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Abstract: This paper studies the issues about the hyperbolic CS decomposition of tensors under the C-product.
The aim of this paper is fourfold. Firstly, we establish the CS decomposition of a complex unitary tensor, including
the thin version and the standard version. The corresponding numerical algorithm is also given. Next, we define
three kinds of tensors, i.e., the strong unitary tensor, the mode-1 strong unitary tensor, the mode-2 strong unitary
tensor, and we give the CS decomposition of the last two kind of tensors aforementioned. Numerical algorithms
are also obtained to compute the two types of the CS decompositions. Moreover, we give the definition of another
three classes of tensors, called the .J-orthogonal tensor, the mode-1 strong .7-orthogonal tensor and the mode-
2 strong J-orthogonal tensor. The corresponding hyperbolic CS decompositions and numerical algorithms are
also established. Finally, we give an application to the computation of the C-eigenvalues of the orthogonal tensor.
Numerical examples are given to test our results.
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1 Introduction

In recent years, the researches of tensors or multidimensional arrays have become more popular. A complex
tensor can be regarded as a multidimensional array of data, which takes the form A = (Ail...ip) € CMx XXy,
The order of a tensor is the number of dimensions which is also called ways or modes. Therefore, the well-known
vectors and matrices are first-order tensors and second-order tensors.

Higher-order tensors have been applied in quite a lot of areas, such as psychometrics [1], chemometrics [2],
face recognition [3], image and signal processing [4-9] and so on.

The tensor decomposition has developed very well and found to have good applications in many fields, such
as in eigenvalues, genomic signals, data mining, signal processing [10-16]. Kinds of tensor decompositions via
diverse tensor products have been investigated to extend the matrices contents. For example, [17-21].

The tensor-tensor products include the Einstein product, T-product, C-product and so on. Lots of excel-
lent works had appeared, such as: Sun et al. [22,23] studied the issue about the generalized inverse of ten-
sors based on the Einstein product and a general product of tensors. Miao et al. [24—26] studied the tensor
contents under the T-product. Panigrahy et al. [27] and Behera et al. [28] studied the reverse order law and
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computation concerning the Einstein product and T-product. Liu et al. [29] studied the issue of the dual core
generalized inverse. Cong et al. [30] and Sahoo et al. [31] studied the core-EP inverse of tensors. Jin et al. [32]
researched some work on the generalized inverse of tensors based on the T-product. Behera et al. [33,34] and Ji
et al. [35] got some results on the Drazin inverse of the Einstein product. Cao et al. [36,37] had a further study on
the perturbation and inequalities based on the T-product. Che et al. [38] established an efficient algorithm for
computing the approximate t-URV. Chen et al. [39] studied the perturbations of the tensor Schur decomposition
and Liu et al. [40] studied the weighted generalized tensor functions. Mo et al. [41,42] studied on the Time-varying
generalized tensor eigenanalysis and T-eigenvalues of tensors. Wei et al. [43] studied the Neural network models
and Shao et al. [44] studied the nonsymmetric algebraic Riccati equations.

Kernfeld et al. [45] defined a new tensor-tensor product, that is, the Cosine Transform Product, referred to
as C-product for short. It has been shown that the C-product can be implemented efficiently using DCT (Discrete
Cosine Transform). Moreover, the authors indicated that one can use C-product to conveniently specify a discrete
image blurring model and the image restoration model. Bentbib et al. [46] explored good applications of the
C-product. They proposed new methods for the problem of the third-order tensor completion in combination
with the TV regularization procedure and tensor robust principal component analysis by using the C-product.
Xu et al. [47] indicated that the advantages of using DCT are: (1) the complex calculation is not involved in the
cosine transform based singular value decomposition, so the computational costs can be saved; (2) the intrinsic
reflexive boundary condition along the tubes in the third dimension of tensors is employed, so its performance
would be better than that by using the periodic boundary condition in DFT (Discrete Fourier Transform).

The CS decomposition is a very useful tool in the matrix analysis. Benitez et al. [48] studied the spectrum
and the rank of a linear combination of two orthogonal projectors. By using the CS decomposition, the authors
characterized when this linear combination is EP, diagonalizable, idempotent, tripotent, involutive, nilpotent,
generalized projector, and hypergeneralized projector. The Moore-Penrose inverse of a linear combination of
two orthogonal projectors in a special case was also derived. Calvetti et al. [49] indicated that the Schur form of
the real orthogonal matrix can be got from a full CS decomposition. Based on this fact, the authors derived a CS
decomposition based on the orthogonal eigenvalue method. An algorithm for an orthogonal similarity transfor-
mation of an orthogonal matrix to a condensed product form and an algorithm for full CS decomposition were
also described.

Based on these backgrounds, we will study the theory of the hyperbolic CS decomposition of tensors via the
C-product in this paper.

This paper is organized as follows. In Section 2, we give the terms and symbols needed to be used in this
work. Then, we introduce the C-product of two tensors. In Section 3, we firstly introduce the thin version of
the CS decomposition of a complex unitary tensor. Then, a standard CS decomposition of a complex unitary
tensor is obtained. In Section 3, we define three kinds of tensors, i.e., the strong unitary tensor, the mode-1 strong
unitary tensor and the mode-2 strong unitary tensor. Then, the CS decomposition and corresponding numerical
algorithms of the mode-1 strong unitary tensor and the mode-2 strong unitary tensor are constructed. In the next
section, we define another three classes of tensors, i.e., the J-orthogonal tensor, the mode-1 strong 7 -orthogonal
tensor and the mode-2 strong .7-orthogonal tensor, which the corresponding hyperbolic CS decompositions and
numerical algorithms are established. Finally, we give an application to the computation of the C-eigenvalues of
the orthogonal tensor. Numerical examples are given to verify our results.

2 Preliminaries

In this paper, we denote vectors, matrices, three or higher order tensors like a, A4, A, respectively. Meanwhile,
a;, A; and Aii,...i, are the components of the vector a, matrix A and tensor A4, respectively. The n X nidentity
matrix is denoted by I,. The frontal slice of the tensor A is .A(:, :, i). For simplicity, we denote the frontal slice
as A®,

We start this section by introducing the following face-wise product between two tensors.
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Definition 1. [45] Let A € C"X% and B € C2*™™, The face-wise product A A\ B € C"W*™> jg defined as

(AAB)(i) — A“)B(“, i= 1’

, N3,
The following example is helpful in understanding this product.
Example 1. Let A € C¥>3*2 and B € C¥>¥< with
1 3 5 0 2 2 11 10
AV =[2 6 0of A®=|3 1 1|, BV =2 0] BP=|0 4
0 2 4 0 0 3 2 1 3 3
Then, A /\ B € C3*2X2 gnd
[1 3 s5][1 1] [17 6]
AABWY=A98D=[2 6 ofl2 ofl=[12 2]
0 2 4][2 1| |12 4]
[0 2 2]|[1 o] [6 14]
AABP=APBD =13 1 1{lo0 4]|=|6 7|
0 0 3||3 3] [9 9]

(|

Now, we will present the C-product of two tensors. Firstly, we give the definition of the operation of mat(-).

Definition 2. [45] Let 4 € CwXmXns, AW A@) | A() gre its frontal slices. Then we use mat(.4) to denote the
block Toeplitz-plus-Hankel matrix

AW A® AMm=D () ]
A AD A2 g(ng=1)
mat(A) = : : : :
A=) f(s=2) AD A®
| AM) - gns=D) A@ AD ]
[ 42 4® A1) o
A® 4@ 0 Am
+ : € ChnsXmns
A(";) 0 A'(4) A.(B)
0 A A® 4D

where O is the n; X n, zero matrix.

Definition 3. [45] Define ten(-) the inverse operation of the mat(-), i.e.,

Now, we can give the C-product of two tensors.

ten[mat(A)] = A.




4 = H.Jinetal.: The hyperbolic CS decomposition of tensors based on the C-product DE GRUYTER

Definition 4. [45] Let A € C™X™ and B € C™»*X"s, The cosine transform product, which is called C-product
for short, is defined as
Ak B = ten[mat(A) - mat(3)].

From the above definition, we can see that it is easy to compute mat(.4)mat(/3) by using the technical of
the matrices product. In order to compute the C-product, we must deal with the operation “ten(-)”, which can
be realized by using the following algorithm.

Algorithm 2.1: COMPUTE ten(-) OF A MATRIX

Input: n,n; X n,n; block matrix Z
Output: n; X n, X n3 tensor A
1. Take the bottom left n, X n, block of Zand Z = A"
2.fori=ny—1,...,1
A = [i-th block of first block column of Z]—.A(+"
end

Notice that the first column of mat(.4) defined in (1) is

A(1)+A(2)
A(2)+A(3)

D | A
A(n3)

So, it is easy to get all the frontal slices of .4 by using the technique of Algorithm 2.1.
Now, we present another way to define the C-product of two tensors by using the face-wise product. Before
that, the mode-3 product of a tensor with a matrix is required.

Definition 5. [20] The mode-3 product of a tensor A € C™*™X" with a matrix U € C/*™ is denoted by A X, U.
More precise, we have

3
(Ang)iliz]'zZAilizigUﬁ3’ i1:1,...,n1, i2:1,...,n2, ]:1,,]

i=1

Now, we will introduce how to compute the mode-3 product of a tensor with a matrix. Let the frontal slice
of A € CX™X"Ms he

Alll AlZI cee Alnzl A11n3 A12n3 tee A1n2n3

o Ale AZZl cee Aanl ) A21n3 A22n3 s A2n2n3
AV = s, AT =

Anlll An121 o Anlnzl An11n3 An12n3 tee Anln2n3

Then, the mode-3 unfolding of .4, denoted by A3, is
A Am - Anlll A Ap - Anlzl oo A1n21 A2n21 oo An1n21
Ay Ay - Anllz Ay Ay - Anlzz e Alnzz Aanz e AnanZ
Agy=| | . . . ) ) } . @

A11n3 A21n3 Anlln3 A12n3 A22n3 An12n3 A1n2n3 A2n2n3 Anln2n3
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Notice that .A X5 U can be computed using the following matrix-matrix product. See [20] for details.

The following example shows how to compute the mode-3 product of a tensor with a matrix.

Example 2. Let A € C¥>*? and U € C¥ with

10 2 0 1 2 -
AV =[2 3 0], A®=[3 2 0,U=l2 1]
3 30 0 0 3

Suppose W = A X U. Then,

123033200
@ 1o 3012020 3|

Hence,
1 1][1 2 3 033200
Wiz =UAg =
0301207203
15315340 3
1276186603
Thus,
11 4 2 1 6
wh =[5 5 of w®=[7 8 0
333 6 6 3

O

Based on the above preparation work, we can get the alternative expression of the C-product. Observe that

L(A) = AX;M and L7'(A)= AX; ML @)

Lemma 1. [45] Let A € CXXns qnd B € CeXXMs Then,
Ax B =LL(A) A\ LB)] = [(AX3 M) A (BX3 M) X3 M7, 6)

where M = W™l + Z), W = diag(C(:, 1)), C(:,1) is the first column of C, the matrix Z € C™*"s is the circulant
upshift matrix defined by
Z = diag(ones(n; — 1,1),1),

C is the orthogonal DCT matrix of size ny X n, and its elements are defined as

2-6 (i—-1D2j—-Dn .
= =1,...
Gij n3 COS< on, ) Lj=1,...,n (6)

0, is the Kronecker symbol.

Now, we give an example to show the details to implement the C-product.
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Example 3. Let A € C¥*¥2 and B € C¥>?*2 with

DE GRUYTER

In this case, M is a2 X 2 matrix and can be computed by using the Matlah. More precisely, M and M~ are

M=

[1 2
b M_l =
_1 0]

0 1
05 —05]

By (4), we can compute L(A) = AX; M and L(B) = BX; M, i.e,

[1 5
LAY =0 6
6 6
8
L(B)(l) =|0
6
Then, we can get L(A) /\ L(B), that is,
32
LA ALB)YY =18
96

By the last step, we can get the C-product of .4 and 5, i.e.,

6 4
Ax BV =6 3|, (Ax.B)? =
8 6

4] 11 2
3, LLAP=[0 0 3|,
8 2 2 2
2] 2 2
2|, LBP =0 0]
5 2 1
32 6 4
27], WA ALBY?Y =6 3
64 8 6
13 14
6 12|
44 29

An algorithm of the C-product of A € C¥™>"% and B € C"=*>" is given below.

Algorithm 2.2: COMPUTE THE C-PRODUCT OF TWO TENSORS [45]

Input: n; X n, X n; tensor A and n, X/ X n; tensor B
Output: n; X/ X n; tensor C

1. Compute M = W='C(I + Z) as in Lemma 1

2. Compute A = L(A) = AX3 M, B = L(B) = Bx; M~

3.fori=1,...,n3

Ci = ANRB0
end
4.c=17(0)

By Algorithm 2.2, we can get the following lemma.

Lemma 2. Let A, B and C be tensors with proper sizes. Then, the following statements are true.

D C=A+B< LY =LY+ L(B)D,
2 C=AxB <= LIC)D =L(A)PLB)D.
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Let A € C*%X"s_The following lemma shows that mat(.4) can be block diagonalized.

Lemma 3. [45] Let A € C"X"X"s_ Then,
(€, ® 1, )mat(A)(C;f ®In2) = diag(L(A)V, L(A)?, ..., L(A)™),

where @ is the Kronecker product and C,,_ is the n; X ng orthogonal DCT matrix.

Definition 6. [45] Let L(I) = T € C™™ns be such that 7® =1I,,i=1,2, ..., n,. Then, T = L=X(T) is the identity
tensor.

Definition 7. [45] Let A € C™™% and B € C'™"s | If

AxB=T and Bx,A=1,

then A4 is said to be invertible and 53 is the inverse of .4, which is denoted by .4~

We can check that the inverse of a tensor, if exists, is unique. The conjugate transpose of tensors can he
defined as follows.

Definition 8. [45] If A € C=X"s, then the conjugate transpose of .4, which is denoted by A7, is such that
LAY = @O, i=1,2,...,n,
Lemma 4. [45] Let A € C"X%s and 3 € C"2*>™, It holds that
(Ax B = B x A"

Definition 9. [45] The tensor Q € C™™™ is said unitary if 97 % .Q = Q%O = T. The tensor Q € C"W™X"s ig
said partially unitary if 0 x .Q = 7.

Definition 10. [50] Let A € C*™*"s, Then, A is called an F-diagonal /F-upper/F-lower tensor if all frontal
slices AW i=1,2, ..., n,, of A are diagonal /upper triangular/lower triangular matrices.

The following lemma is helpful in establishing the main result of next sections.

Lemma 5. [50] Let A € C*™*"s, Then, A is an F-diagonal/F-upper/F-lower tensor if and only if L(A) is an
F-diagonal / F-upper / F-lower tensor.

The next lemma explains the operation of two block tensors.

Lemma 6. [51] Let A € C™WXXP, B € CMXXP C € CMXuXP D € CMXmXP £ € CXmiXp F e CvXmXP G e
C*MXP gnd H € C"*™XP, Then,
A Bl [e F Ak E+ Bk G AXF + Bx H
* = '
¢ D| °|¢ M| |CxE+DxG CkF+DxH

In the following, we show that the L(-) operation of the block tensor has the good character.
Lemma7. Let A € C"™XuXP B & CMXuXP C € C"*XP and D € C"™X"*P, Then,

. [ L)
Lo Lo|

A B
cC D
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Proof. Let M € CPXP, By the definition of L(-), one has

DE GRUYTER

A B A B (A B] A B
L = XM <L =M
c D c D ¢ D]/, ¢ D,
0 B
=1L = [MA Mco MBE MDD,
c D
L 17.3)
(4 B] AXs M BxysM
=1L = .
¢ D CxXsM Dx;M

Hence, we claim that

A4 B\ [r 1)
¢ pl) |uo Lol

3 The CS decomposition of the unitary tensor

In this section, we will study the CS decomposition of the unitary tensor based on C-product. Firstly, we give

a thin version of the CS decomposition of the unitary tensor.

Theorem 1. Let W, € C™*M*P with m > n;, W, € C"™>"*P with m, > n, and

W = lW1] c C(ml+m2)><nl><p
2

be a partially unitary tensor. Then, there exist unitary tensors U; € C™*™XP, 1/, € C™*™XP gnd V € C>*M>P

such that

v, O C o

w = *o | [ * IV,

o U, S

where C € C™*m*P_ S € C"*™m*P gre F-diagonal tensors and
Cofx C+ ST S=1.
Proof. Since W is a partially unitary tensor, then W% W = T. By Lemma 2, we have
LwWHOLWD =1, i=1,...,p.

Hence, L(W)®,i =1, ..., p, are partially unitary matrices. Notice that

w, |’
by using Lemma 7, we have
) L(W )(i)
LOV)® = Voli=1....p
L(WZ)(U
Now, we can get the CS decomposition of L(W)® by using [52, Theorem 2.5.2], that is
) 10)
Lowyo = [MU5 0 KOy,
0 L(U-Z)(l) L(S)(l)

M

)

9
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where L(V7)? € C™>™, L(V,)0 € Cme, L(V)D € C™ and

L(C)(l) = diag(cll, CiZ’ ey Cinl) (S lexnl,

L(S)(l) = diag(sil, Sigs eees sinl) e CmZan’

with

(L)L) + (L)) LSV =1, ,i=1,..., p. (10)
By Definition 1 and using (9) and (10), we have
L) o L(C
LOw) = l ) ] A l ( )] ALY (1)
0 LW L(S)

with

(L) AL©) + (L))" ALS) = L. (12)

Implementing the operation “L~"(-)” on both sides of the equalities (11) and (12), we have
vy O C

! x| [ * P,
o v, S

Cl%.C+STx . S=1.

with

Since L(C) and L(S) are F-diagonal tensors, by Lemma 5, we have C and S are F-diagonal tensors. [
In the following, we will establish a more general version of the CS decomposition of tensors.

Theorem 2. Let W, € C™>X™XP W),, € C"XMXP and

Wy W
Wzln 12

c C(m1+m2)><(m1+mz)><p’ m, < m,
WZl sz

be a unitary tensor. Then, there exist unitary tensors U; € C™*™xP, 1/, € C™XMXP Y, € C™*™*P and V, €
C™MXmXP sych that

v, O c|s 0 Vv, O o
wzl(;vl*c _SCO*C[OIV]’ 13)
2 ol o 1 2
where C € C™*™*P S € C™>*MXP gre F-diagonal tensors and
Clix.C+Six.S=1. (14)

Proof. Since W is a unitary tensor, we have W% W = Wx WH = . Then, by Lemma 2, we have
LOVHOLW® = LoMPLWND =1, 4 i=1, ..., p,

which implies that L(W)®,i =1, ..., p, are unitary matrices. Since
wy W
W = l 1 12] ,
WZl WZZ

L(Wn)(i) L(le)(i) .
. S.1=1
L(W21)(l) L(sz)(l)

by Lemma 7, we get

L(w)(i) — [
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By using the CS decomposition [53] of L(W)®, we have

) L(C)® | L(S)® 0 . H
. L ® _ _ L @
Lo = | KT 0 TS e o W= 0 as
0 L(U'z)(l) ® 0 L(vz)(l)
o 0] L(1)"
where L(U)? € C™m, L(U,)® € cmXm, [(1)D € cmxmi, (v,)D € C™*™ and
L(O)Y = diag(cy, Cy, .- » Cy ) € ™7™,
L(S)? = diag(sy, Sy - .- » Sy, ) € C™™™,
with o u
(L)L + (LSHP) LS =1, i =1, ..., p. (16)
By Definition 1, we have
L) |-LS) 0 H
L(VY) 0o Lv,) o
Lw) = —-L(S) | L(C o
W) l 0 LWy ] A (S) | L©) A l 0 L) a7n
0 (o) L(I)
with
(L) AL©) + (L) ALS) = L(D). (18)
Utilizing the operation “L~(-)” on both sides of the equalities (17) and (18), we have
C S 0O H
v, O v, O
w:[1 ]*C -s|c O*C[l ]
o v, © O 1 o v
with
Cofx C+ ST S=1.
By Lemma 5, we get C and S are F-diagonal tensors due to L(C) and L(S) being F-diagonal tensors. O

In the following, we will build an efficient algorithm to compute the CS decomposition of a unitary tensor
by Theorem 2.

Algorithm 3.1: COMPUTE THE CS DECOMPOSITION OF A UNITARY TENSOR

Input: (m; +m,) X (m; + m,) X p unitary tensor W
Output: U; € CMXMXP 1/, € CMXMXP, P, € CMXmMXP P, € CMXMaXP C € C™M*XMXP and S € CMm>*mXp
1. Compute W= L(W) = W X3 M, where M is defined in (5)

2.fori=1,...,p
1’/\1(:')’1’/\2(:')’ﬁ(i)’ﬁz(i)’gm’gm] = csd(W\)
end

.U = LT, Uy = LN T5), Yy = L7(0,), Y, = L7'(9,), ¢ = L7(C), S = L7'(S)
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Wll WlZ

Example 4. Let W, € C¥*2 W,, € C™*Zand W = l
Wa Wy

] e ClOXlOXZ with
_—0.3027 —0.3743  0.2779  —0.2215 0.3083 —0.1542 —0.4304 -—0.1624 —0.5042 —0.2393_
—0.3447 -0.3034 0.3176 0.5575 —0.3394 0.1318 —0.2568  0.2835 0.1014 0.2972
—0.3050  0.0483 0.2434 —0.2416  0.2551 —0.1318  0.0886 0.5412 0.5124  —0.3760
—0.2851 0.4978 —0.1574  0.5621 0.2790  —0.1894  0.1385 01395 —0.3759 —0.1911
—0.2608 —0.2768 —0.4709  0.2590 0.1477 0.3053 —0.1028 -—0.3940 0.3791 —0.3768

1 —

W= —0.3014  0.6169 0.0246  —0.2510 0.0014  0.3029 —0.5232 —0.1531  0.1373 0.2392

—0.2986  0.0714 0.4863 0.0514 0.0712 —0.1829 0.4514 —0.5976  0.2002 0.1646

—0.3477  0.0083  0.0250 —0.2481 —0.3741  0.5556 0.4230 0.0955  —0.3537 —0.2347

—0.3539 —0.2345 -0.3958 —0.1973  0.3855 0 0.2236 0.1787  —0.0542  0.6250

—0.3479  0.0180 —0.3488 —0.1807 -—0.5757 —0.6152 —0.0696 —0.0645 0.0309 —0.0671
_—0.0122 —0.0544 —0.2396 0.1050 —0.0260  0.1035 0.3180  —0.0026  0.2706 0.4656 |

0.0358  0.0575 —0.0896 —0.2251  0.4898 0.0739 0.0414 —-0.2913 —0.0307 —0.3987

—0.0350 —0.0530 —0.1058  0.3458 —0.2566  0.1341 0.0966  —0.2178 —0.5945  0.1192
—0.0338 —0.3478 0.0776  —0.3527 —0.3688 —0.0882 0.0365 —0.3182  0.3337 —0.0589

W — —0.0128  0.1435 0.1838 0.0963 —0.2405 -—0.0367 —0.2637 0.2248 —0.0169  0.2571

0.0105 —0.1996  0.1704 0.1723 0.1220  —0.5052  0.1060 0.0832 —0.1625 —0.0215 [

0.0476  0.0874 —0.6697 —0.1163  0.0322 0.0029 —0.3094 0.3066 —0.1967 —0.1566
—0.0052 0.1740 —0.0162  0.2149 0.2823  —0.2862  0.0337 0.1679 0.4246 0.0891

0.0069 —0.0672  0.2727 —0.1791 -—0.2487 0.0297 —0.2126  0.2010 0.0011  —0.3846
0.0099  0.2727 0.2803  —0.1206  0.2403 0.5181 0.0267 —0.1242 —0.0747  0.1492

A simple computation gives

_—0.3272 —0.4832 —0.2014 —0.0116  0.2564 0.0528 0.2055  —0.1675  0.0369 0.6918 |
—0.2730 —0.1885  0.1383 0.1074 0.6401 0.2795 —0.1740 —0.2990 0.0400 —0.5002
—0.3749 —0.0578  0.0317 0.4500 —0.2581  0.1364 0.2818 0.1056  —0.6766 —0.1377
—0.3528 —0.1977 -0.0023 —0.1432 -0.4586 —0.3657 0.2115 —0.4968 0.2916  —0.3088
—0.2863 0.0102 —0.1033 0.4516 —0.3334 0.2319 —0.6302  0.0557 0.3454 0.1373
—0.2804  0.2178 0.3654 0.0935 0.2455  —0.7076 —0.3112  0.0133  —0.1877  0.1962
—0.2034 0.2462 —0.8531 -—0.1811 0.1355 —-0.1772 -0.1674 0.0156  —0.1932 —0.1486
—0.3581  0.3563 —0.0074  0.1817 0.1904 —0.0168  0.4903 0.4314 0.4955  —0.0565
—0.3401 -0.3689 01495 —0.5556 —0.1119 0.0595 —0.2016 0.5806  —0.0520 —0.1442
—0.3281  0.5634 0.2119  —0.4220 -0.0951 0.4209 -—0.0161 -—0.3129 —0.1186  0.2314

Lm® =
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[-0.3027 —0.3743 02779 —02215 03083 —0.1542 —0.4304 —0.1624 —0.5042 —0.2393]
—0.3447 -0.3034 0.3176 0.5575 —0.3394 01318  —0.2568  0.2835 0.1014 0.2972
—0.3050  0.0483 0.2434  —0.2416  0.2551 —0.1318  0.0886 0.5412 0.5124  —0.3760
—0.2851 0.4978 —0.1574  0.5621 0.2790  —0.1894  0.1385 01395 —0.3759 —0.1911
—0.2608 —0.2768 —0.4709  0.2590 0.1477 0.3053  —0.1028 —0.3940 0.3791 —0.3768
—0.3014  0.6169 0.0246  —0.2510  0.0014 0.3029  —0.5232 —0.1531  0.1373 0.2392 |
—0.2986  0.0714 0.4863 0.0514 0.0712 —0.1829  0.4514 —0.5976  0.2002 0.1646
—0.3477  0.0083 0.0250  —0.2481 —0.3741  0.5556 0.4230 0.0955  —0.3537 —0.2347
—0.3539 —0.2345 -—0.3958 —0.1973  0.3855 —0.0000  0.2236 0.1787  —0.0542  0.6250

| —0.3479  0.0180  —0.3488 —0.1807 —0.5757 —0.6152 —0.0696 —0.0645 0.0309 —0.0671]

L(W)(Z) —

The first step, we will compute the singular value decomposition of L(W,;)V). That is

—0.6441 —04914 05771 —01035] [0.8492 0 0 0
Low, o —| 0397 0166 —0assl —ozsis| | 0 05081 O 0

—0.5040 07902 01654 03070 0 0 02427 0
—0.4169 —0.3356 —0.6556 0.5327 0 0 0 01236
07714 —0.1123 04348 —0.4509]
0.5859 0.4536 —0.2985 0.6015
0.0705 02855 —0.7122 —0.6374
—0.2381 0.8367 04633 —0.1691

Then,

L(C)Y = diag(cy, ¢,, ¢3, ¢,) = diag(0.8492, 0.5081, 0.2427, 0.1236),

LS = diag<\/1 — 1= 1= /1- ci) = diag(0.5281, 0.8613, 0.9701, 0.9923).
Similarly, by computing the singular value decomposition of L(W;;)®, one has

L(C)® = diag(0.9445, 0.8620, 0.4675, 0.0986),

L(S)® = diag(0.3285, 0.5070, 0.8840, 0.9923).

Hence, there exist orthogonal tensors U and V such that

LU * wx )"

[ 0.8492 0 0 0 05281 0 0 0 0 0]
0  0.5081 0 0 0 08613 0 0 00

0 0 0.2427 0 0 0 09701 0 0 O

0 0 0 0.1236 0 0 0 0992 0 0
—0.5281 0 0 0 0.8492 0 0 0 00
- 0 —0.8613 0 0 0 05081 0 o o of
0 0 —0.9701 0 0 0 02427 0 0 O

0 0 0 —-0.9923 0 0 0 01236 0 0

0 0 0 0 0 0 0 0 10
|0 0 0 0 0 0 0 0 0 1
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and
L(U T He Wk V)
[ 0.9445 0 0 0 03285 0 0 0 0 o]
0  0.8620 0 0 0 05070 0 0 00
0 0 0.4675 0 0 0 0840 0 0 0
0 0 0 0.0986 0 0 0 09951 0 0
—0.3285 0 0 0 0.9445 0 0 0 00
B 0 —0.5070 0 0 0 08620 0 0 00
0 0 —0.8840 0 0 0 04675 0 0 0
0 0 0 —0.9951 0 0 0 0096 0 0
0 0 0 0 0 0 0 0 10
|0 0 0 0 0 0 0 0 0 1]
Then,
(UHx Wk )"
[ 0.9445 0 0 0 03285 0 0 0 0 0]
0  0.8620 0 0 0 05070 0 0 00
0 0 0.4675 0 0 0 08840 0 0 0
0 0 0 0.0986 0 0 0 09951 0 0
—0.3285 0 0 0 0.9445 0 0 0 00
N 0 —0.5070 0 0 0 08620 0 0 00
0 0 —0.8840 0 0 0 04675 0 0 0
0 0 0 —-0.9951 0 0 0 0.0986 0 0
0 0 0 0 0 0 0 0 10
|0 0 0 0 0 0 0 0 0 1]
and
(UHx wx )P
[ —0.0477 0 0 0  0.0998 0 0 0 0 0]
0 —0.1769 0 0 0 0.1771 0 0 0 0
0 0 —-0.1124 0 0 0 0.0430 0 0 0
0 0 0 0.0125 0 0 0 —-0.0014 0 0
—0.0998 0 0 0 —0.047 0 0 0 0 0
- 0 —01771 0 0 0  —0.1769 0 0 0 of
0 0 —0.0430 0 0 0 —0.1124 0 0 0
0 0 0 0.0014 0 0 0 00125 0 0
0 0 0 0 0 0 0 0 0 0
|0 0 0 0 0 0 0 0 0 0]

Finally, one can check that CH % ,.C + SFx .S = 1. O
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4 The CS decomposition of a strong unitary tensor

In this section, we will study the CS decomposition of a strong unitary tensor. Firstly, let us give the definition of
arelated tensor.

Definition 11. Let Q € C>™"s If
0% .0 =9%x 0" =D,

where D is an F-diagonal tensor with Dy > 0,i=1,...,n,j=1,...,n, then Q is call a strong unitary tensor.

Two more general versions of the strong unitary tensor is given as follows.

Definition 12. Let Q € C™™"s If
ox 0" =D,

where D is an F-diagonal tensor with Diij >0,i=1,...,n,j=1,...,n5 then Q is call a mode-1 strong unitary
tensor. If
0% .0 =D,

where D is an F-diagonal tensor with D;; > 0,i=1,...,n,j=1,...,ns then Q is call a mode-2 strong unitary

tensor.

i

Now, we will do some researches on the CS decomposition of the mode-1 (mode-2) strong unitary tensor.

Theorem 3. Let W, € C"™wX™*P W), € C"X"XP and

Wy W
W:ln 12

] I= C(ml+m2)><(m1+m2)><p’ m, < m,
WZl WZZ

be a mode-1 strong unitary tensor: Then, there exist a mode-1 strong unitary tensors U" € CUMi+m)X(mi+m)xp gnd
unitary tensors V; € C™*™xP and Y, € C™>*™XP such that

c| s o H
o

W=Ux*.| =S| ¢ 0O *C[)(;l » ]
O] © 1 2

where C € C™X™xP_ S € C™>*™XP gre F-diagonal tensors and

Cl%.C+Si%x .S =1.

Proof. Since W is a mode-1strong unitary tensor, we have W WH = D, a F-diagonal tensor with Dy; > 0.Define

P € Clmutm)xX(m+m,)xp a5 an F-diagonal tensor with Py = 1 /D;.jl, i=1,..,m+m,j=1,...,p. Then, wehave
Px Wk Wik P =1.

Let Wy = P* W. Then, W, is a unitary tensor. By Theorem 2, we have

v, 0O N V@H
w, = (91 U]*C -S| Cc 0O |* 01 v ,
2 O lo 1 2

where C € C™>™*P S € C™>*™XP gre F-diagonal tensors and

Cl%.C+SHx . S=1.
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Hence,

7))

c|s o H
v, O Y, O

wW="P"x%, 01 v | el S [ C O *e 01 M
2 O 1o 1 2

U

Let V' = P7'x, l ] . It is easy to see U U = (P~1)?, which means U is a mode-1 strong unitary

2
tensors. O

Theorem 4. Let W, € C™™XP, W), € C™*™XP and

wy W
W= 11 12 = C(m1+m2)><(ml+mz)><p’ m, < m,
w21 WZZ

be a mode-2 strong unitary tensor. Then, there exist unitary tensors U; € C™*™XP, 1/, € C™*™*P and mode-1
strong unitary tensors ¥V € CUmi+m)X(m+m)xXp gych that

oo c|-s o
W = { 01 v ]*c -S| ¢c o [V, (19)
2 0O|lo 1

where C € C™XMxP S € C™*™XP gre F-diagonal tensors and
Cix C+ ST S=1. (20)
Proof. The proofis similar as Theorem 3. O

In the following, we will give an algorithm to compute the CS decomposition of a mode-1 strong unitary
tensor.

Algorithm 4.1: COMPUTE THE CS DECOMPOSITION OF A MODE-1 STRONG UNITARY TENSOR

Input: (m; + m,) X (m; + m,) X p mode-1 strong unitary W
Output: U' € Clmm)Xim+m)Xp Yy @ Cmxmxp, p, € CmXmXp, ¢ € CM*m*P and S € Cmxmxp
1. Compute D = Wx W'
2. Construct an F-diagonal tensor P € Cm+m:)X(m+m)xp with P, = \/;7/1 i=1...,m+my,j=1..,p
3. Compute Wy = Px W
4. Compute Wy = L(W,) = W), X; M, where M is defined in (5)
S5.fori=1,....p
['1//'\1(0’@(i)’ﬁ(i)’ﬁz(i)’f(f),:g\(i) = csd(W, )
end
6. Uy =L\, Uy = L7\ T5), ¥y = L7'(D,), V, = L7'(V,), € = 171(C), S = 17'(S)
7.V =P ' diag(V;, 13)

Example 5. Let W € C3® be a mode-1 strong unitary tensor with

10 2
= 0 2
3 3
7. 4. 4 ..
wh =0 Z4+Zi —Z+2i
33l —gtl
4 4 . 4.
Z =242 24 =
3 3+l +3l
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2 1 1 1
—§+7l 0 i—l —6—71 0 6+l
3. 2 1. 1.1
we = 0 - 1-Zi, W= 0 -S4+ —2+3
i ok 3+31 3+21
1. 3. 1 1. 1,1, 2
1-2i 1-2i -1 S+ Ci -4 =2
2! 2! 3Tt T3ttt TS
A simple computation gives
0 0 2 241 0 1-2i 5 0 0
Lowm® =10 1 o, LW®=| 0 3 0 [[LOM®=|0 3+2 -2+3if
4 0 0 2—1 0 142 0 —-243i 342
Then,
4 0 O 10 0 O 25 0 O
Lk wH)P =lo 1 o LwxwH)P=|0 9 o LWk W) =0 26 0],
0 0 16 0 0 10 0 0 26
which means W is a mode-1 strong unitary tensor. By simple computations, one has
1 1
1 — 0 0 =0 0
20 0 5
2 vio 1 o L o
@ — @ — 3 — —
L(P)’=|0 1 (1),L(P) = 0 3 0 |, L(P) = \/2_6 .
0 0 - 0 0 1 0 0 1
4 V10 V26
Then,
21, 12,
001 V10 V10 V10 V10
Lowy)P=[0 1 0] LOW)® = 0 1 0 :
100 2 10 Lo 2,
V10 V10 V1o V10
1 0 0
3 2, _2 .3,
LW)® = V26 /26 V26 /26 |
2 3 . 3 2 .
0 — =+ =i =+ =i
V26 V26 V26 /26
Moreover,
2 0 1
3 3
1 2 4 . 4 2 .
W_|0 _+-—=+ i -+ =i
W 3 V26 3v26  3v26 26 |
1 4 2 . 2 4 .
St =i = i
3 326 V26 V26 3V
1 1 1 . 1 1 . T
-+ =+ —=i 0 — = =
2 V10 2v10 2v/10 /10
) 0 1.3 _ 11' 13 i
Wo = 2 226 26 V26 226 :
11 1 3 1 3 (L _ 1
| Vi 2v10 26 2v/26  2v/10 226 \ V10 126/ |
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1 1
—1
6 10 2+v10

1 .
- + =i
2¢/10 V10

1 1 1 . 1 1 .

0 -t =+ —==I -+ —=lI

wy) = 6" 2v26 3126 3v/26 | 21/26
SO S SPRR N S 11 11,
37 Vo 2vi0 3v26  2v26  2v26 2vi0  \3v26 o) |

Next, it is easy to execute Algorithm 3.1 to get the CS decomposition of the mode-1 strong unitary tensor. []

o
W=

Q‘

[un

Similar as Algorithm 4.1, we can get an algorithm to compute the CS decomposition of a mode-2 strong
unitary tensor.

5 The hyperbolic CS decomposition of tensors

In this section, we firstly give some definitions of the .J-orthogonal tensors. Then, we establish the hyperbolic CS
decomposition of a J-orthogonal tensor, mode-1 strong .J-orthogonal tensor and orthogonal tensor. Then, there
exist unitary tensors .J-orthogonal tensor, respectively.

Definition 13. [54] Let Q € R™". If
Q"R =0QJQ" =7,
where J = diag([ Y —Iq), p + q = n, then Qs called a J-orthogonal matrix.

Definition 14. Let Q € R™ ™" [f
% J*x.Q=0x JxQ" =7,

where J € R™™"s js an F-diagonal tensor with
L) = diag(1P,—10, ), 0<k<n, i=1,...n,
then Q is called a J-orthogonal tensor.
The definition of a .7-orthogonal tensor can be generalized as follows.
Definition 15. Let Q € R™"™" If

O % J*,Q = Ox J*.Q" = 7,

where J € R™™"s and J, € R™™"s are F-diagonal tensors with

LW = diag(ry’, -1",) and L(J,)" = diage;”, ..., a, =), ... =),
where a{i) Y ,a,((i’ >0, ﬁl(fll, e, ,(f) >0,0<k<ni=1,...,n;then Qis called a strong J-orthogonal tensor.

Moreover, the definition of the strong [J-orthogonal tensors can be extended to the mode-1 strong J-
orthogonal tensor and mode-2 strong .7-orthogonal tensor.

Definition 16. Let Q € R™™"s If
Ox J*x Q" = 7,

where J € R™™ " and J, € R™™"s are F-diagonal tensors with

LW = diag?, -1 ) and L(J,)"? = diaga;’, ..., a", -, ... =),
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where a{“, el al({” >0, ﬂ]((’ll, e, ,‘f) >0,0<k<ni=1,...,ng then Qiscalled amode-1strong J-orthogonal

tensor.

Definition 17. Let Q € R™™s If
Q% J*.Q =T,

where J € R™™"% and J, € R™™" are F-diagonal tensors with

L(7)P = diagt?, -1 ) and L(J,)? = diag(a”, ..., a”, - ..., —pD),
where ai”, . al((i) >0, ﬁz((?m e, ,(l” >0,0<k<ni=1,...,n;thenQis called amode-2 strong 7-orthogonal

tensor.
The following result is the hyperbolic CS decomposition of a J-orthogonal tensor.

Theorem 5. Let W;; € R™*™XP W), € R™>"XP and

Wy W
wzln 12

c R(m1+mz)><(m1+m2)><p’ m <m,
Wy Wy

be a J-orthogonal tensor. Then, there exist unitary tensors U; € R™*MXP 1/, € RMXMXP P € R™M*MXP gnd
V, € R™XMXP sych that

v, O
W, = ! *
0 10) 7/'2 c (21)
where C € R™>™*P S € R™M*™XP gre F-diagonal tensors and
C*—S*=1. (22)

Proof. Since W is a J-orthogonal tensor, then WHx Jx W = J. According to Lemma 2, we get

LovHOLgHOLow)® = L(ghHD,i=1,..., p,

which means LOW)®,i =1, ..., p are J-orthogonal matrices. Because of
Wy, W,
W = l 1 12] ,
WZl WZZ
by Lemma 7, we get
] LW, )(i) LW, )(i)
LOW)® = oy v li=1.p
L(W21)(1) L(WZZ)(I)

Using Theorem 3.2 of [54], we have

—L(S)(’) L(C)(l) 0

L(C)® | —L(S)® 0 [
0 0 L(D)®

. H
L(vl)(l) 0
0 L(VZ)(D ’

Loy = [ L) o ]

0 L(Uz)(i)
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where L(V)® € R™*™, [(1,)® € RmXm, [(1)® € R™*m [(1,) € R™>™ and
L(C)Y = diag(cy, Cyy ... » Cim,) € RMXm

L(S)Y = diag(s, S - - » Sim,) € RIXm;

with
(L) = (L) =L, i=1,...,p.

By Definition 1, we have

LE) | L) 0 H
LW) = l L(Z)fl) L(OU) ] A L(S)‘ 0O 0 |A l L(gl) L(?)) ]
2 0 0 L) 2

with
(L) AL©) - (L)) ALS) = LD

Implementing the operation “L~(-)” on both sides of the equalities (23) and (24), we have

|

with

ct-8%=1.

Similar as Theorem 1, we get that C and S are F-diagonal tensors.
Let

W = Wu Wy € RUm+m)X(my+my)xp.
Wy Wy

If Wy, is invertible, denote

wt -Ww.
exc(Ww) = l 11_1 1 1_21 .
WZIWH WZZ - W21 Wn le

(23)

(24)

(25)

It is easy to check exc(exc(W)) = W. Moreover, by [54, Theorem 2.2], one has that if W is a J-orthogonal
tensor, then exc(W) is an orthogonal tensor. Conversely, if W is an orthogonal tensor and W, is invertible, then

exc(W) is a J-orthogonal tensor.

Now, we can set up an algorithm for the hyperbolic CS decomposition of the .7-orthogonal tensor based on

Theorem 5.

Algorithm 5.1: COMPUTE THE HYPERBOLIC CS DECOMPOSITION OF A 7 -ORTHOGONAL TENSOR

Input: (m; + m,) X (m; + m,) X p J-orthogonal tensor W

Output: U; € C™XMXP, 1, € CMXMXP, Y, € CMX™MXP, Y, € CMXMmXP, C € C™M*MXP and § € CMXmXP
1. Compute 7 = exc(W), where exc(-) was defined in (25)
2.Compute 7 = L(T') = T X3 M, where M is defined in (5)

[17‘\1(])"[_//‘\2(1')’]31(/)’]3\2(/)’6'\0(1')’3‘\0(1')] = csd(T0)
end
4.1, = VT, U, = 17(T), Yy = L7100, 0, = 171(0,), € = 17(Cy), Sp = L7(Sp)
5.C=C)1 = Co+ Spk Cy % Spi S = C; %S
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Example 6. Let W € R®®*2 e a J-orthogonal tensor with

14951 —3.3435 13816 —3.1084 0.4438  0.8044 ]
—4.0321 37284 —16996 4.8518  0.4706 —1.5841
11742 —0.3878 —0.3225 -—1.0894 —0.9100 0.6406

W = 23137 30639 —10316 34840 —05632 —1.4903|
—0.7685 11109 —0.0678 16195 —0.1573 0.4154
31892 3.6481 —21505 42724 04984 —11630
[ 52366 -10.8788 —9.4134 0.9070  7.6567  6.9803 |
29576  7.0364  7.3158 —18476 —5.8428 —4.6961

Lo _ |AB48 8932 6032 0917 53203 —54867

—1.4043  3.4248 40822 —1.0095 —2.8848 —2.1003 [
—4.6152  9.2967 72715 —0.4296 —5.9769 —5.9621
—-16583  4.3817 53849 —1.7032 —3.9386 —3.5379

A simple computation gives

[ 119683 —251012 —17.4453 —12945 157572  14.7650 |
—9.9473 17.8012 129320 11565 —11.2151 —10.9762
Loy = | 885 AT 79 0730 15687 -10338 |
~51222 99135 71328 14650 —6.3328 —5.6910
—9.9989 19.7044 144752 07603 —121111 —11.5088
—65058 124115 86194  0.8661 —7.3789 —8.2388
[ 14951 -33435 13816 —31084 04438  0.8044 |
40321 37284 —16996 48518 04706 —15841
Low@ <| 17742 03878 —0325 10894 —0.9100 06406 |
—23137 3.0639 —1.0316 34840 —0.5632 —1.4903
—0.7685 11109 —0.0678 16195 —0.1573 0.4154
—31892 36481 —21505 42724 04984 —11630
By using the formula
exc(Ww) = wl_ll _wﬁlwlz

-1 -1 ’
lewn Wy = W21W11 Wi
where W), € R?>2%2 W, € R>2 W), € R»®2 and Wy, € R¥*2, one has

—0.4859 —0.6851 0.3838 01634 —0.0277 —0.3461]
—0.2715 -0.3267 —0.5120 0.0263  0.6145 0.4232
—0.6031 01312 -0.4764 -0.1985 —0.5937 0.0124
—0.2028 0.2709  0.0911  0.8892 —0.0987 0.2772
—0.4917 0.4136  0.5489 —0.3545 0.2750  0.2907
—0.2088 0.4028 —0.2322 0.1300  0.4286 —0.7346

L(T)® = exc(LW)P) =
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[ 04715 —04228 —0.0672 0.5859  0.4082 —0.2906]
—0.5099 —0.1891 03831 —0.6677 03153  0.1106
—0.3559 —0.4232 —0.5500 —0.1425 —0.5529 0.2565
—04714 03990 02979  0.0827 —0.5418 —0.4790 |
—02041 01149 04095 04275 —0.1208 0.7617
—0.3565 0.6588 —0.5383 —0.0318 0.3466  0.1673

L(T)® = exc(L(W)®) =

It is easy to check that L(7)® and L(7)® are orthogonal. Next, using the method of Algorithm 3.1, we can
get that there exist orthogonal tensors " and V such that

[ 0.9407 0 03391 0

0 0
0  0.0290 0 0999 0 0
—0.3391 0 09407 0 0 0
L% 7% V)" = :
0 -0999 0 00290 0 0
0 0 0 0 10
0 0 0 0 o0 1
[ 0.8204 0 05717 0 0 0
0 0.1541 0 0980 0 0
—0.5717 0 0804 0 0 0
LU 7% )" = :
0 —09880 0 01541 0 0
0 0 0 0 1 0
0 0 0 0 0 1
In the last step, we compute
1.0630 0 12189 0
LO)Y = (L(C)M) ! = , L(O)® = (L(C)?) L= ,
0 34.4828 0 6.4893
0.3605 0
L(S)Y = (L(C)M)L(S)P = ,
0 34.4690
0.6969 0
L($)P = (L(C)P)TL(S)? = :
0 64114
Therefore,
[ 1.0630 0 —0.3605 0 0 0
0  34.4828 0 —34.4690 0 0
—0.3605 0 1.0630 0 0 0
L(vHx wx ) = :
0  —34.4690 0 344828 0 0
0 0 0 0 1 0
0 0 0 0 0 1
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12189 0  —069%9 0 0 0

0 64893 0  —64114 0 0

LW wa ) = —0.6969 0 12189 0 00
0 —64114 0 64893 0 0

0 0 0 0 10

0 0 0 0 01

Hence, ) ~
12189 0  —069%9 0 0 0

0 64893 0  —64114 0 0

(U5 ) = —0.6969 0 12189 0o oo
0 —64114 0 64893 0 0

0 0 0 0 10

0 0 0 0 0 1

[—0.0780 0 0.1682 0 0 0]

0 13.9967 0 140288 0 0

(U yom 9)® = 0.1682 0 00780 0 0 0
0 —140288 0 172410 0 0

0 0 0 0 0 0

0 0 0 0 0 0

In the following, we give the hyperbolic CS decomposition of a mode-1 strong .7-orthogonal tensor.

Theorem 6. Let W;, € R™X™*P W, € R™XMXP gnd

Wiy W
wzln 12

] = [R(m1+m2)><(m1+m2)xp’ ml < mz
WZl WZZ

be a mode-1 strong J-orthogonal tensor: Then, there exist a mode-1 strong unitary tensor U € R(M+m)X(m+my)xp
and unitary tensors ¥, € R™>*™*P and Y, € R™*™XP sych that

where C € R™>™*P S € R™M*™XP gre F-diagonal tensors and

ct-$*=1

Proof. Since W is a mode-1 strong .7 -orthogonal tensor, by Definition 16, we have

Wx J*x W = 7,.
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Define P € Clmitm)Xm+m)Xp g5 an F-diagonal tensor with

P = diag(\/ @@ \/(ﬂ,‘f))*), i=1...p.

Then, we have

Px Wk J* Wik P =1.

Let W, = P* . W. Then, Wy .J *ngl = J, which means that W, is a J-orthogonal tensor. By Theorem 5,
we have

where C € C™*™XP S € C™*™XP are F-diagonal tensors and
C*-S*=1.

Therefore,

c| S o0 H
werte | 00 ST | o]
2 olo 1 2

U

O
Let U = P~ 1%, l ] . It is easy to check U'x, U'H = (P~1)%, which means that ¥ is a mode-1 strong

2
unitary tensor. O

Similar as Theorem 6, we can get the hyperbolic CS decomposition of a mode-2 strong .7-orthogonal tensor
as follows.

Theorem 7. Let W), € R™>X™XP W), € R™M*MXP gnd

Wy W
W_ln 12

— I= R(m1+m2)><(m1+m2)><p’ m, <m,
W21 WZZ

be a mode-2 strong [J-orthogonal tensor. Then, there exist unitary tensors U; € R™>™x? 1/, € R™*X™XP and
a mode-1 strong unitary tensor ¥ € RUM+m)X(m+m)Xp gych that

where C € R™M>XMXP_ & € R™*™XP gre F-diagonal tensors and

ct-52=T1. @7

In the following, we will give an algorithm to compute the hyperbolic CS decomposition of the mode-1 strong
J-orthogonal tensor based on Theorem 6. One can also analogously get an algorithm to compute the hyperbolic
CS decomposition of the mode-2 strong J-orthogonal tensor.
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Algorithm 5.2: COMPUTE THE HYPERBOLIC CS DECOMPOSITION OF THE MODE-1 STRONG .7 -ORTHOGONAL TENSOR

Input: (m; + m,) X (m; + m,) X p J-orthogonal tensor W
Output: " € Cm+m)X(m+m)Xp y, @ CmXmxp, p, € CmXmXp, C € C™M*mMXP and § € CmxmxP
1. Compute D = Wk J* WH
2. Construct an F-diagonal tensor P> € C™+mX(mi+m)xp with Py, = \/ﬁ, i=1.,m+my,j=1..p
3. Compute W, = Px W
4. Compute 7 = exc(W,), where exc(-) was defined in (25)
5. Compute T= L(T') = T X3 M, where M is defined in (5)
6.fori=1,...,p
171(:'),172(:')7{;‘1(:')713‘2(:')7@)(/'),§U<n] = csd(TW)
end
7.0, = 17, Uy = LN, Yy = LV0,), W, = LV,), € = LCy), S, = L(Sy)
8.C = Cy+ Spk C"* Sy S = €)% S,
9. U = P~ diag(1;, U3)

6 An application to the computation of the C-eigenvalues
of a tensor

Firstly, we will introduce the C-eigenvalue of the tensor .A.

Definition 18. Let A € C™"P, Suppose that ¥ € C™XP and X # O.If
Ak X=X X, AEC, (28)

then A is called a C-eigenvalue of .4 and &’ is the C-eigenvector of .4 associated to A.

Notice that A% X = A - X is equivalent to mat(.4)mat(X’) = A - mat(X). Hence, all the C-eigenvalues of A
are the eigenvalues of the matrix mat(.4) and vice versa.
The following theorem involves a full CS decomposition of a unitary tensor.

Theorem 8. Let W, € C™X™XP W), € C™*™*P and

wy W
W= 1 12 e C(ml+m2)><(m1+mz)><p’ ml < mz
W21 WZZ

be a unitary tensor. Then, there exist unitary tensors U; € C™*™*P 1/, € C™XMXP Y, € C™*™XP and V, €
C™*MXP such that

U, o c sl v o]”
w = c c b (29)
o U, -s C o v
where C € C™*™XP S € C™*™XP gre F-diagonal tensors and
Cl%.C+ST% S =1. (30)
Proof. The proof is similar as Theorem 2 and follows by using [52, Theorem 2.6.3]. O

The next lemma is helpful in establish the main result.

Lemma 8. Let W € R¥™ P pe an orthogonal tensor. Then, there exists an orthogonal tensor Q, € R2<2nxp
such that
H
QO *CW*CQO = Ha*CHb’
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W A W A 0 0
. —Q. - -
1 — A3 1 1 3 3 2n—1 2n—1
L(H)™ = dlag(l 5O a(i)]’ [ ) a(i)] P l D G0 ])
1 1 3 3 2n—1 2n—1

(0] (i) () (i) () (1)
. - - —a.
LH)® =diag{ 1, | 2 "2 0, A 4|, B oTarl_q),
ﬂ(l) a(l) ﬁ(l) a(l) ﬁ(l) a(l)
2 2 4 4 2n—2 2n—2

(1) (D)2 (D2 1 i = —
D >0, (a2 + (0P =1i=12,...,pk=12...,2n—1

where

Proof. Since W € R¥™2%P js an orthogonal tensor, one has L(W)Y € R j=1,2, ..., p are orthogonal
matrices. By [49, Algorithm 1], there exists an orthogonal matrix L(QO)(“ such that

(L(QO)(i))HL(W)(i)L(QO)(i) — L(Ha)(i)L(Hb)(i)_

Thus,
(LT A LOW) A L(Q,) = L(H,) /\ L(H,),

which implies Q' * Wk Q) = Hk H,. O
Define a, f € R with # > 0 and a? + ﬂz = 1. Define a,b € Rwith a,b > 0 by

( B \/2(1+a))’ vso.
(a,b) =

V2ad+a) 2
Vo= a) b ) a<0.

2 V21— a)

Then, we have

[a b_T_—a ﬁ_ (a b ] [1 0]
= (3D
_b —a| | p aj _b —a| [0 -1
and i e o i i i
b a —a f b a -1 0
= . (32)
| —a b_ i p al |-a b_ i 0 1_

Using (31), one has there exists an orthogonal tensor Q, € R2x2nXp gych that

H
Q% H,x.Q, =D,

O 0 OIT) O B0

M _ 3 a;’ b a, b, a,’ by
L(Q,)" = diag p g0 |p0 _go | [ g
1 1 2 2 n n

L(D)? = diag(1,-1,1—-1,...,1,—1).

where

and

Similar, using (32), one has that there exists an orthogonal tensor Q, € RZ<2n%p gych that

QII;I*CHb*CQb = D,

(1) (1) (1) (1) (1) (1)
L(Q )(i) — diag 1 G dl G d2 Cna dn—l 1
b T —g® O gD O gD @ |’
1 © PR -1 €

1 n—1

where

and
L)Y = diag(1,-1,1—1,...,1,-1).
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Let I, be the n X nidentity matrix and e; be the jth column of I,,. Denote the tensor 7 € RZ>20%P defined
by
L(P)D = [e}, €5, ..., €5 1,8, €45 .- r €3], i=1,2,...,D

and J € [R2nX2nX p by
L)W = diag(I,, —I,), i=1,2,..., p.

Then, one has
(Qux Pk H K (Q Kk P) = (Q* Pk Hyyk (Qyx P) = ].

Define
Z = (Quk PVx(Qyx P) = (PHx Qux P) ke (PHH Qyk P).

By using
Qik Wk Qy = Hk Hy, = (Quk Pk Tk (Qox Pk (Qk Pk T K (Qyx P,

one has
(Qo* Qo x Py A Wk (Qok Qo k P) = Tk Zk T *.2ZH.

Since Z is an orthogonal tensor, we can get its full CS decomposition as
v, O c s
o vl |s -c|

L(O)®P = diag(c!”, ¢, ..., cD), L($)? = diag(s{”,s?, ..., s0), i=12....p

H
v, 0O
o v

Cc c

where
with ¢, s > 0 and (c")? + (s")* = 1, k = 1,2, ..., n. Finally, if we define

U, O
Q= Qo Qu*cPhe| o [ *cP,

2
one has
Q% Wk . Q="¥,
where
(D)2 (D)2 (D (D) (i)y2 (D2 (D (D)
LOP)D = diag( l(ql ) _(1(')8 1:1)) (i)zjll g (M z] seees l(cnl ) —(()S '{‘)) ()2:‘,11 B () 2] >,
1 1 1 1
—201 s (c1 ) —(s1 ) —2c,°s, (cn ) —(sn )
i=12,...,p.
Let

[ (D2 _ (o(Dy2 (1) (D) T
1c§”=L‘1< r-n o ) i=1,2....p,

EPWONG: (D2 _ (D2
L 2C1 sl (Cl ) (Sl )_

[( A2 _ (D42 (1) (D T
o =g @) 7 ) 2% i=12,...,p
2 o . . ) 9by e s [Jy
_ZC;l)s;l) (C;z))z _ (s;l))Z-

[( 012 _ (o())2 D ]
]C(i) - L—l (Cn ) (sn ) ch sn i=1.2 p
L . . , /N /8
n _zcill)s;l) (C;l))Z _ (sill))Z_
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Therefore, one can compute the eigenvalues of mat(X’;), mat(X’,), ..., mat(KX,), which are the C-eigen-
values of W.

Example 7. Let W € R5*®<3 be an orthogonal tensor with

[ 01901 —0.0946 02032  0.0951 00452 —0.4262]
—-0.0691 0.0195 —0.2722 0.3694  0.0229 —0.5662
W = —0.3240 —0.1153  0.5152 0.0422  —0.5658  0.0094
0.2378 —0.3855  0.2456  0.4556 0.1895 0.4274
0.3024 0.0190 —0.2085 —0.2563 —0.4049  0.3437
—0.1751 -0.3235 -0.2424 -0.0563 0.0705 —0.1519
[ 04995 —0.0791 —0.5083 0.3609 —0.2312 0.4383 |
—0.1977 -0.3028 0.2636 —0.6572 0.0654  0.5792
WO = —0.0612 0.3539 -—0.6170 -—0.4071 0.4011 -—0.1120
—0.5046 0.2850  0.1746 —0.2857 —0.4878 —0.4129
—0.4837 01765  0.2670  0.2843  0.5766  0.1052
—0.1808 0.1464  0.3470  0.0962  0.3100 —0.1314
(01665 01256 01938 —0.1036 —0.0162 —0.2930]
0.0103 0.0826 —0.1914  0.3241 0.1113  —0.6042
W = 0.0117 -0.1712 0.4949 0.0969 —0.4144 0.1046
0.2441 -0.3227 0.0724  0.2303  0.3967  0.3009
0.1637 —0.3281 —-0.3617 —0.2799 —0.2872  0.0956
0.0429 0.3570 —0.1486 0.0118 —0.0828  0.2421

A simple computation gives

—0.4758 —0.0015 —0.4257 0.6098 —0.4496 —0.1358 ]
—0.4440 -0.4208 -0.1279 -0.2969 0.3761 —0.6163
—0.4229 0.2502  0.2709 —0.5781 —0.5923 —0.0053

L(w)(l) —
—0.2832 —0.4610 0.7395  0.3449  0.0073  0.2035
—0.3375 —0.2843 -0.3978 —0.2476 0.1740 0.7453
—0.4510 0.6834  0.1544 0.1598 0.5247 0.0695
04759 —0.2993 —0.4989 0.5596 —0.1698 0.3051 |
—-0.2771 -0.3659 0.1828 —0.6119 —0.0230 0.6172
LoD = —0.3969 0.4098 —0.5967 -—0.4618 0.2497 —0.2071

—0.5109  0.2222 0.3478 —0.0604 —0.6950 —0.2864
—0.3450 0.5236  0.4202  0.3079  0.4589  0.3533
—0.3989 —0.5340  0.2532 0.0281  0.4633 —0.5255
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05231 —01412 05177 —01622 02926 —0.5714]
0.1183  0.2396 —0.3444 0.7025 —0.1537 —0.5411
—0.2745 —0.2981 0.6373 0.3523  —0.5525  0.0168
0.4983 —0.3477 -—0.0014 0.5110 0.2806  0.5394 |
0.6224  0.1706  —0.1138 —0.2607 —0.6944 0.1429
—0.0372 —0.8269 —0.4408 —0.1643 —0.1566 —0.2626

LOW)® =

Then, the full CS decompositions of L(W)®, L(W)® and L(W)® are

[ 0.8305 0 0 0571 0 0 |
0 05428 0 0 08399 0
0 0 03500 0 0 0.9333
L(vHx wx ) = :
05571 0 0 08305 0 0
0 —08399 0 0 05428 0
0 0  -09333 0 0 03590
[ 0.9961 0 0 00881 0 0o |
0 06783 0 0 07348 0
0 0 01954 0 0  0.9807
L(Uix Wk v)? = :
—0.0881 0 0 099%1 0 0
0 —07348 0 0 06783 0
0 0  —09807 0 0 0.1954
[ 09737 0 0 0.026 0 0 |
0  0.6078 0 0 03153 0
0 0 0.0663 0 0 04978
LU x Wk v) =
—0.026 0 0 09737 0 0
0 —03153 0 0 06078 0
0 0  —04978 0 0 0.0663

Then,

0.7581 0.3422 0.0186 0.0624 —0.2079  0.2291
) — o = ® —
! —0.3422 0.7581 ! —0.0624 0.0186 ! —0.2291 —0.2079

o 0.0431 0.5594 @ [—0.0951 0.3068 @ [-01318 —0.1307
K = , KW = , K® = ,
2 —0.5594 0.0431 2 —0.3068 —0.0951 2 0.1307 —0.1318

@ _ [—0.4097  0.2674 o [—0.3401  0.1586 @ 0.1738  0.0427
W = , KW= , k¥ = .
3 —0.2674 —0.4097 3 —0.1586 —0.3401 3 —0.0427 0.1738

By computing the eigenvalues of

(1) (2) (2) (3) (3)
TOREY Gl SRl & K
mat(ky) = | £P + 2 k) kP 4P|,
(3) (2) (3) (1) (2)
TSR Gal Y SRl GRS &
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_]C;D +IC;2) IC(Z) +]C(3) ]C(B)

2 2 2
mat(K,) = | K7 + £ kP kP + )|
(3) (2) (3) (1) (2)
RS CSR CUN Goll ot

mat(k;) = | K2 + 60 kP kPP |
(3) (2) (3) (1) (2)
k¥ kP +x® kP + k)

one can get the C-eigenvalues of the orthogonal tensor W:

Ay = 0.3795 + 0.9252i, Ay, = 0.9846 + 0.1755i, 455 = 0.9474 =+ 0.0507i,

Ay = 0.3336 + 0.9188i, Ag19 = —0.4099 + 01761, Ay, 1, = 0.129 % 0.2142i,

Agaa = —0.7423 + 0.67i, Ay516 = —0.9236 + 0.3833, Ay; 15 = —0.2434 = 0.0661i.
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