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Abstract: Let { ( ) }= ≥S S t t, 0

H K H K, , be the sub-bifractional Brownian motion, with ( )∈H 0, 1 and ( ]∈K 0, 1 .

We investigate its p-variation and Chung’s law of the iterated logarithm. In addition, we give some applications
of these properties.
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1 Introduction

El-Nouty and Journé [1] introduced the process { ( ) }= ≥S S t t, 0

H K H K, , with ( )∈H 0, 1 and ( ]∈K 0, 1 , named
the sub-bifractional Brownian motion (sbfBm) and defined by

( ) ( ( ) ( ))
( )

= + −− ∕S t B t B t
1

2

,

H K

K

H K H K,

2 2

, ,

where { ( ) }∈B t t R,

H K, is a bifractional Brownian motion (bfBm) with ( )∈H 0, 1 and ( ]∈K 0, 1 . Clearly,
the sbfBm is a centered Gaussian process such that ( ) =S 0 0

H K, , with probability 1, and ( ( )) =S tVar

H K,

( )− − t2 2 .

K HK HK2 1 2 Note that ( )− − < − ≤H K K2 1 1 1 0, we have − <HK K2 1 . We can prove that SH K,

is self-similar with index HK. When =K 1, SH ,1 is the subfractional Brownian motion (sfBm). We can easily
obtain that for all ≥s t, 0,

( ( ) ( )) ( ) ( ) ∣ ∣= + − + − −S t S s t s t s t sE
1

2

1

2

H K H K H H K HK HK, , 2 2 2 2 (1.1)

and

∣ ∣ [( ( ) ( )) ] ∣ ∣− ≤ − ≤ −C t s S t S s C t sE ,

HK H K H K HK
1

2 , , 2

2

2 (1.2)

where

{ } { }= − − = −− −C Cmin 2 1, 2 2 , max 1, 2 2 .

K K HK HK
1

2 1

2

2 1

(See [1]).
El-Nouty and Journé [1] proved that the sbfBm is a quasi-helix in the sense of Kahane, and the upper

classes of some of its increments are characterized by an integral test. Kuang [2] investigated the collision local
time of two independent sbfBms. Kuang and Li [3] obtained Berry-Esséen bounds and proved the almost sure
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central limit theorem for the quadratic variation in the sbfBm. Finally, Kuang and Xie [4] studied least squares-
type estimators for the drift parameters in the sub-bifractional Vasicek processes.

In this article, we investigate p-variation and Chung’s law of the iterated logarithm (Chung’s LIL) of sbfBm.
In addition, we give some applications of these properties.

Throughout this article, some specific constants in Section i are numbered as c c, ,…i i,1 ,2
.

This study is organized as follows: In Section 2, we study p-variation. Section 3 is devoted to Chung’s LIL.
Section 4 contains some applications of its properties.

2 p-variation

The variation in Gaussian processes was studied extensively since the works of [5], which proved almost sure

convergence to 1 of the quadratic variation ∣ ( ) (( ) )∣∑ ∕ − − ∕= B j B j2 1 2j
n n

1

2
2

n

of the Brownian motion B on [0, 1].
Many new results about the variation in Gaussian processes with stationary increments were obtained (refer
[6–9] and references therein). Wang [10] studied the p-variation in bfBm. Shen et al. [11] obtained the power
variation in the sfBm.

We will consider p-variation in sbfBm by using the ideas of Wang [10] and Shen et al. [11]. However, the
increments of sbfBm are not independent and not stationary, this causes some difficulties to investigate the
variation in the process. In order to overcome the difficulties, we develop a stochastic integral representation
of sbfBm.

Now, we state our main results in this section as follows.

Theorem 2.1. Let > >T a0, 0, and =v nn
a. Then, for any ≥p 1, we have, as → ∞n ,

( )

( )

[ ]

∑ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

− ⎛
⎝

− ⎞
⎠

⟶−
=

∕ +

v
S

j

v
S

j

v
T a.s.

1 1
2 Γ

Γ

, ,

n

pHK

j

Tv

H K

n

H K

n

p p
p

1

1

, ,

2

1

2

1

2

n

(2.1)

where [ ]x denotes the integer part of >x 0, and ( ) ∫≔
∞ − −x t e tΓ d

x t

0

1 for >x 0, which is a Gamma function.

Corollary 2.2. Let > >T a0, 0, and =v nn
a. Then, for any ≥p 1, we have, as → ∞n ,
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∣ ( )∣
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Γ
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(2.2)

Theorem 2.3. Let > >T a0, 0, and =v nn
a. Then, we have, as → ∞n ,

∣ ( ) ( )∣ ( )

[ ]

( )

∑ ⎜ ⎟− ⟶
⎛
⎝

⎞
⎠−

= −
< < ≤ ≤ ∕v

S t S u S t a.s.E
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sup 2 sup ,
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t T
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1

1
1

,

, ,

0

,

n

n n

HK1

(2.3)

In order to prove Theorems 2.1 and 2.3, we give some technical lemmas. Lemma 2.1 is a Fernique-type
inequality for SH K, .

Lemma 2.1. For any >ε 0, there exists a positive constant ( )= >c c ε 0
2,1 2,1

such that

∣ ( ) ( )∣ ( )

⎧
⎨
⎩

+ − ≥
⎫
⎬
⎭

≤ ⎛
⎝ + ⎞

⎠≤ ≤ ≤ ≤

− +S t s S t xa c
T

a
eP sup sup 1 ,

t T s a

H K H K HK

0 0

, ,

2,1

x

ε

2

2 1 (2.4)

for any ≥ >T a0, 0, and ≥ >x x 0
0

with some >x 0
0

.
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Proof. By (1.2) and the inequality for the normal distribution function ( ) ( )− ≤ −x x eΦ : 1 Φ

x

1 x
2

2 for all >x 0,
we obtain that

{∣ ( ) ( )∣ }+ − ≥ ≤ −S t h S t xh c eP H K H K HK, ,

2,2

x
2

2

for any ≥ >t h0, 0, and ≥ >x x* 0 with some >x* 0. Therefore, by Lemmas 2.1 and 2.2 in [8] (when applied
to ( ) =σ h hHK

1
and ( )⋅ ≡σ 0

2
), we obtain (2.4) immediately. □

Lemma 2.2 is from [12].

Lemma 2.2. Let { ( ) }= ∈X X t t R, be a centered Gaussian process in R and let ⊂F R be a closed set equipped
with the canonical metric defined by

( ) [ ( ( ) ( )) ]= − ∕d s t X s X tE, .

2 1 2 (2.5)

Then, there exists a positive constant c
2,3

such that for all >u 0,

∣ ( ) ( )∣ ( )∫ ⎟⎜

⎧
⎨
⎩

− ≥
⎛

⎝
⎜ +

⎞

⎠
⎟
⎫
⎬
⎭

≤ ⎛
⎝
− ⎞

⎠∈
X s X t c u N F ε ε

u

D
P sup log , d exp ,

s t F

D

d

,

2,3

0

2

2

(2.6)

where ( )N F ε,d denotes the smallest number of open d-balls of radius ε needed to cover F and where
{ ( ) }= ∈D d s t s t Fsup , : , is the diameter of F.

Lemma 2.3. If ( )X t and ( )Y t are a.s. bounded, centered Gaussian processes on Λ such that ( ( )) ( ( ))=X t Y tE E2 2

for all ∈t Λ, and

[( ( ) ( )) ] [( ( ) ( )) ]− ≤ − ∀ ∈X t X s Y t Y s s tE E , , Λ,

2 2

then for all real λ,

( ) ( )⎜ ⎜⎟ ⎟
⎛
⎝

>
⎞
⎠

≤
⎛
⎝

>
⎞
⎠∈ ∈

X t λ Y t λP Psup sup

t tΛ Λ

and

( ) ( )⎜ ⎜⎟ ⎟
⎛
⎝

⎞
⎠

≤
⎛
⎝

⎞
⎠∈ ∈

X t Y tE Esup sup .

t tΛ Λ

Proof. It is Slepian’s inequality (see, p. 49 in [13]). □

In order to solve the dependence structure of SH K, and to create independence, we will develop the
stochastic integral representation of S .

H K, By Lamperti’s transformation [14], we define Gaussian process
{ ( ) }= ∈Y Y t t R, as follows:

( ) ( )= ∈−Y t e S e t R, .

HKt H K t, (2.7)

The covariance function ( ) ( ( ) ( ))≔r t Y Y tE 0 is given by

( ) ( ) ( ) ∣ ∣

( ) ( ) ∣ ∣

( )

=
⎧
⎨
⎩

+ − + − −
⎫
⎬
⎭

=
⎧
⎨
⎩

+ − + − −
⎫
⎬
⎭

= −

−

− − −

r t e e e e

e e e e

r t
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1

2

1

1

2

1

1
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1

.

HKt Ht K t HK t HK

HKt Ht K t HK t HK

2 2 2

2 2 2

(2.8)
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Hence, ( )r t is an even function and, by (2.8) and the Taylor expansion, we verify that ( ) ( )= −r t O e βt as → ∞t ,
where ( )= −β H K2 . It follows that ( ) ( )⋅ ∈r L R1 . By (2.8) and the Taylor expansion we obtain

( ) ∣ ∣− − →−r t t t~ 2 2

1

2

, 0.

K HK HK2 1 2 (2.9)

By Bochner’s theorem [15], Y has the stochastic integral representation:

( ) ( )∫= ∀ ∈Y t e W λ t Rd , ,

iλt

R

(2.10)

where W is a complex Gaussian measure with control measure Δ, whose Fourier transform is ( )⋅r .
The measure Δ is called the spectral measure of Y .

Since ( ) ( )⋅ ∈r L R1 , the spectral measure Δ of Y has a continuous density function ( )f λ , which can be
represented as the inverse Fourier transform of ( )⋅r

( ) ( ) ( )∫=
∞

f λ
π

r t tλ t
1

cos d .

0

(2.11)

Similar to the proof of (2.10) in [16], we can obtain

( ) ∣ ∣ ( ) → ∞− +f λ c λ λ~ , as ,

HK
2,4

1 2 (2.12)

where >c 0
2,4

is an explicit constant depending only on HK .
By (2.7) and (2.10), we obtain

( ) ( )∫= ∀ >S t t e W λ td , 0.

H K HK iλ t

R

, log (2.13)

We list two properties of the spectral density ( )f λ of Y . They follow from (2.12), or from (2.9) and the
truncation inequalities in [17], page 209, refer also [18].

Lemma 2.4. There exist positive constants c
2,5

and c
2,6

such that for >u 1,

( )

∣ ∣

( )∫ ≤
<

−λ f λ λ c ud

λ u

HK2

2,5

2 1

(2.14)

and

( )

∣ ∣

∫ ≤
≥

−f λ λ c ud .

λ u

HK
2,6

2

(2.15)

Proof of Theorem 2.1.Without loss of generality, we supposeTvn is an integer. For integers n and ≥j 1, we take
( )=a jnn j

β
,

, where >β 0 is a constant. Define two Gaussian processes

( ) ( )
( )

∣ ∣ ( ]

∫=
∈ +

X t t e W λdn j
HK

λ a a

iλ t
,

1

,

log

n j n j, , 1

and

( ) ( )
( )

∣ ∣ ( ]

∫=
∉ +

X t t e W λd .n j
HK

λ a a

iλ t
,

2

,

log

n j n j, , 1

Clearly, by (2.13), we have

( ) ( ) ( )
( ) ( )= + ≥S t X t X t t, for all 0.

H K
n j n j

,

,

1

,

2 (2.16)
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It is important to note that for a fixed n, the Gaussian processes ( )
( ) =X t j, 1, 2,…n j,

1 , are independent; moreover,
for every ( )

( )≥j X t1, n j,

1 and ( )
( )

X tn j,

2 are also independent. Since

( )

( )

( )

( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

∑

∑

∑

∑

∑

⎜ ⎟ ⎜ ⎟
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In the following, we will show that the terms I
1
and I

3
almost surely converge to zero, I

2
and I

4
converge to zero,

as → ∞n , respectively.
First, we prove for > >a T0, 0, and ≥p 1, as → ∞n ,
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In fact,
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For Yn j, , by Lemmas 2.2 and 2.4, elementary calculus can show that there exists n
0
such that for any ≥n n

0
,

for every ≤ ≤j Tv1 n and for any >t 0,

( ) ( )> ≤ −+ −Y t c n c n tP exp .n j
a β βHK a

, 2,9 2,10

2 2 2 (2.21)
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Thus, for any >ε 0, we obtain
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Taking >β 0 large enough such that ( )− − − >βHK a a p HK2 2 2 1 0, by the Borel-Cantelli lemma, we have
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Combining (2.18) and (2.22), we prove that (2.17) holds.
Second, we prove for > >a T0, 0, and ≥p 1, as → ∞n ,
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In fact, for any ≤ ≤j Tv1 n and >r 2, by (2.21) and Hölder’s inequality, we obtain
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where we use by letting =s tr
2

, then

( )

( )

( )

( )

∫ ∫

∫⎜ ⎟

⎛
⎝−

⎞
⎠ = −

=
⎛
⎝

⎞
⎠

⋅

=

∞
−

∞
− −

∞

−

− −

−

− +

c n s s
r

t c n t t

r y

c n

e y

c n

n

c

exp d

2

exp d

2

d

Γ

.

βHK a βHK a

βHK a

y

βHK a

r r
βHK a r

0

2,10

2 2

0

1

2,10

2 2

0

2,10

2 2

1

2,10

2 2

2 2

2,10

r
r

r

r

2

2

2

2

Hence,

( ( ) )( ) ( )∑ ≤
=

− − − + + +

v
v Y c nE

1

.

n j

Tv

n

p HK
n j

a p HK βHK a

1

1

,

2

2,14

1

n
a β

r
1

2

Taking first >β 0 large enough and then taking >r 2 large enough such that ( )− − + + <+
a p HK βHK a1 0

a β

r
.

Therefore, we obtain

( ( ) )( )∑ =
→∞ =

−
v

v YElim

1

0.

n n j

Tv

n

p HK
n j

1

1

,

2

n
1

2 (2.25)
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Similar to (2.24), by using (2.4), for any >p 1, we have that

∣ ( )∣ ( )⎜ ⎟
⎛
⎝

⎞
⎠

≤
≤ ≤

−S t cE sup .

t T

H K p

0

, 2 1

2,15

(2.26)

Since, for any ≥ ≥ >j t h1, 0, 0, we have

( ( ) ( )) ( ( ) ( ))
( ) ( )+ − ≤ + −X t h X t S t h S tE E .n j n j

H K H K
,

1

,

1
2 , , 2

Then, (2.4) remains true for ( )
Xn j,

1 . Thus, similar to (2.26), we obtain for any ≤ ≤j Tv1 n,

∣ ( )∣
( ) ( )⎜ ⎟

⎛
⎝

⎞
⎠

≤
≤ ≤

−X t cE sup .

t T

n j
p

0

,

1
2 1

2,16

Hence, combining (2.20) and (2.25), we have that (2.23) holds.
Third, we prove that for > >a T0, 0, and ≥p 1, as → ∞n ,

( ) ( ) ( ) ( )∑ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= ⎛
⎝

⎞
⎠

− ⎛
⎝

− ⎞
⎠

− ⎛
⎝

⎞
⎠

− ⎛
⎝

− ⎞
⎠

⟶
=

I
v

v X
j

v
X

j

v
X

j

v
X

j

v
E

1 1 1

0, a.s.

n j

Tv

n

pHK

n j

n

n j

n

p

n j

n

n j

n

p

3

1

,

1

,

1

,

1

,

1

n

(2.27)

In fact, since for a fixed n, the processes { ( ) }
( ) ≥ =X t t j Tv, 0 , 1, 2,…,n j n,

1 are independent and so are

( ) ( )⎛
⎝

⎞
⎠ − ⎛

⎝
⎞
⎠ =−

X X j Tv, 1, 2,…,n j

j

v n j

j

v

p

n,

1

,

1
1

n n

. For any >ε 0 and >r 1, by Markov inequality and the moment inequality

of partial sums of independent random variables, we have

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

∑

∑

∑

∑

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛

⎝
⎜

⎛
⎝

⎞
⎠

− ⎛
⎝

− ⎞
⎠

− ⎛
⎝

⎞
⎠

− ⎛
⎝

− ⎞
⎠

>
⎞

⎠
⎟

≤
⎡

⎣
⎢

⎛
⎝

⎞
⎠

− ⎛
⎝

− ⎞
⎠

− ⎛
⎝

⎞
⎠

− ⎛
⎝

− ⎞
⎠

⎤

⎦
⎥

≤
⎡

⎣⎢
⎛
⎝

⎞
⎠

− ⎛
⎝

− ⎞
⎠

− ⎛
⎝

⎞
⎠

− ⎛
⎝

− ⎞
⎠

⎤

⎦⎥

≤
⎡

⎣⎢
⎛
⎝

⎞
⎠

− ⎛
⎝

− ⎞
⎠

⎤

⎦⎥

=

=

−

=

+
=

v X
j

v
X

j

v
X

j

v
X

j

v
εv

c

v
v X

j

v
X

j

v
X

j

v
X

j

v

c

v
v v X

j

v
X

j

v
X

j

v
X

j

v

c

v

v X
j

v
X

j

v

P E

E E

E E

E

1 1

1 1

1 1

1

.

j

Tv

n

pHK

n j

n

n j

n

p

n j

n

n j

n

p

n

n

r

j

Tv

n

pHK

n j

n

n j

n

p

n j

n

n j

n

p r

n

r n

r

j

Tv

n

prHK

n j

n

n j

n

p

n j

n

n j

n

p r

n j

Tv

n

pHK

n j

n

n j

n

p r

1

,

1

,

1

,

1

,

1

2,17

1

,

1

,

1

,

1

,

1

2,18

2

1

1

,

1

,

1

,

1

,

1

2,19

1

1

,

1

,

1

n

n

n

r

n

2

(2.28)

Since

( ) ( )
⎟ ⎟⎜ ⎜⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟≔

⎛
⎝

⎛
⎝

+ ⎞
⎠

− ⎛
⎝

+ ⎞
⎠
⎞
⎠

≤
⎛
⎝

⎛
⎝

+ ⎞
⎠

− ⎛
⎝

+ ⎞
⎠
⎞
⎠

σ X
j t

v
X

j u

v
S

j t

v
S

j u

v
E En j n j

n

n j

n

H K

n

H K

n

,

2

,

1

,

1

2

, ,

2

and

( )( ) ( )( ) (( ) ( ) )

( ) ∣ ∣

∣ ∣

⎟⎜
⎛
⎝

⎛
⎝

⎞
⎠ − ⎛

⎝
⎞
⎠
⎞
⎠

= − + + − + − + + +

+ + + + −
⟶ − → ∞

+ +

− −

S S

j t j u j t j u

j t u t u

t u j

E

2 2 2 2 2

2

, as ,

H K
j t

v

H K
j u

v

v

K HK HK K HK HK H H K

HK HK

HK

, ,

2

1

2 1 2 2 1 2 2 2

2 2

2

n n

n
HK2

(2.29)

for any [ ]∈t u, 0, 1 and ≥n 1.
Hence, for = =t u1, 0, there exists ≥j 1

0

such that for any ≥j j
0

,

( ) ( )
⎜ ⎟ ⎜ ⎟

⎡

⎣⎢
⎛
⎝

⎞
⎠

− ⎛
⎝

− ⎞
⎠

⎤

⎦⎥
≤ ≤v X

j

v
X

j

v
c v σ cE

1

,n

pHK

n j

n

n j

n

p r

n

prHK

n j

pr

,

1

,

1

2,20 , 2,21
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where we have used the fact: let X be a random variable following an ( )N σ0,

2 , then for any >γ 0,

(∣ ∣ ) =

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

+

X σE

2 Γ

Γ

.

γ

γ

γ

1

2

1

2

γ

2

(2.30)

Therefore,

( ) ( ) ( ) ( )∑ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎛

⎝
⎜

⎛
⎝

⎞
⎠

− ⎛
⎝

− ⎞
⎠

− ⎛
⎝

⎞
⎠

− ⎛
⎝

− ⎞
⎠

>
⎞

⎠
⎟ ≤

=

−v X
j

v
X

j

v
X

j

v
X

j

v
εv c nP E

1 1

.

j

Tv

n

pHK

n j

n

n j

n

p

n j

n

n j

n

p

n

1

,

1

,

1

,

1

,

1

2,22

n
ar

2

Taking >r 1 large enough such that > 1

ar

2

and by Borel-Cantelli lemma, we obtain (2.27) holds.

Finally, we prove that for > >a T0, 0, and ≥p 1, as → ∞n ,

( )

( )
∑ ⎜ ⎟ ⎜ ⎟= ⎛

⎝
⎞
⎠

− ⎛
⎝

− ⎞
⎠

− ⟶
=

∕ +

I
v

v S
j

v
S

j

v
TE

1 1
2 Γ

Γ

0.

n j

Tv

n

pHK H K

n

H K

n

p p
p

4

1

, ,

2

1

2

1

2

n

(2.31)

In fact, by (2.29) and (2.30), we have for large j ,

( )

( )

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

− ⎛
⎝

− ⎞
⎠

⟶
∕ +

v S
j

v
S

j

v
E

1
2 Γ

Γ

.n

pHK H K

n

H K

n

p p
p

, ,

2

1

2

1

2

Hence, (2.31) holds. Thus, the proof of Theorem 2.1 is complete. □

Proof of Corollary 2.2. By Theorem 2.1, following the same lines as the proof of Theorem 1.2 in [19], we can
easily prove the corollary, and omit the details. □

Proof of Theorem 2.3. For simplicity, we assume that Tvn is an integer. For >a 0, we denote

( ) ∣ ( ) ( )∣

( )

= = −

= =

−
< <

ξ ξ S a S t S u

η η S a v ξ

, sup ,

, .

n j n j
H K

j

v
t u

j

v

H K H K

n j n j

H K
n

HK
n j

, ,

,

1

,

, ,

, ,

,

,

n n

We first prove that for every >a 0,

∣ ∣∑ − =
→∞ −

=v
ξ ξElim

1

0, a.s.

n n

HK

j

Tv

n j n j
1

1

, ,

n

(2.32)

Denote ( ) ( )
( ) ( )= =ζ ξ X a Y v ξ X a, , ,n j n j n j n j n

HK
n j n j, , ,

1

, , ,

2 (Yn j, is actually defined by (2.19)). In order to show (2.32),
it is enough to prove that

∣ ∣∑ − =
→∞ −

=v
ζ ζElim

1

0, a.s. ,

n n

HK

j

Tv

n j n j
1

1

, ,

n

(2.33)

∣ ∣∑ =
→∞ =v

Ylim

1

0, a.s. ,

n n j

Tv

n j

1

,

n

(2.34)

and

∣ ∣∑ − =
→∞ −

=v
ζ ξE Elim

1

0,

n n

HK

j

Tv

n j n j
1

1

, ,

n

(2.35)

By equalities (2.22) and (2.23), we can obtain equalities (2.34) and (2.35), respectively. We are preparing
to prove (2.33).
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In fact, since for a fixed ( ) =n X j Tv, , 1, 2,…,n j n,

1 , are independent; so are =v ζ j Tv, 1, 2,…, ,n

HK
n j n,

similar
to (2.28), for any >ε 0 and >r 1, we have

∣ ( )∣ [( ) ]∑ ∑⎛

⎝
⎜ − >

⎞

⎠
⎟ ≤

=
+

=
v ζ v ζ εv

c

v

v ζP E E .

j

Tv

n

HK
n j n

HK
n j n

n j

Tv

n

HK
n j

r

1

, ,

2,23

1

1

,

n

r

n

2

(2.36)

By Lemma 2.1, we obtain for every >t t
0
with some >t 0

0
and ≤ ≤j Tv1 n,

( ) ∣ ( ) ( )∣> =
⎛

⎝

⎜
⎜ − ≥

⎞

⎠

⎟
⎟ ≤

−
< <

− −η t S t S u tv c v eP P sup .
n j

j

v
t u

j

v

H K H K
n

HK
n

c t

,

1

,

, ,

2,24

n n

2,25

2

Hence, by (2.16) and (2.21), we obtain

( )> ≤ ⎛
⎝ > ⎞

⎠ + ⎛
⎝ > ⎞

⎠ ≤ + −v ζ t η
t

Y
t

c n eP P P
2 2

.n

HK
n j n j n j

a β c t
,

,
, 2,26

2,27

2

Therefore, for every ≤ ≤j Tv1 n,

( )

( )

∫

∫

∫

= ⎛
⎝ > ⎞

⎠

≤ + ⎛
⎝ > ⎞

⎠

≤ + − ≤

∞

∞

+
∞

∕ +

v ζ v ζ t t

t v ζ t t

t c n c t t c n

E P

P

d

d

exp d .

n

HK
n j

r
n

HK
n j

t

n

HK
n j

a β r a β

,

0

,

0 ,

0 2,28

0

2,29

2

2,30

r

r

1

0

1

Hence, by (2.36), we obtain

∣ ( )∣∑⎛
⎝
⎜ − >

⎞

⎠
⎟ ≤ =

=

+
− + +v ζ v ζ εv

c n

v

c nP E .

j

Tv

n

HK
n j n

HK
n j n

a β

n

r
a β

1

, ,

2,31

2

2,32

n
ar

2

Taking >r 1 large enough such that − + + < −a β 1

ar

2

, by the Borel-Cantelli lemma, we have

∣ ∣∑ − ⟶−
=v

ζ ζE
1

0, a.s. ,

n

HK

j

Tv

n j n j
1

1

, ,

n

as → ∞n . Thus, (2.33) holds.
In order to finish the proof of Theorem 2.3, by the self-similarity of SH K, , we only need to show

( ) ( )∑ ⎜ ⎟=
⎛
⎝

⎞
⎠→∞ = ≤ ≤v

η T S tE Elim

1

2 sup .

n n j

Tv

n j

t

H K

1

,

0 1

,

n

(2.37)

By (2.29), there exists >j 0
0

such that for every [ ]∈t u, 0, 1 and all ≥j j
0

,

∣ ∣

⎟⎜
⎛
⎝

⎛
⎝

⎞
⎠ − ⎛

⎝
⎞
⎠
⎞
⎠

=
→∞

+ +

−

S SE

lim 1.

n

H K
j t

v

H K
j u

v

t u

v

, ,

2

n n

HK

n
HK

2

2

Hence, by Lemma 2.3, for every ≥j j
0

,

⎟ ⎟⎜ ⎜⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎛
⎝

− + ⎞
⎠

− ⎛
⎝

− ⎞
⎠
⎞
⎠
⎤
⎦⎥

=
⎡
⎣⎢

⎛
⎝

⎛
⎝

⎞
⎠
⎞
⎠
⎤
⎦⎥→∞ < < →∞ < <

S
j t

v
S

j

v
S

t

v
E Elim sup

1 1

lim sup .

n t

H K

n

H K

n n t

H K

n
0 1

, ,

0 1

,
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Therefore,

( )

⎜ ⎟

⎟ ⎟

⎟ ⎟

⎟

⎜ ⎜

⎜ ⎜

⎜

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟

=
⎛

⎝
⎜

⎛
⎝

⎛
⎝

− + ⎞
⎠

− ⎛
⎝

− ⎞
⎠
⎞
⎠

−
⎛
⎝

⎛
⎝

− + ⎞
⎠

− ⎛
⎝

− ⎞
⎠
⎞
⎠

⎞

⎠
⎟

=
⎛

⎝
⎜

⎡
⎣⎢
⎛
⎝

⎛
⎝

− + ⎞
⎠

− ⎛
⎝

− ⎞
⎠
⎞
⎠

−
⎛
⎝

⎛
⎝

− + ⎞
⎠

− ⎛
⎝

− ⎞
⎠
⎞
⎠
⎤
⎦⎥
⎞

⎠
⎟

=
⎛
⎝

⎡
⎣⎢

⎛
⎝

− + ⎞
⎠

− ⎛
⎝

− ⎞
⎠
⎤
⎦⎥
⎞
⎠

=
⎡
⎣⎢

⎛
⎝

⎛
⎝

⎞
⎠
⎞
⎠
⎤
⎦⎥

→∞ →∞ < <

→∞ < <

→∞ < <

→∞ < <

ξ S
j t

v
S

j

v
S

j u

v
S

j

v

S
j t

v
S

j

v
S

j u

v
S

j

v

S
j t

v
S

j

v

S
t

v

E E

E

E

E

lim lim sup

1 1 1 1

lim sup

1 1 1 1

lim 2 sup

1 1

lim 2 sup .

n
n j

n t u

H K

n

H K

n

H K

n

H K

n

n t u

H K

n

H K

n

H K

n

H K

n

n t

H K

n

H K

n

n t

H K

n

,

0 , 1

, , , ,

0 , 1

, , , ,

0 1

, ,

0 1

,

Hence, by the self-similarity of SH K, , for any ≥j j
0

,

( ) ( )

( ( ))

⎟⎜ ⎜ ⎟

=

=
⎛

⎝
⎜

⎡
⎣⎢

⎛
⎝

⎛
⎝

⎞
⎠
⎞
⎠
⎤
⎦⎥
⎞

⎠
⎟

=
⎡
⎣⎢

⎤
⎦⎥

→∞ →∞

→∞ < <

< <

η v ξ

v S
t

v

S t

E E

E

E

lim lim

2 lim sup

2 sup .

n
n j

n
n

HK
n j

n
n

HK

t

H K

n

t

H K

,
,

0 1

,

0 1

,

By (2.26), we have

( ) ∣ ( ) ( )∣

( )

( )⎜ ⎟

≤
⎛

⎝

⎜
⎜ −

⎞

⎠

⎟
⎟

=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=
⎛
⎝

⎞
⎠

≤

≤ ≤
< <

< <

< <

η v S t S u

v S t

j S t

c

E E

E

E

max sup

2 sup

2 sup

.

j j
n j n

HK

t u
j

v

H K H K

n

HK

t
j

v

H K

HK

t

H K

1

,

0 ,

, ,

0

,

0

0 1

,

2,33

n

n

0
0

0

Therefore,

( ) ( ) ( ) ( ( ))∑ ∑ ∑= + =
⎡
⎣⎢

⎤
⎦⎥→∞ = →∞ = →∞ = + < <v

η
v

η
v

η T S tE E E Elim

1

lim

1

lim

1

2 sup .

n n j

Tv

n j
n n j

j

n j
n n j j

Tv

n j

t

H K

1

,

1

,

1

,

0 1

,

n n0

0

The proof of Theorem 2.3 is completed. □

3 Chung’s LIL

In [16,18,20,21] the authors established Chung’s LIL for fBm and other strongly locally nondeterministic
Gaussian processes with stationary increments. Luan [22] obtained Chung’s LIL for sbfBm. In this section,
we prove the Chung’s LIL for sbfBm SH K, in R.

Theorem 3.1. Let { ( ) }= ≥S S t t, 0

H K H K, , be the sbfBms in R, with ( )∈H 0, 1 and ( ]∈K 0, 1 . Then, there exists
a positive and finite constant c

3,1
such that

∣ ( )∣

( ( ))

[ ]

∕ ∕
=

→

∈ S t

r r
climinf

max

log log 1

, a.s.

r

t r
H K

HK HK
0

0,

,

3,1

(3.1)
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In order to prove Theorem 3.1, we need several lemmas. Lemma 3.1 shows that the sbfBms SH K, has strong
local nondeterminism. Lemma 3.2 gives estimates on the small ball probability of SH K, .

Lemma 3.1. For all constants < <a b0 , SH K, is strongly locally φ-nondeterministic on [ ]=I a b, with
( ) =φ r r HK2 . That is, there exist positive constants c

3,2
and r

0
such that for all ∈t I and all { }< ≤r t r0 min ,

0
,

{ ( )∣ ( ) ∣ ∣ } ( )∈ ≤ − ≤ ≥S t S s s I r s t r c φ rVar : , .

H K H K, ,

0 3,2
(3.2)

Proof. See the proof of Proposition 2.1 in [2], the proof follows the same line as Proposition 2.1 in [16]. □

Lemma 3.2. There exist positive constants c
3,3

and c
3,4

such that for all [ ]∈t 0, 1
0

and ( )∈x 0, 1 ,

∣ ( ) ( )∣
( )

[ ]
( )

⎛
⎝−

⎞
⎠ ≤

⎧
⎨
⎩

− ≤
⎫
⎬
⎭

≤ ⎛
⎝−

⎞
⎠∕ ∈ ∕

c

x
S t S t x

c

x
Pexp max exp .

HK
t

H K H K

HK

3,3

1

0, 1

, ,

0

3,4

1

(3.3)

Proof. By Lemma 3.1 and (1.2), we know that SH K, satisfies conditions ( )C1 and ( )C2 of [23]. Hence, this lemma
holds by Theorem 3.1 of [23]. □

The following Lemma 3.3 is from [16], which provides a zero-one law for ergodic self-similar processes.

Lemma 3.3. Let { }= ∈X X t R,t be a separable, self-similar process with index k. We assume that =X 0
0

and that
X is ergodic. Then, for any increasing function →+ +ψ R R: , we have ( ) =EP 0k ψ, or 1, where

∣ ∣ ( )=
⎧
⎨
⎩

> ≥ < ≤
⎫
⎬
⎭≤ ≤

E ω there exists δ such that X t ψ t for all t δ: 0 sup 0 .k ψ

s t

s
k

,

0

By a result of [24] on ergodicity and mixing properties of stationary Gaussian processes, we see that SH K,

is mixing. Hence, we can obtain the following lemma.

Lemma 3.4. There exists a constant [ ]∈ ∞c 0,
3,5

such that

( ( ))
∣ ( )∣

∕
=

→ ≤ ≤+

t

t
S s c a.s.liminf

log log 1

max ,

t

HK

HK
s t

H K

0 0

,

3,5

(3.4)

Proof. We take ( ) ( ( ))= ∕ −ψ t c tlog log 1
c

HK and define { ( ) }= ≥ =c c EPsup 0 : 1k ψ3,5 ,
c

. Then, (3.4) holds from
Lemma 3.3. □

Theorem 3.1 will be established if we prove ( )∈ ∞c 0,
3,5

from Lemma 3.4. This is where Lemmas 3.2 and 2.2
are needed.

Now, we proceed to prove Theorem 3.1.

Proof of Theorem 3.1. We prove the lower bound first. For any integer ≥n 1, let = −r en
n. Let < <γ c0

3,4

be a constant and consider the event

∣ ( )∣ ( ( ))=
⎧
⎨
⎩

≤ ∕ ∕
⎫
⎬
⎭≤ ≤

A S s γ r rmax log log 1 .n
s r

H K HK
n

HK
n

HK

0

,

n

(3.5)

Then, by the self-similarity of SH K, and Lemma 3.2,

{ } ∣ ( )∣ ( ( ))

∣ ( )∣ ( ( ))

=
⎧
⎨
⎩

≤ ∕ ∕
⎫
⎬
⎭

=
⎧
⎨
⎩

≤ ∕ ∕
⎫
⎬
⎭

≤ ≤

≤ ≤

A S s γ r r

S r s γ r r

P P

P

max log log 1

max log log 1

n
s r

H K HK
n

HK
n

HK

s

H K
n

HK
n

HK
n

HK

0

,

0 1

,

n

(3.6)
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∣ ( )∣ ( ( ))

∣ ( )∣ ( ( ))

⎜ ⎟

=
⎧
⎨
⎩

≤ ∕ ∕
⎫
⎬
⎭

=
⎧
⎨
⎩

≤ ∕ ∕
⎫
⎬
⎭

≤ ⎛
⎝
− ⎞

⎠
=

≤ ≤

≤ ≤

− ∕

r S s γ r r

S s γ r

c

γ
n

n

P

P

max log log 1

max log log 1

exp log

.

n

HK

s

H K HK
n

HK
n

HK

s

H K HK
n

HK

c γ

0 1

,

0 1

,

3,4

3,4

(3.6)

Since { }∑ < ∞=
∞

APn n1
, by the Borel-Cantelli lemma, we obtain

∣ ( )∣

( ( ))∕ ∕
≥

→∞

≤ ≤ S s

r r
climinf

max

log log 1

a.s.

n

s r
H K

n

HK
n

HK

0

,

3,4

n (3.7)

By (3.7) and a standard monotonicity argument, we have

∣ ( )∣

( ( ))∕ ∕
≥

→

≤ ≤ S s

r r
climinf

max

log log 1

a.s.

r

s r
H K

HK HK
0

0

,

3,6
(3.8)

We will prove the upper bound by the following stochastic integral representation of SH K, . For every >t 0,
by (2.13), we have

( ) ( )∫=S t t e W λd .

H K HK iλ t

R

, log

For every integer ≥n 1, we take

= =−t n d nand ,n
n

n
β (3.9)

where >β 0 is a constant whose value will be determined later. It is sufficient to prove that there exists a finite
constant c

3,7
such that

∣ ( )∣

( ( ))∕ ∕
≤

→∞

≤ ≤ S s

t t
climinf

max

log log 1

a.s.

n

s t
H K

n

HK
n

HK

0

,

3,7

n (3.10)

Define two Gaussian processes, Xn

1 and Xn

2, by

( ) ( )

∣ ∣ ( ]

∫≔
∈ −

X t t e W λdn
HK

λ d d

iλ t1

,

log

n n1

(3.11)

and

( ) ( )

∣ ∣ ( ]

∫≔
∉ −

X t t e W λd ,n
HK

λ d d

iλ t2

,

log

n n1

(3.12)

respectively. Clearly, ( ) ( ) ( )= +S t X t X tH K
n n

, 1 2 for all ≥t 0. It is important to note that the Gaussian processes
( )=X n 1, 2, …n

1 are independent; moreover, for every ≥n 1, the processes Xn

1 and Xn

2 are also independent.
Let ( ) ( ( ))= ∕ −h r r rlog log 1

HK HK . We make the following two claims:
(i) There is a constant >γ 0 such that

∣ ( )∣ ( )
[ ]

∑ ⎧
⎨
⎩

≤
⎫
⎬
⎭

= ∞
=

∞

∈
X s γ h tP max .

n
s t

n
HK

n

1

0,

1

n

(3.13)

(ii) For every >ε 0,

∣ ( )∣ ( )
[ ]

∑ ⎧
⎨
⎩

>
⎫
⎬
⎭

< ∞
=

∞

∈
X s εh tP max .

n
s t

n n

1

0,

2

n

(3.14)
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Since the events in (3.13) are independent, we see that (3.10) follows from (3.13), (3.14), and a standard Borel-
Cantelli argument.

It remains to verify the claims (i) and (ii) above. By Lemma 3.2 and Anderson’s inequality [25], we obtain

∣ ( )∣ ( ) ∣ ( )∣ ( )

∣ ( )∣ ( )

∣ ( )∣ ( )

∣ ( )∣ ( ( ))

( )

( )

[ ] [ ]

[ ]

[ ]

[ ]

⎜ ⎟

⎧
⎨
⎩

≤
⎫
⎬
⎭
≥

⎧
⎨
⎩

≤
⎫
⎬
⎭

=
⎧
⎨
⎩

≤
⎫
⎬
⎭

=
⎧
⎨
⎩

≤
⎫
⎬
⎭

=
⎧
⎨
⎩

≤ ∕ ∕
⎫
⎬
⎭

≥ ⎛
⎝
− ⎞

⎠
=

∈ ∈

∈

∈

∈

− ∕

X s γ h t S s γ h t

S t s γ h t

t S s γ h t

S s γ t

c

γ
n n

n n

P P

P

P

P

max max

max

max

max log log 1

exp log log

log .

s t
n

HK
n

s t

H K HK
n

s

H K
n

HK
n

n

HK

s

H K HK
n

s

H K HK
n

HK

c γ

0,

1

0,

,

0, 1

,

0, 1

,

0, 1

,

3,3

n n

3,3

(3.15)

Thus, (i) holds for ≥γ c
3,3
.

In order to prove (ii), we divide [ ]t0, n into +p 1
n

non-overlapping subintervals [ ]= −J a a,
n j n j n j

,
, 1 ,

,

=j p0, 1,…, ,
n

and then apply Lemma 2.2 to Xn

2 on each of J
n j,
. Let >β 0 be the constant in (3.9) and take

[ ]= −J t n0,
n n

β

,0

. After J
n,0

has been defined, we take ( )= ++
−a a n1n j n j

β
, 1 ,

. It can be verified that the number
of such subintervals of [ ]t0, n satisfies the following bound:

+ ≤p cn n1 log .
n

β (3.16)

Moreover, for every ≥j 1, if ∈s t J,
n j,

and <s t, then we have ∕ − ≤ −t s n1

β and this yields

− ≤ ⎛
⎝

⎞
⎠ ≤− −t s sn

t

s
nand log .

β β (3.17)

(1.2) implies that the canonical metric d for the process Xn

2 satisfies

( ) ∣ ∣≤ − >d s t c s t s t, for all , 0

HK (3.18)

and ( ) ≤ −d s ct n0, n

HK βHK for every ∈s J
n,0

. It follows that { ( ) }≔ ∈ ≤ −D d s t s t J ct nsup , ; ,
n n

HK βHK
0

,0

, and

( )
( ) ( )

≤
∕

−

∕N J ε
t n

ε c
, .d n

n
β

HK,0 1

(3.19)

Some simple calculations yield

( )
( )

( )

( )

( )

∫ ∫

∫

∫

⎟⎜≤ ⎛
⎝ ∕

⎞
⎠

= ⎛
⎝

⎞
⎠

= ∕ ⎛
⎝

⎞
⎠

=

−

∕

−
∕

−

−

−

N J ε ε
t n

ε c
ε

ct n
u

u

c HK t n
u

u

c t n

log , d log d

log

1

d

1 log

1

d

.

D

d n

ct n

n
β

HK

n

HK βHK

HK

n

HK βHK

n

HK βHK

0

,0

0

1

0

1

1

0

1

3,8

n
HK βHK

0

(3.20)
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It follows from Lemma 2.2 and (3.20) that

∣ ( )∣ ( ) ∣ ( ) ( )∣ ( )

∣ ( ) ( )∣

∣ ( ) ( )∣ ( )

( )

( ( ))

( ( ))

∫

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎧
⎨
⎩

>
⎫
⎬
⎭
=

⎧
⎨
⎩

− >
⎫
⎬
⎭

≤
⎧
⎨
⎩

− >
⎫
⎬
⎭

≤
⎧
⎨
⎩

− >
⎛

⎝
⎜ +

⎞

⎠
⎟
⎫
⎬
⎭

≤ ⎛
⎝
− ⎞

⎠

≤
⎛
⎝
−

⎞
⎠

= ⎛
⎝
− ⎞

⎠

∈ ∈

∈

∈

−

−

X s εh t X s X εh t

X s X t c u

X s X t c u N J ε ε

u

D

c
t n n

t n

c
n

n n

P P

P

P

max max 0

max 2

max log , d

exp

exp

log log

exp

log log

,

s J
n n

s J
n n n

s t J
n n

s t J
n n

D

d n

n

HK HK

n

HK βHK

βHK

HK

2 2 2

,

2 2

3,9

,

2 2

3,9

0

,0

2

0

2

2 2

2 2

2

2

n n

n

n

,0 ,0

,0

,0

0

(3.21)

where ( )=u h t
ε

c n
2

3,9

, which is larger than ( )∫ N J ε εlog , d

D

d n
0

,0

0 .

For every ≤ ≤j p1
n
, we estimate the d-diameter of J

n j,
. It follows from (3.12) that for any ∈s t J,

n j,

with <s t,

( ( ) ( )) ∣ ∣ ( )

∣ ∣ ( )

∣ ∣

∣ ∣

∫

∫

− = −

+ −

≔ +

≤

>

−

X s X t t e s e f λ λ

t e s e f λ λ

T T

E d

d

.

n n

λ d

HK iλ t HK iλ s

λ d

HK iλ t HK iλ s

2 2 2 log log 2

log log 2

1 2

n

n

1

(3.22)

For T
2
, we have, for all ∈s t J,

n j,
,

( )

∣ ∣

∫≤ ≤
>

−T t f λ λ c t n4 d ,n

HK

λ d

n

HK βHK
2

2

3,10

2 2

n

(3.23)

where the last inequality follows from (2.15).
For T

1
, we use the elementary inequalities − ≤x x1 cos

2 for every ∈x R and ( )− ≤ −x x1 1

α α for >x 1

and < <α0 1 to derive that, for all ∈s t J,
n j,

with <s t,

∣ ∣ ( )

( ) ( )

( ) ( )

( )

( )

∣ ∣

∣ ∣

∣ ∣

∣ ∣

( )

∫

∫

∫ ∫

∫

⎟⎜

= −

= ⎡
⎣⎢

− + ⎛
⎝ − ⎛

⎝
⎞
⎠
⎞
⎠
⎤
⎦⎥

≤ ⎛
⎝
⎛
⎝

⎞
⎠ − ⎞

⎠
+ ⎛

⎝ − ⎛
⎝

⎞
⎠
⎞
⎠

≤ ⎛
⎝ − ⎞

⎠ + ⎛
⎝

⎞
⎠

≤ + −
≤

≤

≤

≤

≤

− − −

−

−

−

−

−

T t e s e f λ λ

t s t s λ
t

s
f λ λ

s
t

s
f λ λ t λ

t

s
f λ λ

s
t

s
t

t

s
λ f λ λ

t n t n c n

c t n

d

2 1 cos log d

1 d 2 1 cos log d

1 2 log d

2 1

,

λ d

HK iλ t HK iλ s

λ d

HK HK HK HK

HK

HK

HK

λ d

HK

HK

HK

λ d

n

HK βHK
n

HK β β HK

n

HK βHK

R

1

log log 2

2

2

2

2

2

2

2

2

2

2 2 2 2

1

2 1

3,11

2 2

n

n

n

n

1

1

1

1

(3.24)

where in deriving the last but one inequality, we have used (3.17) and (2.14), respectively.
It follows from (3.22), (3.23), and (3.24) that the d-diameter of J

n j,
satisfies

≤ −D c t n .j n

HK βHK
3,12

(3.25)
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Hence, similar to (3.21), we use Lemma 2.2 and (3.25) to deduce

∣ ( )∣ ( )
( ( ))

⎜ ⎟
⎧
⎨
⎩

>
⎫
⎬
⎭

≤ ⎛
⎝
− ⎞

⎠∈
X s εh t c

n

n n
P max exp

log log

.

s J
n n

βHK

HK

2

2

2

n j,

(3.26)

By (3.16), (3.21), and (3.26), we deduce that for every >ε 0,

∣ ( )∣ ( ) ∣ ( )∣ ( )

( )
( ( ))

[ ]
∑ ∑ ∑

∑ ⎜ ⎟

⎧
⎨
⎩

>
⎫
⎬
⎭
≤

⎧
⎨
⎩

>
⎫
⎬
⎭

≤ ⎛
⎝
− ⎞

⎠
< ∞

=

∞

∈ =

∞

= ∈

=

∞

X s εh t X s εh t

c n n c
n

n n

P Pmax max

log exp

log log

.

n
s t

n n

n j

p

s J
n n

n

β

βHK

HK

1

0,

2

1 0

2

1

2

2

n

n

n j,

(3.27)

This proves (3.14) and hence the theorem. □

By the decomposition of sbfBm and Chung’s LIL for the sfBm, we give simple proof of Theorem 3.1.

Lemma 3.5. Let SH K, be an sbfBm, and assume that { }≥W t, 0t is a standard Brownian motion independent
of SH K, . Let XK be the process defined by

( )∫= −
∞

− − +
X e θ W1 d .t

K θt
θ

0

K1

2 (3.28)

Then, the processes ( )
( )

⎧
⎨
⎩

+ ≥
⎫
⎬
⎭−

X S t t, 0

K

K t

K H K

Γ 1

,

H2
and { }≥S t, 0t

HK have the same distribution, where

{ }≥S t, 0t

HK is an sfBm with Hurst parameter HK .

Proof. See the proof of Lemma 2.1 in [26]. For the convenience of readers, we give the proof. By (3.28), we know
that XK is a centered Gaussian process with covariance

( ) ( )( )

( ) ( )

( ) ( )

( )
[ ( ) ]

( )

∫

∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

= − −

= − − −

=
⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟

= −

=
−

+ − +

∞
− − − −

∞
− − −

∞
− − − −

∞
− − −

∞
− − − −

∞
− −

∞
− − +

X X e e θ θ

e θ θ e e θ θ

θe u θ θ θe u e θ θ

θ e θ u θ e θ u

K

K
t s t s

E 1 1 d

1 d 1 d

d d d d

d d d d

Γ 1

.

t

K

s

K θt θs K

θt K θt θs K

t

θu K

t

θu θs K

t

K θu

t

K θ u s

K K K

0

1

0

1

0

1

0 0

1

0 0

1

0 0 0 0

(3.29)

Let ( )
( )

= +
−

Y X S tt

K

K t

K H K

Γ 1

,

H2 . Then, from (1.1) and (3.29), we have, for ≥s t, 0,

( )
( )

( ) ( ( ) ( ))

( ) ( ) ( ) ∣ ∣

( ) ∣ ∣

=
−

+

= + − + + + − + − −

= + − + − −

Y Y
K

K
X X S s S t

t s t s t s t s t s

t s t s t s

E E E
Γ 1

1

2

1

2

1

2

1

2

,

s t s

K

t

K H K H K

HK HK H H K H H K HK HK

HK HK HK HK

, ,

2 2 2 2 2 2 2 2

2 2 2 2

H H2 2

which completes the proof. □
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Lemma 3.5 implies that

{ ( ) }
( )

≥ =
⎧
⎨
⎩

−
−

≥
⎫
⎬
⎭

S t t S
K

K
X t, 0

Γ 1

, 0 ,

H K
d

t

HK

t

K,

H2
(3.30)

where =
d

means equality of all finite dimensional distributions.

Simple proof of Theorem 3.1. [22] established Chung’s LIL for sfBm SH . Namely, there exists a positive and
finite constant c

3,13
such that

∣ ∣

( ( ))

[ ]

∕ ∕
=

→

∈ S

r r
climinf

max

log log 1

, a.s.

r

t r t

H

H H
0

0,

3,13

The decomposition (3.30) allows us deduce Chung’s LIL for the sbfBm, from the same result for the sfBm with
Hurst parameter HK , with the same constant.

4 Applications

In this section, we give some applications of the results in this article. For estimating the self-similar index HK

of a sbfBm. We introduce an estimator for the index HK of SH K, given by

( )
( )

( )
=HK p

p n

S p

S p

ˆ

1

log

log ,n

n

n
2

where

( )

[ ]

∑ ⎜ ⎟ ⎜ ⎟= ⎛
⎝

⎞
⎠

− ⎛
⎝

− ⎞
⎠=

S p
v

S
j

v
S

j

v

1 1

.v

n j

v

H K

n

H K

n

p

1

, ,

n

n

Theorem 4.1. For any ≥p 1, we have ( ) ⟶HK p HKˆ

n almost surely as → ∞n .

Proof. By Theorem 2.1, we have, as → ∞n ,

( )
( )

( )

( )

( )

( )

( )

⎜ ⎟

⎜ ⎟

=

= ⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

+

⟶

HK p
p n

S p

S p

p n

n S p

n S p
n

p n

n S p

n S p
HK

HK

ˆ

1

log

log

1

log

log

1

log

log

, a.s.

n

n

n

pHK
n

pHK
n

pHK

pHK
n

pHK
n

2

2

2

2

2

Thus, we finish the proof. □

Remark 4.1. We cannot obtain the estimators of H and K , respectively, similar to the estimators of H and K

for bfBm in [10]. Because the limit in (2.1) has no relation to K .

In the following, we give some applications of the decomposition of sbfBm.
Recall that a continuous process { [ ]}∈X t T, 0,t admits α-variation (resp. α-strong variation) if the limit

in probability

( )∑ −
→∞ =

−
+X Xlim

n
i

n
α

0

1

i t

n

it
n

1
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(resp.

∣ ∣ )∫ −
→

+
ε

X X slim

1

d ,

ε

t

s ε s
α

0

0

exists for every [ ]∈t T0, .
Then, we have:

Theorem 4.2. The α-variation (resp. α-strong variation) of sbfBm is C tHK , where (∣ ∣ )=C ξEHK
HK and ξ is

a standard normal random variable.

Proof. The results follow easily from (3.29) and the variation in Xk is 0, since Xk is absolutely continuous. (Refer
also the proofs of Proposition 4 in [27] and Proposition 3.6(a) in [28]). □
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