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Abstract: This paper studies the issues about the hyperbolic CS decomposition of tensors under the C-product.

The aimof this paper is fourfold. Firstly,we establish the CS decomposition of a complex unitary tensor, including

the thin version and the standard version. The corresponding numerical algorithm is also given. Next, we define

three kinds of tensors, i.e., the strong unitary tensor, themode-1 strong unitary tensor, themode-2 strong unitary

tensor, and we give the CS decomposition of the last two kind of tensors aforementioned. Numerical algorithms

are also obtained to compute the two types of the CS decompositions. Moreover, we give the definition of another

three classes of tensors, called the  -orthogonal tensor, the mode-1 strong  -orthogonal tensor and the mode-

2 strong  -orthogonal tensor. The corresponding hyperbolic CS decompositions and numerical algorithms are

also established. Finally, we give an application to the computation of the C-eigenvalues of the orthogonal tensor.

Numerical examples are given to test our results.
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1 Introduction

In recent years, the researches of tensors or multidimensional arrays have become more popular. A complex

tensor can be regarded as a multidimensional array of data, which takes the form = (i1…i p
) ∈ ℂn1×n2×···×n p .

The order of a tensor is the number of dimensionswhich is also calledways ormodes. Therefore, thewell-known

vectors and matrices are first-order tensors and second-order tensors.

Higher-order tensors have been applied in quite a lot of areas, such as psychometrics [1], chemometrics [2],

face recognition [3], image and signal processing [4–9] and so on.

The tensor decomposition has developed verywell and found to have good applications inmany fields, such

as in eigenvalues, genomic signals, data mining, signal processing [10–16]. Kinds of tensor decompositions via

diverse tensor products have been investigated to extend the matrices contents. For example, [17–21].

The tensor-tensor products include the Einstein product, T-product, C-product and so on. Lots of excel-

lent works had appeared, such as: Sun et al. [22,23] studied the issue about the generalized inverse of ten-

sors based on the Einstein product and a general product of tensors. Miao et al. [24–26] studied the tensor

contents under the T-product. Panigrahy et al. [27] and Behera et al. [28] studied the reverse order law and
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computation concerning the Einstein product and T-product. Liu et al. [29] studied the issue of the dual core

generalized inverse. Cong et al. [30] and Sahoo et al. [31] studied the core-EP inverse of tensors. Jin et al. [32]

researched some work on the generalized inverse of tensors based on the T-product. Behera et al. [33,34] and Ji

et al. [35] got some results on the Drazin inverse of the Einstein product. Cao et al. [36,37] had a further study on

the perturbation and inequalities based on the T-product. Che et al. [38] established an efficient algorithm for

computing the approximate t-URV. Chen et al. [39] studied the perturbations of the tensor Schur decomposition

andLiu et al. [40] studied theweighted generalized tensor functions.Mo et al. [41,42] studied on the Time-varying

generalized tensor eigenanalysis and T-eigenvalues of tensors.Wei et al. [43] studied the Neural networkmodels

and Shao et al. [44] studied the nonsymmetric algebraic Riccati equations.

Kernfeld et al. [45] defined a new tensor-tensor product, that is, the Cosine Transform Product, referred to

as C-product for short. It has been shown that the C-product can be implemented efficiently using DCT (Discrete

Cosine Transform).Moreover, the authors indicated that one can use C-product to conveniently specify a discrete

image blurring model and the image restoration model. Bentbib et al. [46] explored good applications of the

C-product. They proposed new methods for the problem of the third-order tensor completion in combination

with the TV regularization procedure and tensor robust principal component analysis by using the C-product.

Xu et al. [47] indicated that the advantages of using DCT are: (1) the complex calculation is not involved in the

cosine transform based singular value decomposition, so the computational costs can be saved; (2) the intrinsic

reflexive boundary condition along the tubes in the third dimension of tensors is employed, so its performance

would be better than that by using the periodic boundary condition in DFT (Discrete Fourier Transform).

The CS decomposition is a very useful tool in the matrix analysis. Benítez et al. [48] studied the spectrum

and the rank of a linear combination of two orthogonal projectors. By using the CS decomposition, the authors

characterized when this linear combination is EP, diagonalizable, idempotent, tripotent, involutive, nilpotent,

generalized projector, and hypergeneralized projector. The Moore-Penrose inverse of a linear combination of

two orthogonal projectors in a special case was also derived. Calvetti et al. [49] indicated that the Schur form of

the real orthogonal matrix can be got from a full CS decomposition. Based on this fact, the authors derived a CS

decomposition based on the orthogonal eigenvalue method. An algorithm for an orthogonal similarity transfor-

mation of an orthogonal matrix to a condensed product form and an algorithm for full CS decomposition were

also described.

Based on these backgrounds, we will study the theory of the hyperbolic CS decomposition of tensors via the

C-product in this paper.

This paper is organized as follows. In Section 2, we give the terms and symbols needed to be used in this

work. Then, we introduce the C-product of two tensors. In Section 3, we firstly introduce the thin version of

the CS decomposition of a complex unitary tensor. Then, a standard CS decomposition of a complex unitary

tensor is obtained. In Section 3, we define three kinds of tensors, i.e., the strong unitary tensor, themode-1 strong

unitary tensor and the mode-2 strong unitary tensor. Then, the CS decomposition and corresponding numerical

algorithms of themode-1 strong unitary tensor and themode-2 strong unitary tensor are constructed. In the next

section, we define another three classes of tensors, i.e., the -orthogonal tensor, themode-1 strong -orthogonal

tensor and the mode-2 strong  -orthogonal tensor, which the corresponding hyperbolic CS decompositions and

numerical algorithms are established. Finally, we give an application to the computation of the C-eigenvalues of

the orthogonal tensor. Numerical examples are given to verify our results.

2 Preliminaries

In this paper, we denote vectors, matrices, three or higher order tensors like a,A,, respectively. Meanwhile,

ai, Aij andi1i2…i p
are the components of the vector a, matrix A and tensor, respectively. The n × n identity

matrix is denoted by In. The frontal slice of the tensor is(: , : , i). For simplicity, we denote the frontal slice

as(i).

We start this section by introducing the following face-wise product between two tensors.
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Definition 1. [45] Let ∈ ℂn1×n2×n3 and  ∈ ℂn2×l×n3 . The face-wise product△  ∈ ℂn1×l×n3 is defined as

(△ )(i) = (i)(i), i = 1,… , n3.

The following example is helpful in understanding this product.

Example 1. Let ∈ ℂ3×3×2 and  ∈ ℂ3×2×2 with

(1) =
⎡⎢⎢⎢⎣
1 3 5

2 6 0

0 2 4

⎤⎥⎥⎥⎦, (2) =
⎡⎢⎢⎢⎣
0 2 2

3 1 1

0 0 3

⎤⎥⎥⎥⎦, (1) =
⎡⎢⎢⎢⎣
1 1

2 0

2 1

⎤⎥⎥⎥⎦, (2) =
⎡⎢⎢⎢⎣
1 0

0 4

3 3

⎤⎥⎥⎥⎦.
Then,△  ∈ ℂ3×2×2 and

(△ )(1) = (1)(1) =
⎡⎢⎢⎢⎣
1 3 5

2 6 0

0 2 4

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
1 1

2 0

2 1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
17 6

14 2

12 4

⎤⎥⎥⎥⎦,

(△ )(2) = (2)(2) =
⎡⎢⎢⎢⎣
0 2 2

3 1 1

0 0 3

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
1 0

0 4

3 3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
6 14

6 7

9 9

⎤⎥⎥⎥⎦.
□

Now, we will present the C-product of two tensors. Firstly, we give the definition of the operation ofmat(⋅).

Definition 2. [45] Let ∈ ℂn1×n2×n3 .(1),(2),… ,(n3 ) are its frontal slices. Thenwe usemat() to denote the

block Toeplitz-plus-Hankel matrix

mat() =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(1) (2) … (n3−1) (n3 )

(2) (1) … (n3−2) (n3−1)

...
...

...
...

(n3−1) (n3−2) … (1) (2)

(n3 ) (n3−1) … (2) (1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(2) (3) … (n3 ) O

(3) (4) … O (n3 )

...
...

...
...

(n3 ) O … (4) (3)

O (n3 ) … (3) (2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ ℂn1n3×n2n3 , (1)

where O is the n1 × n2 zero matrix.

Definition 3. [45] Define ten(⋅) the inverse operation of themat(⋅), i.e.,

ten[mat()] = .

Now, we can give the C-product of two tensors.
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Definition 4. [45] Let ∈ ℂn1×n2×n3 and ∈ ℂn2×l×n3 . The cosine transformproduct, which is called C-product

for short, is defined as

⋆c = ten[mat() ⋅mat()].

From the above definition, we can see that it is easy to compute mat()mat() by using the technical of

the matrices product. In order to compute the C-product, we must deal with the operation “ten(⋅)”, which can
be realized by using the following algorithm.

Algorithm .: COMPUTE ten(⋅) OF A MATRIX

Input: n1n3 × n2n3 block matrix Z

Output: n1 × n2 × n3 tensor

1. Take the bottom left n1 × n2 block of Z and Z = (n3 )

2. for i = n3 − 1, . . . , 1

( i ) = [i-th block of first block column of Z]−( i+1)

end

Notice that the first column ofmat() defined in (1) is

⎡⎢⎢⎢⎢⎢⎢⎣

(1) +(2)

(2) +(3)

...

(n3−1) +(n3 )

(n3 )

⎤⎥⎥⎥⎥⎥⎥⎦
.

So, it is easy to get all the frontal slices of by using the technique of Algorithm 2.1.

Now, we present another way to define the C-product of two tensors by using the face-wise product. Before

that, the mode-3 product of a tensor with a matrix is required.

Definition 5. [20] Themode-3 product of a tensor ∈ ℂn1×n2×n3 with amatrixU ∈ ℂ J×n3 is denoted by×3 U .

More precise, we have

(×3 U )i1i2 j =
n3∑
i3=1

i1i2i3
Uji3

, i1 = 1,… , n1, i2 = 1,… , n2, j = 1,… , J.

Now, we will introduce how to compute the mode-3 product of a tensor with a matrix. Let the frontal slice

of ∈ ℂn1×n2×n3 be

(1) =

⎡⎢⎢⎢⎢⎢⎣

111 121 … 1n21

211 221 … 2n21

...
...

...

n111
n121

… n1n21

⎤⎥⎥⎥⎥⎥⎦
,… ,(n3 ) =

⎡⎢⎢⎢⎢⎢⎢⎣

11n3
12n3

… 1n2n3

21n3
22n3

… 2n2n3

...
...

...

n11n3
n12n3

… n1n2n3

⎤⎥⎥⎥⎥⎥⎥⎦
.

Then, the mode-3 unfolding of, denoted by(3), is

(3) =

⎡⎢⎢⎢⎢⎢⎣

111 211 … n111
121 221 … n121

… 1n21
2n21

… n1n21

112 212 … n112
122 222 … n122

… 1n22
2n22

… n1n22

...
...

...
...

...
...

...
...

...

11n3
21n3

… n11n3
12n3

22n3
… n12n3

… 1n2n3
2n2n3

… n1n2n3

⎤⎥⎥⎥⎥⎥⎦
. (2)



H. Jin et al.: The hyperbolic CS decomposition of tensors based on the C-product — 5

Notice that×3 U can be computed using the following matrix-matrix product. See [20] for details.

 = ×3 U ⇔ (3) = U(3). (3)

The following example shows how to compute the mode-3 product of a tensor with a matrix.

Example 2. Let ∈ ℂ3×3×2 and U ∈ ℂ2×2 with

(1) =
⎡⎢⎢⎢⎣
1 0 2

2 3 0

3 3 0

⎤⎥⎥⎥⎦, (2) =
⎡⎢⎢⎢⎣
0 1 2

3 2 0

0 0 3

⎤⎥⎥⎥⎦, U =
[
1 1

2 1

]
.

Suppose = ×3 U . Then,

(3) =
[
1 2 3 0 3 3 2 0 0

0 3 0 1 2 0 2 0 3

]
.

Hence,

(3) = U(3) =
[
1 1

2 1

][
1 2 3 0 3 3 2 0 0

0 3 0 1 2 0 2 0 3

]

=
[
1 5 3 1 5 3 4 0 3

2 7 6 1 8 6 6 0 3

]
.

Thus,

 (1) =
⎡⎢⎢⎢⎣
1 1 4

5 5 0

3 3 3

⎤⎥⎥⎥⎦,  (2) =
⎡⎢⎢⎢⎣
2 1 6

7 8 0

6 6 3

⎤⎥⎥⎥⎦.
□

Based on the above preparation work, we can get the alternative expression of the C-product. Observe that

L() = ×3M and L−1() = ×3M
−1. (4)

Lemma 1. [45] Let ∈ ℂn1×n2×n3 and  ∈ ℂn2×l×n3 . Then,

⋆c = L−1[L()△ L()] = [(×3M )△ (×3M )]×3M
−1, (5)

where M = W−1C(I + Z), W = diag(C(: , 1)), C(: , 1) is the first column of C, the matrix Z ∈ ℂn3×n3 is the circulant

upshift matrix defined by

Z = diag(ones(n3 − 1, 1), 1),

C is the orthogonal DCT matrix of size n3 × n3 and its elements are defined as

Ci j =
√

2− 𝛿i j

n3
cos

(
(i− 1)(2 j − 1)𝜋

2n3

)
, i, j = 1,… , n3, (6)

𝛿ij is the Kronecker symbol.

Now, we give an example to show the details to implement the C-product.
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Example 3. Let ∈ ℂ3×3×2 and  ∈ ℂ3×2×2 with

(1) =
⎡⎢⎢⎢⎣
1 1 2

0 0 3

2 2 2

⎤⎥⎥⎥⎦, (2) =
⎡⎢⎢⎢⎣
0 2 1

0 3 0

2 2 3

⎤⎥⎥⎥⎦, (1) =
⎡⎢⎢⎢⎣
2 2

0 0

2 1

⎤⎥⎥⎥⎦, (2) =
⎡⎢⎢⎢⎣
3 0

0 1

2 2

⎤⎥⎥⎥⎦.
In this case,M is a 2 × 2 matrix and can be computed by using the Matlab. More precisely,M andM−1 are

M =
[
1 2

1 0

]
, M−1 =

[
0 1

0.5 −0.5

]
.

By (4), we can compute L() = ×3M and L() = ×3M, i.e.,

L()(1) =
⎡⎢⎢⎢⎣
1 5 4

0 6 3

6 6 8

⎤⎥⎥⎥⎦, L()(2) =
⎡⎢⎢⎢⎣
1 1 2

0 0 3

2 2 2

⎤⎥⎥⎥⎦,

L()(1) =
⎡⎢⎢⎢⎣
8 2

0 2

6 5

⎤⎥⎥⎥⎦, L()(2) =
⎡⎢⎢⎢⎣
2 2

0 0

2 1

⎤⎥⎥⎥⎦.
Then, we can get L()△ L(), that is,

(L()△ L())(1) =
⎡⎢⎢⎢⎣
32 32

18 27

96 64

⎤⎥⎥⎥⎦, (L()△ L())(2) =
⎡⎢⎢⎢⎣
6 4

6 3

8 6

⎤⎥⎥⎥⎦.
By the last step, we can get the C-product of and , i.e.,

(⋆c)
(1) =

⎡⎢⎢⎢⎣
6 4

6 3

8 6

⎤⎥⎥⎥⎦, (⋆c)
(2) =

⎡⎢⎢⎢⎣
13 14

6 12

44 29

⎤⎥⎥⎥⎦.
□

An algorithm of the C-product of ∈ ℂn1×n2×n3 and  ∈ ℂn2×l×n3 is given below.

Algorithm .: COMPUTE THE C-PRODUCT OF TWO TENSORS [45]

Input: n1 × n2 × n3 tensor and n2 × l × n3 tensor 

Output: n1 × l × n3 tensor 

1. Compute M =W−1C(I + Z) as in Lemma 1

2. Compute ̂ = L() = ×3 M, ̂ = L() = ×3 M
−1

3. for i = 1, . . . , n3
̂ ( i ) = ̂( i )̂( i )

end

4.  = L−1(̂ )

By Algorithm 2.2, we can get the following lemma.

Lemma 2. Let,  and  be tensors with proper sizes. Then, the following statements are true.

(1)  = +  ⟺ L( )(i) = L()(i) + L()(i).

(2)  = ⋆c ⟺ L( )(i) = L()(i)L()(i).
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Let ∈ ℂn1×n2×n3 . The following lemma shows thatmat() can be block diagonalized.

Lemma 3. [45] Let ∈ ℂn1×n2×n3 . Then,

(Cn3 ⊗ In1 )mat()
(
C−1
n3

⊗ In2

)
= diag

(
L()(1), L()(2),… , L()(n3 )

)
,

where⊗ is the Kronecker product and Cn3 is the n3 × n3 orthogonal DCT matrix.

Definition 6. [45] Let L( ) = ̂ ∈ ℂn×n×n3 be such that ̂(i) = In, i = 1, 2,… , n3. Then,  = L−1(̂ ) is the identity

tensor.

Definition 7. [45] Let ∈ ℂn×n×n3 and  ∈ ℂn×n×n3 . If

⋆c =  and ⋆c = ,

then is said to be invertible and  is the inverse of, which is denoted by−1.

We can check that the inverse of a tensor, if exists, is unique. The conjugate transpose of tensors can be

defined as follows.

Definition 8. [45] If ∈ ℂn1×n2×n3 , then the conjugate transpose of, which is denoted byH , is such that

L(H )(i) = (L()(i) )H , i = 1, 2,… , n3.

Lemma 4. [45] Let ∈ ℂn1×n2×n3 and  ∈ ℂn2×l×n3 . It holds that

(⋆c)
H = H⋆c

H .

Definition 9. [45] The tensor  ∈ ℂn×n×n3 is said unitary if H⋆c = ⋆c
H = . The tensor  ∈ ℂn1×n2×n3 is

said partially unitary if H⋆c = .

Definition 10. [50] Let  ∈ ℂn1×n2×n3 . Then,  is called an F-diagonal∕F-upper∕F-lower tensor if all frontal
slices(i), i = 1, 2,… , n3, of are diagonal∕upper triangular∕lower triangular matrices.

The following lemma is helpful in establishing the main result of next sections.

Lemma 5. [50] Let  ∈ ℂn1×n2×n3 . Then,  is an F-diagonal∕F-upper∕F-lower tensor if and only if L() is an

F-diagonal∕F-upper∕F-lower tensor.

The next lemma explains the operation of two block tensors.

Lemma 6. [51] Let ∈ ℂm1×n1× p, ∈ ℂm1×n2× p,  ∈ ℂm2×n1× p, ∈ ℂm2×n2× p,  ∈ ℂn1×m1× p,  ∈ ℂn1×m2× p,  ∈
ℂn2×m1× p and ∈ ℂn2×m2× p. Then,[

 

 

]
⋆c

[
 

 

]
=

[
⋆c + ⋆c ⋆c + ⋆c

⋆c +⋆c ⋆c +⋆c

]
.

In the following, we show that the L(⋅) operation of the block tensor has the good character.

Lemma 7. Let ∈ ℂm1×n1× p,  ∈ ℂm1×n2× p,  ∈ ℂm2×n1× p and ∈ ℂm2×n2× p. Then,

L

([
 

 

])
=

[
L() L()

L( ) L()

]
.
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Proof. LetM ∈ ℂ p× p. By the definition of L(⋅), one has

L

([
 

 

])
=

[
 

 

]
×3M ⟺ L

([
 

 

])
(3)

= M

[
 

 

]
(3)

⟺ L

([
 

 

])
(3)

=
[
M(3) M(3) M(3) M(3)

]

⟺ L

([
 

 

])
=

[
×3M ×3M

 ×3M ×3M

]
.

Hence, we claim that

L

([
 

 

])
=

[
L() L()

L( ) L()

]
.

□

3 The CS decomposition of the unitary tensor

In this section, we will study the CS decomposition of the unitary tensor based on C-product. Firstly, we give

a thin version of the CS decomposition of the unitary tensor.

Theorem 1. Let1 ∈ ℂm1×n1× p with m1 ≥ n1,2 ∈ ℂm2×n1× p with m2 ≥ n1 and

 =
[
1

2

]
∈ ℂ(m1+m2 )×n1× p

be a partially unitary tensor. Then, there exist unitary tensors 1 ∈ ℂm1×m1× p, 2 ∈ ℂm2×m2× p and  ∈ ℂn1×n1× p

such that

 =
[
1 

 2

]
⋆c

[




]
⋆c

H , (7)

where  ∈ ℂm1×n1× p, ∈ ℂm2×n1× p are F-diagonal tensors and

H⋆c + H⋆c = . (8)

Proof. Since is a partially unitary tensor, thenH⋆c = . By Lemma 2, we have

L(H )(i)L( )(i) = In1 , i = 1,… , p.

Hence, L( )(i), i = 1,… , p, are partially unitary matrices. Notice that

 =
[
1

2

]
,

by using Lemma 7, we have

L( )(i) =
[
L(1 )

(i)

L(2 )
(i)

]
, i = 1,… , p.

Now, we can get the CS decomposition of L( )(i) by using [52, Theorem 2.5.2], that is

L( )(i) =
[
L(1 )

(i) O

O L(2 )
(i)

][
L( )(i)

L( )(i)

]
L(H )(i), (9)
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where L(1 )
(i) ∈ ℂm1×m1 , L(2 )

(i) ∈ ℂm2×m2 , L( )(i) ∈ ℂn1×n1 and

L( )(i) = diag(ci1, ci2,… , cin1 ) ∈ ℂm1×n1 ,

L( )(i) = diag(si1, si2,… , sin1 ) ∈ ℂm2×n1 ,

with (
L( )(i)

)H
L( )(i) +

(
L( )(i)

)H
L( )(i) = In1 , i = 1,… , p. (10)

By Definition 1 and using (9) and (10), we have

L( ) =
[
L(1 ) O

O L(2 )

]
△

[
L( )

L( )

]
△ L(H ) (11)

with (
L( )

)H
△ L( )+

(
L( )

)H
△ L( ) = L( ). (12)

Implementing the operation “L−1(⋅)” on both sides of the equalities (11) and (12), we have

 =
[
1 

 2

]
⋆c

[




]
⋆c

H ,

with

H⋆c + H⋆c = .

Since L( ) and L( ) are F-diagonal tensors, by Lemma 5, we have  and  are F-diagonal tensors. □

In the following, we will establish a more general version of the CS decomposition of tensors.

Theorem 2. Let11 ∈ ℂm1×m1× p,22 ∈ ℂm2×m2× p and

 =
[
11 12

21 22

]
∈ ℂ(m1+m2 )×(m1+m2 )× p, m1 ≤ m2

be a unitary tensor. Then, there exist unitary tensors 1 ∈ ℂm1×m1× p, 2 ∈ ℂm2×m2× p, 1 ∈ ℂm1×m1× p and 2 ∈
ℂm2×m2× p such that

(13)

where  ∈ ℂm1×m1× p, ∈ ℂm1×m1× p are F-diagonal tensors and

H⋆c + H⋆c = . (14)

Proof. Since is a unitary tensor, we haveH⋆c = ⋆c
H = . Then, by Lemma 2, we have

L(H )(i)L( )(i) = L( )(i)L(H )(i) = Im1+m2
, i = 1,… , p,

which implies that L( )(i), i = 1,… , p, are unitary matrices. Since

 =
[
11 12

21 22

]
,

by Lemma 7, we get

L( )(i) =
[
L(11 )

(i) L(12 )
(i)

L(21 )
(i) L(22 )

(i)

]
, i = 1,… , p.
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By using the CS decomposition [53] of L( )(i), we have

(15)

where L(1 )
(i) ∈ ℂm1×m1 , L(2 )

(i) ∈ ℂm2×m2 , L(1 )
(i) ∈ ℂm1×m1 , L(2 )

(i) ∈ ℂm2×m2 and

L( )(i) = diag(ci1, ci2,… , cim1
) ∈ ℂm1×m1 ,

L( )(i) = diag(si1, si2,… , sim1
) ∈ ℂm1×m1 ,

with (
L( )(i)

)H
L( )(i) +

(
L( )(i)

)H
L( )(i) = Im1

, i = 1,… , p. (16)

By Definition 1, we have

(17)

with (
L( )

)H
△ L( )+

(
L( )

)H
△ L( ) = L( ). (18)

Utilizing the operation “L−1(⋅)” on both sides of the equalities (17) and (18), we have

with

H⋆c + H⋆c = .

By Lemma 5, we get  and  are F-diagonal tensors due to L( ) and L( ) being F-diagonal tensors. □

In the following, we will build an efficient algorithm to compute the CS decomposition of a unitary tensor

by Theorem 2.

Algorithm .: COMPUTE THE CS DECOMPOSITION OF A UNITARY TENSOR

Input: (m1 +m2) × (m1 +m2) × p unitary tensor

Output:1 ∈ ℂm1×m1× p,2 ∈ ℂm2×m2× p, 1 ∈ ℂm1×m1× p, 2 ∈ ℂm2×m2× p,  ∈ ℂm1×m1× p and  ∈ ℂm1×m1× p

1. Compute ̂ = L( ) =  ×3 M, where M is defined in (5)

2. for i = 1, . . . , p[
̂ 1

( i ),̂ 2
( i ), ̂ 1

( i ), ̂2
( i ), ̂ ( i ), ̂ ( i )

]
= csd(̂ ( i ) )

end

3.1 = L−1(̂ 1 ),2 = L−1(̂ 2 ), 1 = L−1(̂ 1 ), 2 = L−1(̂2 ),  = L−1(̂ ),  = L−1(̂ )
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Example 4. Let11 ∈ ℂ4×4×2,22 ∈ ℂ6×6×2 and =
[
11 12

21 22

]
∈ ℂ10×10×2 with

 (1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.3027 −0.3743 0.2779 −0.2215 0.3083 −0.1542 −0.4304 −0.1624 −0.5042 −0.2393
−0.3447 −0.3034 0.3176 0.5575 −0.3394 0.1318 −0.2568 0.2835 0.1014 0.2972

−0.3050 0.0483 0.2434 −0.2416 0.2551 −0.1318 0.0886 0.5412 0.5124 −0.3760
−0.2851 0.4978 −0.1574 0.5621 0.2790 −0.1894 0.1385 0.1395 −0.3759 −0.1911
−0.2608 −0.2768 −0.4709 0.2590 0.1477 0.3053 −0.1028 −0.3940 0.3791 −0.3768
−0.3014 0.6169 0.0246 −0.2510 0.0014 0.3029 −0.5232 −0.1531 0.1373 0.2392

−0.2986 0.0714 0.4863 0.0514 0.0712 −0.1829 0.4514 −0.5976 0.2002 0.1646

−0.3477 0.0083 0.0250 −0.2481 −0.3741 0.5556 0.4230 0.0955 −0.3537 −0.2347
−0.3539 −0.2345 −0.3958 −0.1973 0.3855 0 0.2236 0.1787 −0.0542 0.6250

−0.3479 0.0180 −0.3488 −0.1807 −0.5757 −0.6152 −0.0696 −0.0645 0.0309 −0.0671

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

 (2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0122 −0.0544 −0.2396 0.1050 −0.0260 0.1035 0.3180 −0.0026 0.2706 0.4656

0.0358 0.0575 −0.0896 −0.2251 0.4898 0.0739 0.0414 −0.2913 −0.0307 −0.3987
−0.0350 −0.0530 −0.1058 0.3458 −0.2566 0.1341 0.0966 −0.2178 −0.5945 0.1192

−0.0338 −0.3478 0.0776 −0.3527 −0.3688 −0.0882 0.0365 −0.3182 0.3337 −0.0589
−0.0128 0.1435 0.1838 0.0963 −0.2405 −0.0367 −0.2637 0.2248 −0.0169 0.2571

0.0105 −0.1996 0.1704 0.1723 0.1220 −0.5052 0.1060 0.0832 −0.1625 −0.0215
0.0476 0.0874 −0.6697 −0.1163 0.0322 0.0029 −0.3094 0.3066 −0.1967 −0.1566
−0.0052 0.1740 −0.0162 0.2149 0.2823 −0.2862 0.0337 0.1679 0.4246 0.0891

0.0069 −0.0672 0.2727 −0.1791 −0.2487 0.0297 −0.2126 0.2010 0.0011 −0.3846
0.0099 0.2727 0.2803 −0.1206 0.2403 0.5181 0.0267 −0.1242 −0.0747 0.1492

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A simple computation gives

L( )(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.3272 −0.4832 −0.2014 −0.0116 0.2564 0.0528 0.2055 −0.1675 0.0369 0.6918

−0.2730 −0.1885 0.1383 0.1074 0.6401 0.2795 −0.1740 −0.2990 0.0400 −0.5002
−0.3749 −0.0578 0.0317 0.4500 −0.2581 0.1364 0.2818 0.1056 −0.6766 −0.1377
−0.3528 −0.1977 −0.0023 −0.1432 −0.4586 −0.3657 0.2115 −0.4968 0.2916 −0.3088
−0.2863 0.0102 −0.1033 0.4516 −0.3334 0.2319 −0.6302 0.0557 0.3454 0.1373

−0.2804 0.2178 0.3654 0.0935 0.2455 −0.7076 −0.3112 0.0133 −0.1877 0.1962

−0.2034 0.2462 −0.8531 −0.1811 0.1355 −0.1772 −0.1674 0.0156 −0.1932 −0.1486
−0.3581 0.3563 −0.0074 0.1817 0.1904 −0.0168 0.4903 0.4314 0.4955 −0.0565
−0.3401 −0.3689 0.1495 −0.5556 −0.1119 0.0595 −0.2016 0.5806 −0.0520 −0.1442
−0.3281 0.5634 0.2119 −0.4220 −0.0951 0.4209 −0.0161 −0.3129 −0.1186 0.2314

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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L( )(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.3027 −0.3743 0.2779 −0.2215 0.3083 −0.1542 −0.4304 −0.1624 −0.5042 −0.2393

−0.3447 −0.3034 0.3176 0.5575 −0.3394 0.1318 −0.2568 0.2835 0.1014 0.2972

−0.3050 0.0483 0.2434 −0.2416 0.2551 −0.1318 0.0886 0.5412 0.5124 −0.3760

−0.2851 0.4978 −0.1574 0.5621 0.2790 −0.1894 0.1385 0.1395 −0.3759 −0.1911

−0.2608 −0.2768 −0.4709 0.2590 0.1477 0.3053 −0.1028 −0.3940 0.3791 −0.3768

−0.3014 0.6169 0.0246 −0.2510 0.0014 0.3029 −0.5232 −0.1531 0.1373 0.2392

−0.2986 0.0714 0.4863 0.0514 0.0712 −0.1829 0.4514 −0.5976 0.2002 0.1646

−0.3477 0.0083 0.0250 −0.2481 −0.3741 0.5556 0.4230 0.0955 −0.3537 −0.2347

−0.3539 −0.2345 −0.3958 −0.1973 0.3855 −0.0000 0.2236 0.1787 −0.0542 0.6250

−0.3479 0.0180 −0.3488 −0.1807 −0.5757 −0.6152 −0.0696 −0.0645 0.0309 −0.0671

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The first step, we will compute the singular value decomposition of L(11 )
(1). That is

L(11 )
(1) =

⎡⎢⎢⎢⎢⎢⎣

−0.6441 −0.4914 0.5771 −0.1035
−0.3967 0.1466 −0.4581 −0.7818
−0.5040 0.7902 0.1654 0.3070

−0.4169 −0.3356 −0.6556 0.5327

⎤⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎣

0.8492 0 0 0

0 0.5081 0 0

0 0 0.2427 0

0 0 0 0.1236

⎤⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎣

0.7714 −0.1123 0.4348 −0.4509
0.5859 0.4536 −0.2985 0.6015

0.0705 0.2855 −0.7122 −0.6374
−0.2381 0.8367 0.4633 −0.1691

⎤⎥⎥⎥⎥⎥⎦

H

.

Then,

L( )(1) = diag(c1, c2, c3, c4 ) = diag(0.8492, 0.5081, 0.2427, 0.1236),

L( )(1) = diag

(√
1− c2

1
,

√
1− c2

2
,

√
1− c2

3
,

√
1− c2

4

)
= diag(0.5281, 0.8613, 0.9701, 0.9923).

Similarly, by computing the singular value decomposition of L(11 )
(2), one has

L( )(2) = diag(0.9445, 0.8620, 0.4675, 0.0986),

L( )(2) = diag(0.3285, 0.5070, 0.8840, 0.9923).

Hence, there exist orthogonal tensors and  such that

L
(
 H⋆c⋆c

)(1)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8492 0 0 0 0.5281 0 0 0 0 0

0 0.5081 0 0 0 0.8613 0 0 0 0

0 0 0.2427 0 0 0 0.9701 0 0 0

0 0 0 0.1236 0 0 0 0.9923 0 0

−0.5281 0 0 0 0.8492 0 0 0 0 0

0 −0.8613 0 0 0 0.5081 0 0 0 0

0 0 −0.9701 0 0 0 0.2427 0 0 0

0 0 0 −0.9923 0 0 0 0.1236 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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and

L
(
 H⋆c⋆c

)(2)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9445 0 0 0 0.3285 0 0 0 0 0

0 0.8620 0 0 0 0.5070 0 0 0 0

0 0 0.4675 0 0 0 0.8840 0 0 0

0 0 0 0.0986 0 0 0 0.9951 0 0

−0.3285 0 0 0 0.9445 0 0 0 0 0

0 −0.5070 0 0 0 0.8620 0 0 0 0

0 0 −0.8840 0 0 0 0.4675 0 0 0

0 0 0 −0.9951 0 0 0 0.0986 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then,(
 H⋆c⋆c

)(1)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9445 0 0 0 0.3285 0 0 0 0 0

0 0.8620 0 0 0 0.5070 0 0 0 0

0 0 0.4675 0 0 0 0.8840 0 0 0

0 0 0 0.0986 0 0 0 0.9951 0 0

−0.3285 0 0 0 0.9445 0 0 0 0 0

0 −0.5070 0 0 0 0.8620 0 0 0 0

0 0 −0.8840 0 0 0 0.4675 0 0 0

0 0 0 −0.9951 0 0 0 0.0986 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and (

 H⋆c⋆c
)(2)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0477 0 0 0 0.0998 0 0 0 0 0

0 −0.1769 0 0 0 0.1771 0 0 0 0

0 0 −0.1124 0 0 0 0.0430 0 0 0

0 0 0 0.0125 0 0 0 −0.0014 0 0

−0.0998 0 0 0 −0.047 0 0 0 0 0

0 −0.1771 0 0 0 −0.1769 0 0 0 0

0 0 −0.0430 0 0 0 −0.1124 0 0 0

0 0 0 0.0014 0 0 0 0.0125 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Finally, one can check that H⋆c + H⋆c = . □
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4 The CS decomposition of a strong unitary tensor

In this section, we will study the CS decomposition of a strong unitary tensor. Firstly, let us give the definition of

a related tensor.

Definition 11. Let  ∈ ℂn×n×n3 . If

H⋆c = ⋆c
H = ,

where is an F-diagonal tensor withiij > 0, i = 1,… , n, j = 1,… , n3, then  is call a strong unitary tensor.

Two more general versions of the strong unitary tensor is given as follows.

Definition 12. Let  ∈ ℂn×n×n3 . If

⋆c
H = ,

where  is an F-diagonal tensor with iij > 0, i = 1,… , n, j = 1,… , n3, then  is call a mode-1 strong unitary

tensor. If

H⋆c = ,

where  is an F-diagonal tensor with iij > 0, i = 1,… , n, j = 1,… , n3, then  is call a mode-2 strong unitary

tensor.

Now, we will do some researches on the CS decomposition of the mode-1 (mode-2) strong unitary tensor.

Theorem 3. Let11 ∈ ℂm1×m1× p,22 ∈ ℂm2×m2× p and

 =
[
11 12

21 22

]
∈ ℂ(m1+m2 )×(m1+m2 )× p, m1 ≤ m2

be a mode-1 strong unitary tensor. Then, there exist a mode-1 strong unitary tensors ∈ ℂ(m1+m2 )×(m1+m2 )× p and

unitary tensors 1 ∈ ℂm1×m1× p and 2 ∈ ℂm2×m2× p such that

where  ∈ ℂm1×m1× p, ∈ ℂm1×m1× p are F-diagonal tensors and

H⋆c + H⋆c = .

Proof. Since is amode-1 strongunitary tensor,wehave⋆c
H = , a F-diagonal tensorwithDiij > 0. Define

 ∈ ℂ(m1+m2 )×(m1+m2 )× p as an F-diagonal tensorwithiij =
√

−1
iij
, i = 1,… ,m1 +m2, j = 1,… , p. Then,we have

⋆c⋆c
H⋆c = .

Let0 = ⋆c . Then,0 is a unitary tensor. By Theorem 2, we have

where  ∈ ℂm1×m1× p, ∈ ℂm1×m1× p are F-diagonal tensors and

H⋆c + H⋆c = .
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Hence,

Let  = −1⋆c

[
1 

 2

]
. It is easy to see ⋆c

H = (−1 )2, which means is a mode-1 strong unitary

tensors. □

Theorem 4. Let11 ∈ ℂm1×m1× p,22 ∈ ℂm2×m2× p and

 =
[
11 12

21 22

]
∈ ℂ(m1+m2 )×(m1+m2 )× p, m1 ≤ m2

be a mode-2 strong unitary tensor. Then, there exist unitary tensors 1 ∈ ℂm1×m1× p, 2 ∈ ℂm2×m2× p, and mode-1

strong unitary tensors  ∈ ℂ(m1+m2 )×(m1+m2 )× p such that

(19)

where  ∈ ℂm1×m1× p, ∈ ℂm1×m1× p are F-diagonal tensors and

H⋆c + H⋆c = . (20)

Proof. The proof is similar as Theorem 3. □

In the following, we will give an algorithm to compute the CS decomposition of a mode-1 strong unitary

tensor.

Algorithm .: COMPUTE THE CS DECOMPOSITION OF A MODE-1 STRONG UNITARY TENSOR

Input: (m1 +m2) × (m1 +m2) × pmode-1 strong unitary

Output: ∈ ℂ(m1+m2 )×(m1+m2 )× p, 1 ∈ ℂm1×m1× p, 2 ∈ ℂm2×m2× p,  ∈ ℂm1×m1× p and  ∈ ℂm1×m1× p

1. Compute = ⋆c
H

2. Construct an F-diagonal tensor  ∈ ℂ(m1+m2 )×(m1+m2 )× p with iij =
√

−1
iij
, i = 1, . . . , m1 +m2, j = 1, . . . , p

3. Compute0 = ⋆c

4. Compute ̂0 = L(0 ) = 0 ×3 M, where M is defined in (5)

5. for i = 1, . . . , p[
̂ 1

( i ),̂ 2
( i ), ̂ 1

( i ), ̂2
( i ), ̂ ( i ), ̂ ( i )

]
= csd(̂0

( i ) )

end

6.1 = L−1(̂ 1 ),2 = L−1(̂ 2 ), 1 = L−1(̂ 1 ), 2 = L−1(̂2 ),  = L−1(̂ ),  = L−1(̂ )

7. = −1⋆cdiag(1,2 )

Example 5. Let ∈ ℂ3×3×3 be a mode-1 strong unitary tensor with

 (1) =

⎡⎢⎢⎢⎢⎢⎣

10

3
0

2

3

0
7

3
+ 4

3
i −4

3
+ 2i

4

3
−4

3
+ 2i 2+ 4

3
i

⎤⎥⎥⎥⎥⎥⎦
,
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 (2) =

⎡⎢⎢⎢⎢⎢⎣

−2

3
+ 1

2
i 0

1

2
− i

0 −i 1− 3

2
i

1− 1

2
i 1− 3

2
i −1

⎤⎥⎥⎥⎥⎥⎦
,  (3) =

⎡⎢⎢⎢⎢⎢⎣

− 1

6
− 1

2
i 0

1

6
+ i

0 −2

3
+ 1

3
i − 1

3
+ 1

2
i

1

3
+ 1

2
i − 1

3
+ 1

2
i −2

3
i

⎤⎥⎥⎥⎥⎥⎦
.

A simple computation gives

L( )(1) =
⎡⎢⎢⎢⎣
0 0 2

0 1 0

4 0 0

⎤⎥⎥⎥⎦, L( )(2) =
⎡⎢⎢⎢⎣
2+ i 0 1− 2i

0 3 0

2− i 0 1+ 2i

⎤⎥⎥⎥⎦, L( )(3) =
⎡⎢⎢⎢⎣
5 0 0

0 3+ 2i −2+ 3i

0 −2+ 3i 3+ 2i

⎤⎥⎥⎥⎦.
Then,

L
(
⋆c

H
)(1) = ⎡⎢⎢⎢⎣

4 0 0

0 1 0

0 0 16

⎤⎥⎥⎥⎦, L
(
⋆c

H
)(2) = ⎡⎢⎢⎢⎣

10 0 0

0 9 0

0 0 10

⎤⎥⎥⎥⎦, L
(
⋆c

H
)(3) = ⎡⎢⎢⎢⎣

25 0 0

0 26 0

0 0 26

⎤⎥⎥⎥⎦,
which means is a mode-1 strong unitary tensor. By simple computations, one has

L( )(1) =

⎡⎢⎢⎢⎢⎣
1

2
0 0

0 1 0

0 0
1

4

⎤⎥⎥⎥⎥⎦
, L( )(2) =

⎡⎢⎢⎢⎢⎢⎢⎣

1√
10

0 0

0
1

3
0

0 0
1√
10

⎤⎥⎥⎥⎥⎥⎥⎦
, L( )(3) =

⎡⎢⎢⎢⎢⎢⎢⎣

1

5
0 0

0
1√
26

0

0 0
1√
26

⎤⎥⎥⎥⎥⎥⎥⎦
.

Then,

L(0 )
(1) =

⎡⎢⎢⎢⎣
0 0 1

0 1 0

1 0 0

⎤⎥⎥⎥⎦, L(0 )
(2) =

⎡⎢⎢⎢⎢⎢⎣

2√
10

+ 1√
10
i 0

1√
10

− 2√
10
i

0 1 0

2√
10

− 1√
10
i 0

1√
10
2+ 2√

10
i

⎤⎥⎥⎥⎥⎥⎦
,

L(0 )
(3) =

⎡⎢⎢⎢⎢⎢⎣

1 0 0

0
3√
26

+ 2√
26
i − 2√

26
+ 3√

26
i

0 − 2√
26

+ 3√
26
i

3√
26

+ 2√
26
i

⎤⎥⎥⎥⎥⎥⎦
.

Moreover,


(1)
0

=

⎡⎢⎢⎢⎢⎢⎢⎣

2

3
0

1

3

0
1

3
+ 2√

26
+ 4

3
√
26
i − 4

3
√
26

+ 2√
26
i

1

3
− 4

3
√
26

+ 2√
26
i

2√
26

+ 4

3
√
26
i

⎤⎥⎥⎥⎥⎥⎥⎦
,


(2)
0

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− 1

2
+ 1√

10
+ 1

2
√
10
i 0

1

2
√
10

− 1√
10
i

0
1

2
− 3

2
√
26

− 1√
26
i

1√
26

− 3

2
√
26
i

1√
10

− 1

2
√
10
i

1√
26

− 3

2
√
26
i

1

2
√
10

− 3

2
√
26

+
(

1√
10

− 1√
26

)
i

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,
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
(3)
0

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

6
− 1√

10
− 1

2
√
10
i 0

1

3
− 1

2
√
10

+ 1√
10
i

0 − 1

6
+ 1

2
√
26

+ 1

3
√
26
i − 1

3
√
26

+ 1

2
√
26
i

1

3
− 1√

10
+ 1

2
√
10
i − 1

3
√
26

+ 1

2
√
26
i

1

2
√
26

− 1

2
√
10

+
(

1

3
√
26

− 1√
10

)
i

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Next, it is easy to execute Algorithm 3.1 to get the CS decomposition of the mode-1 strong unitary tensor. □

Similar as Algorithm 4.1, we can get an algorithm to compute the CS decomposition of a mode-2 strong

unitary tensor.

5 The hyperbolic CS decomposition of tensors

In this section, we firstly give some definitions of the -orthogonal tensors. Then, we establish the hyperbolic CS

decomposition of a  -orthogonal tensor, mode-1 strong  -orthogonal tensor and orthogonal tensor. Then, there

exist unitary tensors  -orthogonal tensor, respectively.

Definition 13. [54] Let Q ∈ ℝn×n. If

QH JQ = QJQH = J,

where J = diag
(
I p,−Iq

)
, p+ q = n, then Q is called a J-orthogonal matrix.

Definition 14. Let  ∈ ℝn×n×n3 . If

H⋆c⋆c = ⋆c⋆c
H =  ,

where  ∈ ℝn×n×n3 is an F-diagonal tensor with

L( )(i) = diag
(
I(i)
k
,−I(i)

n−k

)
, 0 ≤ k ≤ n, i = 1,… , n3,

then  is called a  -orthogonal tensor.

The definition of a  -orthogonal tensor can be generalized as follows.

Definition 15. Let  ∈ ℝn×n×n3 . If

H⋆c⋆c = ⋆c⋆c
H = 0,

where  ∈ ℝn×n×n3 and 0 ∈ ℝn×n×n3 are F-diagonal tensors with

L( )(i) = diag(I(i)
k
,−I(i)

n−k ) and L(0 )
(i) = diag(𝛼(i)

1
,… , 𝛼

(i)

k
,−𝛽 (i)

k+1,… ,−𝛽 (i)
n
),

where 𝛼(i)
1
,… , 𝛼

(i)

k
> 0, 𝛽 (i)

k+1,… , 𝛽
(i)
n > 0, 0 ≤ k ≤ n, i = 1,… , n3, then is called a strong  -orthogonal tensor.

Moreover, the definition of the strong  -orthogonal tensors can be extended to the mode-1 strong  -

orthogonal tensor and mode-2 strong  -orthogonal tensor.

Definition 16. Let  ∈ ℝn×n×n3 . If

⋆c⋆c
H = 0,

where  ∈ ℝn×n×n3 and 0 ∈ ℝn×n×n3 are F-diagonal tensors with

L( )(i) = diag(I(i)
k
,−I(i)

n−k ) and L(0 )
(i) = diag(𝛼(i)

1
,… , 𝛼

(i)

k
,−𝛽 (i)

k+1,… ,−𝛽 (i)
n
),
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where 𝛼(i)
1
,… , 𝛼

(i)

k
> 0, 𝛽 (i)

k+1,… , 𝛽
(i)
n > 0, 0 ≤ k ≤ n, i = 1,… , n3, then is called amode-1 strong -orthogonal

tensor.

Definition 17. Let  ∈ ℝn×n×n3 . If

H⋆c⋆c = 0,

where  ∈ ℝn×n×n3 and 0 ∈ ℝn×n×n3 are F-diagonal tensors with

L( )(i) = diag(I(i)
k
,−I(i)

n−k ) and L(0 )
(i) = diag(𝛼(i)

1
,… , 𝛼

(i)

k
,−𝛽 (i)

k+1,… ,−𝛽 (i)
n
),

where 𝛼(i)
1
,… , 𝛼

(i)

k
> 0, 𝛽 (i)

k+1,… , 𝛽
(i)
n > 0, 0 ≤ k ≤ n, i = 1,… , n3, then is called amode-2 strong -orthogonal

tensor.

The following result is the hyperbolic CS decomposition of a  -orthogonal tensor.

Theorem 5. Let11 ∈ ℝm1×m1× p,22 ∈ ℝm2×m2× p and

 =
[
11 12

21 22

]
∈ ℝ(m1+m2 )×(m1+m2 )× p, m1 ≤ m2

be a  -orthogonal tensor. Then, there exist unitary tensors 1 ∈ ℝm1×m1× p, 2 ∈ ℝm2×m2× p, 1 ∈ ℝm1×m1× p and

2 ∈ ℝm2×m2× p such that

(21)

where  ∈ ℝm1×m1× p, ∈ ℝm1×m1× p are F-diagonal tensors and

2 − 2 = . (22)

Proof. Since is a  -orthogonal tensor, thenH⋆c⋆c =  . According to Lemma 2, we get

L(H )(i)L( H )(i)L( )(i) = L( H )(i), i = 1,… , p,

which means L( )(i), i = 1,… , p are  -orthogonal matrices. Because of

 =
[
11 12

21 22

]
,

by Lemma 7, we get

L( )(i) =
[
L(11 )

(i) L(12 )
(i)

L(21 )
(i) L(22 )

(i)

]
, i = 1,… , p.

Using Theorem 3.2 of [54], we have
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where L(1 )
(i) ∈ ℝm1×m1 , L(2 )

(i) ∈ ℝm2×m2 , L(1 )
(i) ∈ ℝm1×m1 , L(2 )

(i) ∈ ℝm2×m2 and

L( )(i) = diag(ci1, ci2,… , cim1
) ∈ ℝm1×m1 ,

L( )(i) = diag(si1, si2,… , sim1
) ∈ ℝm1×m1 ,

with (
L( )(i)

)2 − (
L( )(i)

)2 = Im1
, i = 1,… , p.

By Definition 1, we have

(23)

with (
L( )

)H
△ L( )−

(
L( )

)H
△ L( ) = L( ). (24)

Implementing the operation “L−1(⋅)” on both sides of the equalities (23) and (24), we have

with

2 − 2 = .

Similar as Theorem 1, we get that  and  are F-diagonal tensors. □
Let

 =
[
11 12

21 22

]
∈ ℝ(m1+m2 )×(m1+m2 )× p.

If11 is invertible, denote

exc( ) =
[

−1
11

−−1
11
12

21
−1
11

22 −21
−1
11
12

]
. (25)

It is easy to check exc(exc( )) =  . Moreover, by [54, Theorem 2.2], one has that if  is a  -orthogonal

tensor, then exc( ) is an orthogonal tensor. Conversely, if is an orthogonal tensor and11 is invertible, then

exc( ) is a  -orthogonal tensor.

Now, we can set up an algorithm for the hyperbolic CS decomposition of the  -orthogonal tensor based on

Theorem 5.

Algorithm .: COMPUTE THE HYPERBOLIC CS DECOMPOSITION OF A  -ORTHOGONAL TENSOR

Input: (m1 + m2 ) × (m1 + m2 ) × p  -orthogonal tensor

Output:1 ∈ ℂm1×m1× p,2 ∈ ℂm2×m2× p, 1 ∈ ℂm1×m1× p, 2 ∈ ℂm2×m2× p,  ∈ ℂm1×m1× p and  ∈ ℂm1×m1× p

1. Compute  = exc( ), where exc(⋅) was defined in (25)

2. Compute ̂ = L( ) =  ×3 M, where M is defined in (5)

3. for i = 1, . . . , p[
̂ 1

( i ),̂ 2
( i ), ̂ 1

( i ), ̂2
( i ), ̂0

( i ), ̂0
( i )
]
= csd(̂ ( i ) )

end

4.1 = L−1(̂ 1 ),2 = L−1(̂ 2 ), 1 = L−1(̂ 1 ), 2 = L−1(̂2 ), 0 = L−1(̂0 ), 0 = L−1(̂0 )

5.  = −1
0

= 0 + 0⋆c
−1
0
⋆c0;  = −1

0
⋆c0
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Example 6. Let ∈ ℝ6×6×2 be a  -orthogonal tensor with

 (1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.4951 −3.3435 1.3816 −3.1084 0.4438 0.8044

−4.0321 3.7284 −1.6996 4.8518 0.4706 −1.5841
1.1742 −0.3878 −0.3225 −1.0894 −0.9100 0.6406

−2.3137 3.0639 −1.0316 3.4840 −0.5632 −1.4903
−0.7685 1.1109 −0.0678 1.6195 −0.1573 0.4154

−3.1892 3.6481 −2.1505 4.2724 0.4984 −1.1630

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

 (2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.2366 −10.8788 −9.4134 0.9070 7.6567 6.9803

−2.9576 7.0364 7.3158 −1.8476 −5.8428 −4.6961
−4.8489 8.9312 6.0322 0.9117 −5.3293 −5.4867
−1.4043 3.4248 4.0822 −1.0095 −2.8848 −2.1003
−4.6152 9.2967 7.2715 −0.4296 −5.9769 −5.9621
−1.6583 4.3817 5.3849 −1.7032 −3.9386 −3.5379

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A simple computation gives

L( )(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11.9683 −25.1012 −17.4453 −1.2945 15.7572 14.7650

−9.9473 17.8012 12.9320 1.1565 −11.2151 −10.9762
−8.5235 17.4747 11.7419 0.7340 −11.5687 −10.3328
−5.1222 9.9135 7.1328 1.4650 −6.3328 −5.6910
−9.9989 19.7044 14.4752 0.7603 −12.1111 −11.5088
−6.5058 12.4115 8.6194 0.8661 −7.3789 −8.2388

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

L( )(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.4951 −3.3435 1.3816 −3.1084 0.4438 0.8044

−4.0321 3.7284 −1.6996 4.8518 0.4706 −1.5841
1.1742 −0.3878 −0.3225 −1.0894 −0.9100 0.6406

−2.3137 3.0639 −1.0316 3.4840 −0.5632 −1.4903
−0.7685 1.1109 −0.0678 1.6195 −0.1573 0.4154

−3.1892 3.6481 −2.1505 4.2724 0.4984 −1.1630

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By using the formula

exc( ) =
[

−1
11

−−1
11
12

21
−1
11

22 −21
−1
11
12

]
,

where11 ∈ ℝ2×2×2,12 ∈ ℝ2×4×2,21 ∈ ℝ4×2×2 and22 ∈ ℝ4×4×2, one has

L( )(1) = exc(L( )(1) ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.4859 −0.6851 0.3838 0.1634 −0.0277 −0.3461
−0.2715 −0.3267 −0.5120 0.0263 0.6145 0.4232

−0.6031 0.1312 −0.4764 −0.1985 −0.5937 0.0124

−0.2028 0.2709 0.0911 0.8892 −0.0987 0.2772

−0.4917 0.4136 0.5489 −0.3545 0.2750 0.2907

−0.2088 0.4028 −0.2322 0.1300 0.4286 −0.7346

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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L( )(2) = exc(L( )(2) ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.4715 −0.4228 −0.0672 0.5859 0.4082 −0.2906
−0.5099 −0.1891 0.3831 −0.6677 0.3153 0.1106

−0.3559 −0.4232 −0.5500 −0.1425 −0.5529 0.2565

−0.4714 0.3990 0.2979 0.0827 −0.5418 −0.4790
−0.2041 0.1149 0.4095 0.4275 −0.1208 0.7617

−0.3565 0.6588 −0.5383 −0.0318 0.3466 0.1673

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is easy to check that L( )(1) and L( )(2) are orthogonal. Next, using the method of Algorithm 3.1, we can

get that there exist orthogonal tensors and  such that

L
(
 H⋆c ⋆c

)(1) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9407 0 0.3391 0 0 0

0 0.0290 0 0.9996 0 0

−0.3391 0 0.9407 0 0 0

0 −0.9996 0 0.0290 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

L
(
 H⋆c ⋆c

)(2) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8204 0 0.5717 0 0 0

0 0.1541 0 0.9880 0 0

−0.5717 0 0.8204 0 0 0

0 −0.9880 0 0.1541 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In the last step, we compute

L( )(1) = (L(0 )
(1) )−1 =

[
1.0630 0

0 34.4828

]
, L( )(2) = (L(0 )

(2) )−1 =
[
1.2189 0

0 6.4893

]
,

L( )(1) = (L(0 )
(1) )−1L(0 )

(1) =
[
0.3605 0

0 34.4690

]
,

L( )(2) = (L(0 )
(2) )−1L(0 )

(2) =
[
0.6969 0

0 6.4114

]
.

Therefore,

L
(
 H⋆c⋆c

)(1) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0630 0 −0.3605 0 0 0

0 34.4828 0 −34.4690 0 0

−0.3605 0 1.0630 0 0 0

0 −34.4690 0 34.4828 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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L
(
 H⋆c⋆c

)(2) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.2189 0 −0.6969 0 0 0

0 6.4893 0 −6.4114 0 0

−0.6969 0 1.2189 0 0 0

0 −6.4114 0 6.4893 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Hence,

(
 H⋆c⋆c

)(1) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.2189 0 −0.6969 0 0 0

0 6.4893 0 −6.4114 0 0

−0.6969 0 1.2189 0 0 0

0 −6.4114 0 6.4893 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(
 H⋆c⋆c

)(2) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0780 0 0.1682 0 0 0

0 13.9967 0 14.0288 0 0

0.1682 0 −0.0780 0 0 0

0 −14.0288 0 172410 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

□

In the following, we give the hyperbolic CS decomposition of a mode-1 strong  -orthogonal tensor.

Theorem 6. Let11 ∈ ℝm1×m1× p,22 ∈ ℝm2×m2× p and

 =
[
11 12

21 22

]
∈ ℝ(m1+m2 )×(m1+m2 )× p, m1 ≤ m2

be a mode-1 strong  -orthogonal tensor. Then, there exist a mode-1 strong unitary tensor ∈ ℝ(m1+m2 )×(m1+m2 )× p

and unitary tensors 1 ∈ ℝm1×m1× p and 2 ∈ ℝm2×m2× p such that

where  ∈ ℝm1×m1× p, ∈ ℝm1×m1× p are F-diagonal tensors and

2 − 2 = .

Proof. Since is a mode-1 strong  -orthogonal tensor, by Definition 16, we have

⋆c⋆c
H = 0.
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Define  ∈ ℂ(m1+m2 )×(m1+m2 )× p as an F-diagonal tensor with

 (i) = diag

(√
(𝛼(i)

1
)−1,… ,

√
(𝛼(i)

p
)−1,

√
(𝛽 (i)

p+1 )
−1,… ,

√
(𝛽 (i)

n
)−1

)
, i = 1,… , p.

Then, we have

⋆c⋆c⋆c
H⋆c = .

Let0 = ⋆c . Then,0⋆c⋆c
H
0
=  , which means that0 is a  -orthogonal tensor. By Theorem 5,

we have

where  ∈ ℂm1×m1× p, ∈ ℂm1×m1× p are F-diagonal tensors and

2 − 2 = .

Therefore,

Let  = −1⋆c

[
1 

 2

]
. It is easy to check ⋆c

H = (−1 )2, which means that  is a mode-1 strong

unitary tensor. □

Similar as Theorem 6, we can get the hyperbolic CS decomposition of a mode-2 strong  -orthogonal tensor

as follows.

Theorem 7. Let11 ∈ ℝm1×m1× p,22 ∈ ℝm2×m2× p and

 =
[
11 12

21 22

]
∈ ℝ(m1+m2 )×(m1+m2 )× p, m1 ≤ m2

be a mode-2 strong  -orthogonal tensor. Then, there exist unitary tensors 1 ∈ ℝm1×m1× p, 2 ∈ ℝm2×m2× p, and

a mode-1 strong unitary tensor  ∈ ℝ(m1+m2 )×(m1+m2 )× p such that

where  ∈ ℝm1×m1× p, ∈ ℝm1×m1× p are F-diagonal tensors and

2 − 2 = . (27)

In the following, wewill give an algorithm to compute the hyperbolic CS decomposition of themode-1 strong

 -orthogonal tensor based on Theorem 6. One can also analogously get an algorithm to compute the hyperbolic

CS decomposition of the mode-2 strong  -orthogonal tensor.
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Algorithm .: COMPUTE THE HYPERBOLIC CS DECOMPOSITION OF THE MODE-1 STRONG  -ORTHOGONAL TENSOR

Input: (m1 +m2 ) × (m1 +m2 ) × p  -orthogonal tensor

Output: ∈ ℂ(m1+m2 )×(m1+m2 )× p, 1 ∈ ℂm1×m1× p, 2 ∈ ℂm2×m2× p,  ∈ ℂm1×m1× p and  ∈ ℂm1×m1× p

1. Compute = ⋆c⋆c
H

2. Construct an F-diagonal tensor  ∈ ℂ(m1+m2 )×(m1+m2 )× p with iij =
√

−1
iij
, i = 1, . . . , m1 +m2, j = 1, . . . , p

3. Compute0 = ⋆c

4. Compute  = exc(0 ), where exc(⋅) was defined in (25)

5. Compute ̂ = L( ) =  ×3 M, where M is defined in (5)

6. for i = 1, . . . , p[
̂ 1

( i ),̂ 2
( i ), ̂ 1

( i ), ̂2
( i ), ̂0

( i ), ̂0
( i )
]
= csd(̂ ( i ) )

end

7.1 = L−1(̂ 1 ),2 = L−1(̂ 2 ), 1 = L−1(̂ 1 ), 2 = L−1(̂2 ), 0 = L−1(̂0 ), 0 = L−1(̂0 )

8.  = 0 + 0⋆c
−1
0
⋆c0;  = −1

0
⋆c0

9. = −1⋆cdiag(1,2 )

6 An application to the computation of the C-eigenvalues

of a tensor

Firstly, we will introduce the C-eigenvalue of the tensor.

Definition 18. Let ∈ ℂn×n× p. Suppose that  ∈ ℂn×1× p and  ≠ . If

⋆c = 𝜆 ⋅  , 𝜆 ∈ ℂ, (28)

then 𝜆 is called a C-eigenvalue of and  is the C-eigenvector of associated to 𝜆.

Notice that⋆c = 𝜆 ⋅  is equivalent tomat()mat( ) = 𝜆 ⋅mat( ). Hence, all the C-eigenvalues of

are the eigenvalues of the matrixmat() and vice versa.

The following theorem involves a full CS decomposition of a unitary tensor.

Theorem 8. Let11 ∈ ℂm1×m1× p,22 ∈ ℂm2×m2× p and

 =
[
11 12

21 22

]
∈ ℂ(m1+m2 )×(m1+m2 )× p, m1 ≤ m2

be a unitary tensor. Then, there exist unitary tensors 1 ∈ ℂm1×m1× p, 2 ∈ ℂm2×m2× p, 1 ∈ ℂm1×m1× p and 2 ∈
ℂm2×m2× p such that

 =
[
1 

 2

]
⋆c

[
 

− 

]
⋆c

[
1 

 2

]H

, (29)

where  ∈ ℂm1×m1× p, ∈ ℂm1×m1× p are F-diagonal tensors and

H⋆c + H⋆c = . (30)

Proof. The proof is similar as Theorem 2 and follows by using [52, Theorem 2.6.3]. □

The next lemma is helpful in establish the main result.

Lemma 8. Let  ∈ ℝ2n×2n× p be an orthogonal tensor. Then, there exists an orthogonal tensor Ω0 ∈ ℝ2n×2n× p

such that

ΩH

0
⋆c⋆cΩ0 = a⋆cb,
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where

L(a )
(i) = diag

([
−𝛼(i)

1
𝛽
(i)
1

𝛽
(i)
1

𝛼
(i)
1

]
,

[
−𝛼(i)

3
𝛽
(i)
3

𝛽
(i)
3

𝛼
(i)
3

]
,…

[
−𝛼(i)

2n−1 𝛽
(i)
2n−1

𝛽
(i)
2n−1 𝛼

(i)
2n−1

])
,

L(b )
(i) = diag

(
1,

[
−𝛼(i)

2
𝛽
(i)
2

𝛽
(i)
2

𝛼
(i)
2

]
,

[
−𝛼(i)

4
𝛽
(i)
4

𝛽
(i)
4

𝛼
(i)
4

]
,…

[
−𝛼(i)

2n−2 𝛽
(i)
2n−2

𝛽
(i)
2n−2 𝛼

(i)
2n−2

]
,−1

)
,

𝛽
(i)

k
> 0, (𝛼(i)

k
)2 + (𝛽 (i)

k
)2 = 1, i = 1, 2,… , p, k = 1, 2,… , 2n− 1.

Proof. Since  ∈ ℝ2n×2n× p is an orthogonal tensor, one has L( )(i) ∈ ℝ2n×2n, i = 1, 2,… , p are orthogonal

matrices. By [49, Algorithm 1], there exists an orthogonal matrix L(Ω0 )
(i) such that

(L(Ω0 )
(i) )HL( )(i)L(Ω0 )

(i) = L(a )
(i)L(b )

(i).

Thus,

(L(Ω0 ))
H △ L( )△ L(Ω0 ) = L(a )△ L(b ),

which impliesΩH

0
⋆c⋆cΩ0 = a⋆cb. □

Define 𝛼, 𝛽 ∈ ℝ with 𝛽 > 0 and 𝛼2 + 𝛽
2 = 1. Define a, b ∈ ℝ with a, b > 0 by

(a, b) =

⎧⎪⎪⎨⎪⎪⎩

(
𝛽√

2(1+ 𝛼 )
,

√
2(1+ 𝛼 )

2

)
, 𝛼 ≥ 0,(√

2(1− 𝛼 )

2
,

𝛽√
2(1− 𝛼 )

)
, 𝛼 < 0.

Then, we have [
a b

b −a

]T[−𝛼 𝛽

𝛽 𝛼

][
a b

b −a

]
=

[
1 0

0 −1

]
(31)

and [
b a

−a b

]T[−𝛼 𝛽

𝛽 𝛼

][
b a

−a b

]
=

[
−1 0

0 1

]
. (32)

Using (31), one has there exists an orthogonal tensorΩa ∈ ℝ2n×2n× p such that

ΩH

a
⋆ca⋆cΩa = ,

where

L(Ωa )
(i) = diag

([
a(i)
1

b(i)
1

b(i)
1

−a(i)
1

]
,

[
a(i)
2

b(i)
2

b(i)
2

−a(i)
2

]
,… ,

[
a(i)
n

b(i)
n

b(i)
n

−a(i)
n

])
and

L()(i) = diag(1,−1, 1− 1,… , 1,−1).

Similar, using (32), one has that there exists an orthogonal tensorΩb ∈ ℝ2n×2n× p such that

ΩH

b
⋆cb⋆cΩb = ,

where

L(Ωb )
(i) = diag

(
1,

[
c(i)
1

d(i)
1

−d(i)
1

c(i)
1

]
,

[
c(i)
2

d(i)
2

−d(i)
2

c(i)
2

]
,… ,

[
c(i)
n−1 d(i)

n−1
d(i)
n−1 c(i)

n−1

]
, 1

)
and

L()(i) = diag(1,−1, 1− 1,… , 1,−1).
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Let In be the n × n identity matrix and ej be the jth column of In. Denote the tensor  ∈ ℝ2n×2n× p defined

by

L( )(i) = [e1, e3,… , e2n−1, e2, e4,… , e2n], i = 1, 2,… , p

and  ∈ ℝ2n×2n× p by

L( )(i) = diag(In,−In ), i = 1, 2,… , p.

Then, one has

(Ωa⋆c )
H⋆ca⋆c(Ωa⋆c ) = (Ωb⋆c )

H⋆cb⋆c(Ωb⋆c ) =  .

Define

 = (Ωa⋆c )
H⋆c(Ωb⋆c ) =

(
H⋆cΩa⋆c

)H
⋆c

(
H⋆cΩb⋆c

)
.

By using

ΩH

0
⋆c⋆cΩ0 = a⋆cb = (Ωa⋆c )⋆c⋆c(Ωa⋆c )

H⋆c(Ωb⋆c )⋆c⋆c(Ωb⋆c )
H ,

one has

(Ω0⋆cΩa⋆c )
H⋆c⋆c(Ω0⋆cΩa⋆c ) = ⋆c⋆c⋆c

H .

Since  is an orthogonal tensor, we can get its full CS decomposition as[
1 

 2

]H

⋆c⋆c

[
1 

 2

]
=

[
 

 −

]
,

where

L( )(i) = diag(c(i)
1
, c(i)

2
,… , c(i)

n
), L( )(i) = diag(s(i)

1
, s(i)

2
,… , s(i)

n
), i = 1, 2,… , p

with c(i)
k
, s(i)

k
> 0 and (c(i)

k
)2 + (s(i)

k
)2 = 1, k = 1, 2,… , n. Finally, if we define

Ω = Ω0⋆cΩa⋆c⋆c

[
1 

 2

]
⋆c ,

one has

ΩH
⋆c⋆cΩ = Ψ,

where

L(Ψ)(i) = diag

([
(c(i)
1
)2 − (s(i)

1
)2 2c(i)

1
s(i)
1

−2c(i)
1
s(i)
1

(c(i)
1
)2 − (s(i)

1
)2

]
,… ,

[
(c(i)
n
)2 − (s(i)

n
)2 2c(i)

n
s(i)
n

−2c(i)
n
s(i)
n

(c(i)
n
)2 − (s(i)

n
)2

])
,

i = 1, 2,… , p.

Let


(i)
1
= L−1

([
(c(i)
1
)2 − (s(i)

1
)2 2c(i)

1
s(i)
1

−2c(i)
1
s(i)
1

(c(i)
1
)2 − (s(i)

1
)2

])
, i = 1, 2,… , p,


(i)
2
= L−1

([
(c(i)
2
)2 − (s(i)

2
)2 2c(i)

2
s(i)
2

−2c(i)
2
s(i)
2

(c(i)
2
)2 − (s(i)

2
)2

])
, i = 1, 2,… , p,

...

(i)
n
= L−1

([
(c(i)
n
)2 − (s(i)

n
)2 2c(i)

n
s(i)
n

−2c(i)
n
s(i)
n

(c(i)
n
)2 − (s(i)

n
)2

])
, i = 1, 2,… , p.
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Therefore, one can compute the eigenvalues of mat(1 ), mat(2 ), …, mat(n ), which are the C-eigen-

values of .

Example 7. Let ∈ ℝ6×6×3 be an orthogonal tensor with

 (1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1901 −0.0946 0.2032 0.0951 0.0452 −0.4262
−0.0691 0.0195 −0.2722 0.3694 0.0229 −0.5662
−0.3240 −0.1153 0.5152 0.0422 −0.5658 0.0094

0.2378 −0.3855 0.2456 0.4556 0.1895 0.4274

0.3024 0.0190 −0.2085 −0.2563 −0.4049 0.3437

−0.1751 −0.3235 −0.2424 −0.0563 0.0705 −0.1519

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

 (2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.4995 −0.0791 −0.5083 0.3609 −0.2312 0.4383

−0.1977 −0.3028 0.2636 −0.6572 0.0654 0.5792

−0.0612 0.3539 −0.6170 −0.4071 0.4011 −0.1120
−0.5046 0.2850 0.1746 −0.2857 −0.4878 −0.4129
−0.4837 0.1765 0.2670 0.2843 0.5766 0.1052

−0.1808 0.1464 0.3470 0.0962 0.3100 −0.1314

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

 (3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1665 0.1256 0.1938 −0.1036 −0.0162 −0.2930
0.0103 0.0826 −0.1914 0.3241 0.1113 −0.6042
0.0117 −0.1712 0.4949 0.0969 −0.4144 0.1046

0.2441 −0.3227 0.0724 0.2303 0.3967 0.3009

0.1637 −0.3281 −0.3617 −0.2799 −0.2872 0.0956

0.0429 0.3570 −0.1486 0.0118 −0.0828 0.2421

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A simple computation gives

L( )(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.4758 −0.0015 −0.4257 0.6098 −0.4496 −0.1358
−0.4440 −0.4208 −0.1279 −0.2969 0.3761 −0.6163
−0.4229 0.2502 0.2709 −0.5781 −0.5923 −0.0053
−0.2832 −0.4610 0.7395 0.3449 0.0073 0.2035

−0.3375 −0.2843 −0.3978 −0.2476 0.1740 0.7453

−0.4510 0.6834 0.1544 0.1598 0.5247 0.0695

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

L( )(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.4759 −0.2993 −0.4989 0.5596 −0.1698 0.3051

−0.2771 −0.3659 0.1828 −0.6119 −0.0230 0.6172

−0.3969 0.4098 −0.5967 −0.4618 0.2497 −0.2071
−0.5109 0.2222 0.3478 −0.0604 −0.6950 −0.2864
−0.3450 0.5236 0.4202 0.3079 0.4589 0.3533

−0.3989 −0.5340 0.2532 0.0281 0.4633 −0.5255

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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L( )(3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5231 −0.1412 0.5177 −0.1622 0.2926 −0.5714
0.1183 0.2396 −0.3444 0.7025 −0.1537 −0.5411

−0.2745 −0.2981 0.6373 0.3523 −0.5525 0.0168

0.4983 −0.3477 −0.0014 0.5110 0.2806 0.5394

0.6224 0.1706 −0.1138 −0.2607 −0.6944 0.1429

−0.0372 −0.8269 −0.4408 −0.1643 −0.1566 −0.2626

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, the full CS decompositions of L( )(1), L( )(2) and L( )(3) are

L
(
 H⋆c⋆c

)(1) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8305 0 0 0.5571 0 0

0 0.5428 0 0 0.8399 0

0 0 0.3590 0 0 0.9333

−0.5571 0 0 0.8305 0 0

0 −0.8399 0 0 0.5428 0

0 0 −0.9333 0 0 0.3590

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

L
(
 H⋆c⋆c

)(2) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9961 0 0 0.0881 0 0

0 0.6783 0 0 0.7348 0

0 0 0.1954 0 0 0.9807

−0.0881 0 0 0.9961 0 0

0 −0.7348 0 0 0.6783 0

0 0 −0.9807 0 0 0.1954

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

L
(
 H⋆c⋆c

)(3) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9737 0 0 0.026 0 0

0 0.6078 0 0 0.3153 0

0 0 0.0663 0 0 0.4978

−0.026 0 0 0.9737 0 0

0 −0.3153 0 0 0.6078 0

0 0 −0.4978 0 0 0.0663

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then,


(1)
1

=
[

0.7581 0.3422

−0.3422 0.7581

]
, 

(2)
1

=
[

0.0186 0.0624

−0.0624 0.0186

]
, 

(3)
1

=
[
−0.2079 0.2291

−0.2291 −0.2079

]
,


(1)
2

=
[

0.0431 0.5594

−0.5594 0.0431

]
, 

(2)
2

=
[
−0.0951 0.3068

−0.3068 −0.0951

]
, 

(3)
2

=
[
−0.1318 −0.1307
0.1307 −0.1318

]
,


(1)
3

=
[
−0.4097 0.2674

−0.2674 −0.4097

]
, 

(2)
3

=
[
−0.3401 0.1586

−0.1586 −0.3401

]
, 

(3)
3

=
[

0.1738 0.0427

−0.0427 0.1738

]
.

By computing the eigenvalues of

mat(1 ) =
⎡⎢⎢⎢⎣


(1)
1
+

(2)
1


(2)
1

+
(3)
1


(3)
1


(2)
1

+
(3)
1


(1)
1


(2)
1

+
(3)
1


(3)
1


(2)
1

+
(3)
1


(1)
1
+

(2)
1

⎤⎥⎥⎥⎦,
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mat(2 ) =
⎡⎢⎢⎢⎣


(1)
2
+

(2)
2


(2)
2

+
(3)
2


(3)
2


(2)
2

+
(3)
2


(1)
2


(2)
2

+
(3)
2


(3)
2


(2)
2

+
(3)
2


(1)
2
+

(2)
2

⎤⎥⎥⎥⎦,

mat(3 ) =
⎡⎢⎢⎢⎣


(1)
3
+

(2)
3


(2)
3

+
(3)
3


(3)
3


(2)
3

+
(3)
3


(1)
3


(2)
3

+
(3)
3


(3)
3


(2)
3

+
(3)
3


(1)
3
+

(2)
3

⎤⎥⎥⎥⎦.
one can get the C-eigenvalues of the orthogonal tensor :

𝜆1,2 = 0.3795± 0.9252i, 𝜆3,4 = 0.9846± 0.1755i, 𝜆5,6 = 0.9474± 0.0507i,

𝜆7,8 = 0.3336± 0.9188i, 𝜆9,10 = −0.4099± 0.176i, 𝜆11,12 = 0.129± 0.2142i,

𝜆13,14 = −0.7423± 0.67i, 𝜆15,16 = −0.9236± 0.3833i, 𝜆17,18 = −0.2434± 0.0661i.

Acknowledgments: The authors would like to thank the anonymous reviewers for their valuable comments,

which have significantly improved the paper.

Research ethics: Not applicable.

Informed consent: Not applicable.

Author contributions:All authors have accepted responsibility for the entire content of thismanuscript and con-

sented to its submission to the journal, reviewed all the results, and approved the final version of themanuscript.

All authors contributed equally to the manuscript.

Use of Large Language Models, AI and Machine Learning Tools: None declared.

Conflict of interest: The authors state no conflicts of interest.

Research funding: Thisworkwas supported by the Special Fund for Science and Technological Bases and Talents

of Guangxi (No. GUIKE AA24010005).

Data availability: Some or all data, models, or code generated or used during the study are available from the

corresponding author by request.

References

[1] P. Kroonenberg, Three-Mode Principal Component Analysis: Theory and Applications, DSWO Press, Leiden, 1983.

[2] M. Ng, R. Chan, and W. Tang, A fast algorithm for deblurring models with Neumann boundary conditions, SIAM J. Sci. Comput. 21

(1999), no. 3, 851−866,.
[3] N. Hao, M. Kilmer, K. Braman, and R. Hoover, Facial recognition using tensor-tensor decompositions, SIAM J. Imaging Sci. 6 (2013),

no. 1, 437−463,.
[4] P. Comon, Tensor decompositions: state of the art and applications, Proceedings of the Institute of Mathematics and its Applications

Conference Series, Institute of Mathematics and its Applications, Oxford, 2002, pp. 1−28.
[5] L. De Lathauwer and B. De Moor, From matrix to tensor: Multilinear algebra and signal processing, in: J. McWhirter and I. K. Proudler

(eds), Mathematics in Signal Processing IV, Clarendon Press, Oxford, UK, 1998, pp. 1−15.
[6] J. Nagy and M. Kilmer, Kronecker product approximation for preconditioning in three-dimensional imaging applications, IEEE Trans.

Image Process. 15 (2006), no. 3, 604−613,.
[7] N. Sidiropoulos, R. Bro, and G. Giannakis, Parallel factor analysis in sensor array processing, IEEE Trans. Signal Process. 48 (2000),

no. 8, 2377−2388,.
[8] W. Hoge and C. Westin, Identification of translational displacements between N-dimensional data sets using the high order SVD and

phase correlation, IEEE Trans. Image Process. 14 (2005), no. 7, 884−889,.
[9] M. Rezghi and L. Eldén, Diagonalization of tensors with circulant structure, Linear Algebra Appl. 435 (2011), no. 3, 422−447,.
[10] M. Che, L. Qi, and Y. Wei, The generalized order tensor complementarity problems, Numer. Math. Theor. Meth. Appl. 13 (2020), no. 1,

131−149,.
[11] A. Cichocki, R. Zdunek, A. H. Phan, and S. I. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way

Data Analysis and Blind Source Separation, John Wiley and Sons, Hoboken, 2009.



30 — H. Jin et al.: The hyperbolic CS decomposition of tensors based on the C-product

[12] L. De Lathauwer, Signal Processing Based on Multilinear Algebra, PhD Thesis, Katholike Universiteit, Leuven, 1997.

[13] Y. Miao, L. Qi, and Y. Wei,M-eigenvalues of the Riemann curvature tensor of conformally flat manifolds, 2018, arXiv:1808.01882, https://

doi.org/10.48550/arXiv.1808.01882.

[14] L. Omberg, G. H. Golub, and O. Alter, A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data

from different studies, Proc. Natl. Acad. Sci. USA 104 (2007), no. 47, 18371−18376,.
[15] L. Xiong and J. Liu, A new C-eigenvalue localisation set for piezoelectric-type tensors, East Asian J. Appl. Math. 10 (2020), no. 1, 123−134,.
[16] X. Wang, M. Che, and Y. Wei, Best rank-one approximation of fourth-order partially symmetric tensors by neural network, Numer. Math.

Theor. Meth. Appl. 11 (2018), no. 4, 673−700,.
[17] J. D. Carroll and J. J. Chang, Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young”

decomposition, Psychometrika 35 (1970), no. 3, 283−319,.
[18] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl. 21 (2000),

no. 4, 1253−1278,.
[19] Z. H. He, C. Chen, and X. X. Wang, A simultaneous decomposition for three quaternion tensors with applications in color video signal

processing, Anal. Appl. 19 (2021), no. 3, 423−444,.
[20] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev. 51 (2009), no. 3, 455−500,.
[21] L. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika 31 (1966), no. 3, 279−311,.
[22] L. Sun, B. Zheng, C. Bu, and Y. Wei, Moore-Penrose inverse of tensors via Einstein product, Linear Multilinear Algebra 64 (2016), no. 4,

686−698,.
[23] L. Sun, B. Zheng, Y. Wei, and C. Bu, Generalized inverses of tensors via a general product of tensors, Front. Math. China 13 (2018), no. 4,

893−911,.
[24] Y. Miao, L. Qi, and Y. Wei, Generalized tensor function via the tensor singular value decomposition based on the T-product, Linear

Algebra Appl. 590 (2020), 258−303,.
[25] Y. Miao, L. Qi, and Y. Wei, T-Jordan canonical form and T-Drazin inverse based on the T-product, Commun. Appl. Math. Comput. 3

(2021), 201−220,.
[26] Y. Miao, T. Wang, and Y. Wei, Stochastic conditioning of tensor functions based on the tensor-tensor product, Pac. J. Optim. 19 (2023),

no. 2, 205−235,.
[27] K. Panigrahy, R. Behera, and D. Mishra, Reverse order law for the Moore-Penrose inverses of tensors, Linear Multilinear Algebra 68

(2020), no. 2, 246−264,.
[28] R. Behera, J. Sahoo, R. Mohapatra, and M. Nashed, Computation of generalized inverses of tensors via T-product, Numer. Linear

Algebra Appl. 29 (2021), no. 2, e2416,.

[29] Y. Liu and H. Ma, Dual core generalized inverse of third-order dual tensor based on the T-product, Comput. Appl. Math. 41 (2022), no. 8,

391,.

[30] Z. Cong and H. Ma, Characterizations and perturbations of the core-EP inverse of tensors based on the T-product, Numer. Funct. Anal.

Optim. 43 (2022), no. 10, 1150−1200,.
[31] J. Sahoo, R. Behera, P. Stanimirović, V. Katsikis, and H. Ma, Core and core-EP inverses of tensors, Comput. Appl. Math. 39 (2020), no. 9,

9,.

[32] H. Jin, M. Bai, J. Benítez, and X. Liu, The generalized inverses of tensors and an application to linear models, Comput. Math. Appl. 74

(2017), no. 3, 385−397,.
[33] R. Behera and D. Mishra, Further results on generalized inverses of tensors via the Einstein product, Linear Multilinear Algebra 65

(2017), no. 8, 1662−1682,.
[34] R. Behera, A. Nandi, and J. Sahoo, Further results on the Drazin inverse of even order tensors, Numer. Linear Algebra Appl. 27 (2020),

no. 5, e2317,.

[35] J. Ji and Y. Wei, The Drazin inverse of an even-order tensor and its application to singular tensor equations, Comput. Math. Appl. 75

(2018), no. 9, 3402−3413,.
[36] Z. Cao and P. Xie, Perturbation analysis for t-product-based tensor inverse, Moore-Penrose inverse and tensor system, Commun. Appl.

Math. Comput. 4 (2022), no. 4, 1441−1456,.
[37] Z. Cao and P. Xie, On some tensor inequalities based on the T-product, Linear Multilinear Algebra 71 (2023), no. 3, 377−390,.
[38] M. Che and Y. Wei, An efficient algorithm for computing the approximate t-URV and its applications, J. Sci. Comput. 92 (2022), no. 3, 93,.

[39] J. Chen, W. Ma, Y. Miao, and Y. Wei, Perturbations of Tensor-Schur decomposition and its applications to multilinear control systems and

facial recognitions, Neurocomputing 547 (2023), 126359,.

[40] Y. Liu and H. Ma,Weighted generalized tensor functions based on the tensor-product and their applications, Filomat 36 (2022), no. 18,

6403−6426,.
[41] C. Mo, X. Wang, and Y. Wei, Time-varying generalized tensor eigenanalysis via Zhang neural networks, Neurocomputing 407 (2020),

465−479,.
[42] C. Mo, W. Ding, and Y. Wei, Perturbation analysis on T-eigenvalues of third-order tensors, J. Optim. Theor. Appl. 202 (2024), no. 2,

668−702,.
[43] P. Wei, X. Wang, and Y. Wei, Neural network models for time-varying tensor complementarity problems, Neurocomputing 523 (2023),

18−32,.

https://doi.org/10.48550/arXiv.1808.01882
https://doi.org/10.48550/arXiv.1808.01882


H. Jin et al.: The hyperbolic CS decomposition of tensors based on the C-product — 31

[44] X. Shao, Y. Wei, and J. Yuan, Nonsymmetric algebraic Riccati equations under the tensor product, Numer. Funct. Anal. Optim. 44 (2023),

no. 6, 545−563,.
[45] E. Kernfeld, M. Kilmer, and S. Aeron, Tensor-tensor products with invertible linear transforms, Linear Algebra Appl. 485 (2015),

545−570,.
[46] A. Bentbib, A. El Hachimi, K. Jbilou, and A. Ratnani, Fast multidimensional completion and principal component analysis methods via the

cosine product, Calcolo 59 (2022), no. 3, 26,.

[47] W. Xu, X. Zhao, and M. Ng, A fast algorithm for cosine transform based tensor singular value decomposition, 2019, arXiv:1902.03070,

https://doi.org/10.48550/arXiv.1902.03070.

[48] J. Benítez and V. Rakočević, Applications of CS decomposition in linear combinations of two orthogonal projectors, Appl. Math. Comput.

203 (2008), no. 2, 761−769,.
[49] D. Calvetti, L. Reichel, and H. Xu, A CS decomposition for orthogonal matrices with application to eigenvalue computation, Linear

Algebra Appl. 476 (2015), 197−232,.
[50] H. Jin, S. Xu, H. Jiang, and X. Liu, The generalized inverses of tensors via the C-product, 2022, arXiv:2211.02841, https://doi.org/10

.48550/arXiv.2211.02841.

[51] H. Jin, M. He, and Y. Wang, The expressions of the generalized inverses of the block tensor via the C-product, Filomat 26 (2023), no. 37,

909−932,.
[52] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins Univ. Press, Baltimore, 2013.

[53] S. Xu, Theory and Methods of Computation of Matrices, Peking University Press, Beijing, 1995.

[54] N. J. Higham, J-orthogonal matrices: properties and generation, SIAM Rev. 45 (2003), no. 3, 504−519,.

https://doi.org/10.48550/arXiv.1902.03070
https://doi.org/10.48550/arXiv.2211.02841
https://doi.org/10.48550/arXiv.2211.02841

	1 Introduction
	2 Preliminaries
	3 The CS decomposition of the unitary tensor
	4 The CS decomposition of a strong unitary tensor
	5 The hyperbolic CS decomposition of tensors
	6  An application to the computation of the C-eigenvalues of a tensor


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


