQXK) = [0 - ey - )01 Kdo
0

= [ - empixdg - [(1 - ety tso1Kdg
0 0

= T‘Iee‘eudu 6-1-Kdg - T[Iee‘eudu
olo olo

t o t o

= I(IO‘Ke‘O“dG)du - _[(J'e-Ke-9<u+S>d0)du

e~ 0s9-1-Kq9 (3.29)

00 00
I'l-K
- M[IK + SK - (l’ + S)K]
K
Let Y, = ﬁXﬁH + SEK(t). Then, from (1.1) and (3.29), we have, for s, t = 0,

K
E(Y:Y) = WE(X@X@) + E(S"K(s)SHK(1))
= t2HK 4 ¢2HK _ (tZH + SZH)K + (tZH + SZH)K — %(t + S)ZHK — % |t — SlZHK

= t2HK 4 ¢2HK _ %(t + S)ZHK — % |t - leHK’

which completes the proof. O
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Lemma 3.5 implies that

(SHED), t 2 0}

K
HK _ xK t> 3.30
St F(l _ ) (2 t=20 s ( )

d
where = means equality of all finite dimensional distributions.

Simple proof of Theorem 3.1. [22] established Chung’s LIL for sfBm S¥. Namely, there exists a positive and
finite constant ¢;33 such that

max SH
liminf cetontSt |

r—0  rf/(loglog(1/r)¥ = @3, as.

The decomposition (3.30) allows us deduce Chung’s LIL for the shfBm, from the same result for the sfBm with
Hurst parameter HK, with the same constant.

4 Applications

In this section, we give some applications of the results in this article. For estimating the self-similar index HK
of a shfBm. We introduce an estimator for the index HK of S®-X given by

5 Sn(p)
HK,(p) = lo )
(P)= Jlogn 85,0
where
1 [val ] ] _ 1] 13
S - SH,K Z | = SH,K EA—
(D) v,,]; - -

Theorem 4.1. For any p = 1, we have IfK,,(p) — HK almost surely as n — .

Proof. By Theorem 2.1, we have, asn — o,

. Sn(p)
HKy(p) = ———log———
P> Togn %8 5,u(p)
_ 1 nPHES, (p) pHK
plogn > n?HKS »(p)
1 nPHES, (p)
= HK
plogn o8 n?PHKS o(p) ¥
— HK, a.s.
Thus, we finish the proof. O

Remark 4.1. We cannot obtain the estimators of H and K, respectively, similar to the estimators of H and K
for bfBm in [10]. Because the limit in (2.1) has no relation to K.

In the following, we give some applications of the decomposition of sbfBm.
Recall that a continuous process {X;, t € [0, T]} admits a-variation (resp. a-strong variation) if the limit
in probability

a

n-1
lim z ‘X e — Xie

it
n—o _o n n
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(resp.
1 t
1 — _ a
1815} S.EIXM X; [*ds),

exists for every ¢t € [0, T].
Then, we have:

Theorem 4.2. The a-variation (resp. a-strong variation) of shfBm is Cyxt, where Cyx = E(|€ |PX) and & is
a standard normal random variable.

Proof. The results follow easily from (3.29) and the variation in X* is 0, since X is absolutely continuous. (Refer
also the proofs of Proposition 4 in [27] and Proposition 3.6(a) in [28]). O
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