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Abstract: This article aims to provide a series of characterizations of the robust isolated calmness of the
Karush-Kuhn-Tucker (KKT) mapping for spectral norm regularized convex optimization problems. By estab-
lishing the variational properties of the spectral norm function, we directly prove that the KKT mapping is
isolated calm if and only if the strict Robinson constraint qualification (SRCQ) and the second-order sufficient
condition (SOSC) hold. Furthermore, we obtain the crucial result that the SRCQ for the primal/dual problem
and the SOSC for the dual/primal problem are equivalent. The obtained results can derive more equivalent
conditions of the robust isolated calmness of the KKT mapping, thereby enriching the stability theory of
spectral norm regularized optimization problems and enhancing the usability of isolated calmness in algo-
rithm applications.
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1 Introduction

Consider the spectral norm regularized matrix optimization problem
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where →h :
dR R is twice continuously differentiable convex function and is essentially strictly convex,

→×
:

m n dR R� and →×
:

m n lR R� are two linear operators, ∈ ×C m nR and ∈b lR are given data, and
⊆ lR� is a given convex polyhedra cone. The function X 2‖ ‖ is the spectral norm function, namely, the largest

singular value of X . Without loss of generality, we suppose that ≤m n in what follows. For convenience, in the
following text, we always use θ to represent the spectral norm function, i.e., ⋅ = ⋅θ 2( ) ‖ ‖ . Problem (1.1) has a
wide range of applications in various fields, such as matrix approximation problems [1], matrix Chebyshev
polynomial problems [2], and ∞H synthesis problems [3–5], etc. Recently, spectral norm regularized problem
has also been applied in deep learning and neural networks problems [6–8].

Stability analysis theory is very crucial in studying the convergence of algorithms. As one of the important
concepts in stability properties, isolate calmness (Definition 1) may guarantee the linear convergence rate of
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some algorithms, such as the alternating direction method of multipliers [9] and the proximal augmented
Lagrangian method [10]. There are many publications on studying the isolated calmness of the Karush-Kuhn-
Tucke (KKT) mapping (ICKKTM) for optimization problems. For the nonlinear semidefinite programming,
Zhang and Zhang [11] show that the ICKKTM can be derived from the second-order sufficient condition
(SOSC) and the strict Robinson constraint qualification (SRCQ). Zhang et al. [12] demonstrate that both the
SOSC and the SRCQ are sufficient and necessary for the ICKKTM for the nonlinear second-order cone pro-
gramming problem. It is important to note that Ding et al. [13] study the robust isolated calmness of a large
class of cone programming problems. They prove that if and only if both the SOSC and the SRCQ hold, the KKT
mapping is robustly isolated calm.

When the optimization problem has some kind of special linear structure, by establishing the equivalence
between the constraint qualification of the primal (dual) problem and second-order optimality condition of
the dual (primal) problem, one can obtain more characterizations of stability properties. For instance, for the
standard semidefinite programming problem, Chan and Sun [14] show that the constraint nondegeneracy
for the primal (dual) problem is equivalent to the strong SOSC for the dual (primal), then they obtain a series of
equivalent characterizations of the strong regularity of the KKT point. Han et al. [15] discover the equivalence
relationship between the dual (primal) SRCQ and the primal (dual) SOSC for convex composite quadratic
semidefinite programming problem, thereby deriving a series of equivalent conditions of ICKKTM. For the
case where θ in problem (1.1) is the nuclear norm function, Cui and Sun [16] show that the primal (dual) SRCQ is
equivalent to the dual (primal) SOSC. Therefore, they derive more equivalent conditions of the robust ICKKTM.

Inspired by the work in [16], given the widespread application of spectral norm regularized convex matrix
optimization problems, a natural question is whether the results in [16] can be extended to spectral norm
regularized convex optimization problems. We provide an positive answer in this article. Due to the special
structure of the critical cone of spectral norm function, we provide several equivalent conditions of the robust
ICKKTM. That is to say, the conclusions in [16] are still valid for problem (1.1). Compared to [16], the difference
in this article is that we use the established variational properties of the proximal mapping of spectral norm to
provide a direct proof of the ICKKTM for problem (1.1), while [16] provides an indirect proof of the isolated
calmness based on [13, Theorem 24] regarding the optimization problems with a 2� -cone reducible constraint
set. In addition, compared to the SOSC, the SRCQ for primal or dual problem is easier to verify, which can
enhance the practicality of isolated calmness in algorithm research.

The organization of the subsequent content is as follows. We provide some notations and preliminaries on
variational analysis, which will be used in the following text in Section 2. The variational properties of the
spectral norm function are studied in Section 3, including the relationship between the critical cones of the
spectral norm function and its conjugate function, and the explicit expression of the directional derivative of
the proximal mapping of the spectral norm function. The results in Section 3 play a vital role in obtaining the
important conclusions of this article. In Section 4, we prove that the primal (dual) SRCQ holds if and only if the
dual (primal) SOSC holds and thus establish more equivalent conditions for the robust ICKKTM for problem
(1.1). We conclude this article in Section 5.

Some common symbols and notations for matrices are as follows:
• For any positive integer t , we denote by t[ ] the index set t1, …,{ }. For any ∈ ×Z m nR , the i j,( )th entry of Z is
denoted as Zij, where ∈i m[ ], ∈j n[ ]. Let ⊆μ m[ ] and ⊆ν n[ ] be two index sets. We write Zν to be the
submatrix of Z that only retains all columns in ν, and Zμν to be the ×μ ν∣ ∣ ∣ ∣ submatrix of Z that only retains
all rows in μ and columns in ν.

• For any ∈d mR , dDiag( ) represents the ×m m diagonal matrix, where the ith diagonal element is di, ∈i m[ ].
• Using “trace” to represent the sum of diagonal elements in a given square matrix. For any two matrices

P and Q in ×m nR , the inner product of P and Q is written as ≔P Q P Q, trace
T⟨ ⟩ ( ). The Hadamard product

of matrices P and Q is represented by the symbol “ ∘ ”, i.e., the i j,( )th entry of ∘ ∈ ×P Q m nR is P Qij ij
.

• Let w� be the linear space of all ×w w real symmetric matrices, and +
w

� and −
w

� be the cones of all ×w w

positive and negative semidefinite matrices, respectively.
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2 Notation and preliminaries

Let � and � be two finite dimensional real Euclidean spaces. Let �� be the unit ball in � . Let ⊆D � be a
nonempty closed convex set. For any ∈z D, the tangent cone [17, Definition 6.1] of D at z is defined by ≔zD	 ( )

∈ ∃ →d z zk�{ ∣ with ∈z Dk and ↓τ 0
k s.t. − ∕ →z z τ dk k( ) }. We use ≔ ∈ − ≤ ∀ ∈x d d z x z D: , 0,D
 �( ) { ⟨ ⟩ }

to denote the normal cone of D at ∈x D. Denote by δ xD( ) the indicator function over D, i.e., =δ x 0D( ) if ∈x D,
and = ∞δ xD( ) if ∉x D. Define the support function of the set D as ≔ ∈∈σ y D x y y, sup , ,

x D
�( ) ⟨ ⟩ . For a given

∈x �, define ≔ − ∈x d x d DΠ arg minD( ) {‖ ‖∣ } as the projection mapping onto D. Suppose the function
→ −∞ +∞f : ,� ( ] is proper closed convex, denote by ≔ < ∞f x f xdom { ∣ ( ) } the effective domain of f , by f *

the conjugate of f and by ∂f the subdifferential of f . For more details, one can refer standard convex analysis
[17]. For any convex cone ⊂K � , denote by ≔ ′ ∈ ′ ≤ ∀ ∈∘K z z z z K, 0,�{ ∣⟨ ⟩ } the polar of K .

The definition of isolated calmness below, which is taken from [13, Definition 2], is the most important
concept in this article.

Definition 1. The set-valued mapping ⇉G : � � is said to be isolated calm at ū for v̄ if ∈v G u¯ ¯( ), and there
exist a positive constant κ and neighborhoods � of ū and � of v̄ such that

∩ ⊂ + − ∀ ∈G u v κ u u u¯ ¯ .�� ��( ) { } ‖ ‖ (2.1)

Moreover, we say that G is robustly isolated calm at ū for v̄ if (2.1) holds, and for each ∈u � , ∩ ≠ ∅G u �( ) .

For any closed convex function → −∞ +∞g : ,� ( ], we know from [18, Proposition 2.58] that g is direc-
tionally epidifferentiable. We use ⋅↓g x;( ) to denote the directional epiderivatives of g . Further, if ↓g x d;( )

is finite for ∈x gdom and ∈d �, we define the lower second-order directional epiderivative of g for any
∈w � by

≔
+ + ′ − −

−
↓↓

↓
′→

↓

g x d w

g x τd τ w g x τg x d

τ

; , liminf

;

.
τ

w w

0

1

2

2

1

2

2

( )
( ) ( ) ( )

3 Variational analysis of the spectral norm function

In this section, we will provide a direct expression for the directional derivative of the proximal mapping of
the spectral norm function. Then discuss the relationship between directional derivatives of the proximal
mapping, the so-called sigma term and the critical cones.

Given an arbitrary matrix ∈ ×Q m nR , let ≥ ≥ ≥σ Q σ Q σ Q… m1 2( ) ( ) ( ) be the singular values of Q. Denote
≔σ Q σ Q σ Q σ Q, , …, m

T
1 2( ) ( ( ) ( ) ( )) . For any integer >p 0, let p
 be the set of all ×p p orthogonal matrices.

We assume that ∈ ×Q m nR admits the singular value decomposition (SVD) as follows:

= = =Q U σ Q V U σ Q V V U σ Q VDiag 0 Diag 0 Diag ,
T T T

1 2 1
[ ( ( )) ] [ ( ( )) ][ ] ( ( )) (3.1)

where ∈U m
 and ∈V V n
1 2 
[ ] with ∈ ×V n m

1 R and ∈ × −V n n m
2 R ( ). Define the following three index sets

≔ ≤ ≤ > ≔ ≤ ≤ = ≔ +a i m σ Q b i m σ Q c m n1 0 , 1 0 , 1, …, .i i{ ∣ ( ) } { ∣ ( ) } { } (3.2)

For any two matrices ∈P W,
n� , the well known Fan’s inequality [19] takes the form

≤P W λ P λ W, ,
T⟨ ⟩ ( ) ( ) (3.3)

where λ P( ) represents the eigenvalue vector of P whose elements are arranged in nonincreasing order.
For any ∈ ×P W,

m nR , by [20, Theorem 31.5], we know that ∈ ∂W θ P( ) (or, equivalently, ∈ ∂P θ W*( ))
holds if and only if

+ = ⇔ + =P W P P W WProx Prox ,θ θ*( ) ( )
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where →× ×
Prox :θ

m n m nR R denote the proximal mapping of θ [21, Definition 6.1], namely,

≔
⎧
⎨
⎩

′ + ′ −
⎫
⎬
⎭

∈
′∈

×
×

Z θ Z Z Z ZProx arg min

1

2

, ,θ
Z

m n2

m n

R
R

( ) ( ) ‖ ‖

and →× ×
Prox :θ

m n m n
* R R denote the proximal mapping of θ*. Denote ≔ +Q P W . LetQ have the SVD as (3.1).

Then by [21, Theorem 7.29 and Example 7.31], we have that

= =P U σ P V W U σ W VDiag 0 , Diag 0
T T[ ( ( )) ] [ ( ( )) ]

and

= = −σ P κ σ Q σ W σ Q κ σ Qand ,( ) ( ( )) ( ) ( ) ( ( ))

where →κ :
m mR R is the proximal mapping of the ∞l norm (i.e., the maximum absolute value of the elements

in a vector in mR ).
Define →ϕ : R R as the following scalar function:

≔ ∈ϕ x x λ xmin , * , ,R( ) { }

where >λ* 0 and satisfies ∑ − == +σ Q λ* 1i

m

i1
[ ( ) ] (for any ∈x R, +x[ ] means the nonnegative part of x). Then,

we can conclude that =κ σ ϕ σ ϕ σ ϕ σ, , …, m1 2( ) ( ( ) ( ) ( )) and

= =P Q U ϕ σ ϕ σ ϕ σ VProx Diag , , …, 0 .θ m
T

1 2( ) [ ( ( ) ( ) ( )) ]

Obviously, ⋅Proxθ( ) can be regarded as Löwner’s operator related to ϕ.
Let ν Q ν Q ν Q, ,…, r1 2( ) ( ) ( ) be the nonzero different singular values of Q, and there exists an integer

≤ ≤r r1 ˜ such that

> > > ≥ > > > >+ν Q ν Q ν Q λ ν Q ν Q… * … 0.r r r1 2 ˜ ˜ 1( ) ( ) ( ) ( ) ( )

To proceed, we further define several index sets. We denote ≔+a br 1 for convenience. Divide the set a into
subsets as follows:

≔ ∈ = ∈a i a σ Q ν Q k r, ,k i k{ ∣ ( ) ( )} [ ]

and define two index sets associated with λ*:

≔ ⋃ ≔ ⋃
= = +

+
α a β a, .

k

r

k

k r

r

k

1

˜

˜ 1

1

(3.4)

Specifically, =σ P σ Q λmin , *i i( ) { ( ) }, =i m1,…, , namely,

= ⎧
⎨
⎩

∈
∈σ P

λ i α

σ Q i β

*, if ,

, if .
i

i

( )
( )

In fact, λ* coincides with the largest singular value of P, namely, =λ P* 2‖ ‖ . According to Watson [22], the
subdifferential of θ can be characterized as follows:

∂ = ∀ ∈ =+
∣ ∣

θ P U HV H H, , trace 1 .α α
T α

�( ) { ( ) } (3.5)

Therefore, we know that =σ W 0i( ) when ∈i β, and the set α can be divided into three subsets as follows:

≔ ∈ = ≔ ∈ < < ≔ ∈ =α i α σ W α i α σ W α i α σ W1 , 0 1 , 0 .i i i1 2 3{ ∣ ( ) } { ∣ ( ) } { ∣ ( ) } (3.6)

Hence, there exist integers ≤ ≤r0 10 and − ≤ ≤r r r˜ 1 ˜
1 such that

= ⋃ = ⋃ = ⋃
= = + = +

α a α a α a, , .

k

r

k

k r

r

k

k r

r

k1

1

2

1

3

1

˜
0

0

1

1

Since the spectral norm function is globally Lipschitz continuous with modulus 1 and convex, θ is direc-
tional differentiable at any point in ×m nR . From (3.5), for any ∈ ×D m nR , the directional derivative of θ at P
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in the direction D can be expressed as follows:

′ = =
∈∂

θ P D D S U DV; sup , .

S θ P

α
T

α 2( ) ⟨ ⟩ ‖ ‖
( )

(3.7)

For ∈ ∂W θ P( ), or, equivalently, ∈ ∂P θ W*( ), the critical cone of θ at P for W and the critical cone of θ*

at W for P are defined as follows:

≔ ∈ ′ =×P W D θ P D D W, ; ,θ
m nR� ( ) { ∣ ( ) ⟨ ⟩} (3.8)

and

≔ ∈ ′ =×W P D θ W D D P, * ; , .θ
m n

* R� ( ) { ∣( ) ( ) ⟨ ⟩} (3.9)

Next we will give the expression for the directional derivative of ⋅Proxθ( ). By [23], we know that ⋅Proxθ( )

is directional differentiable and the directional derivative can be obtained via the directional derivative
of ϕ. Clearly the directional derivative of ϕ is

⎪

⎪

′ =
⎧
⎨
⎩

>
=
<

ϕ p h

p λ

h p λ

h p λ

;

0, if *,

min , 0 , if *,

, if *.

( ) { }

For any ∈ ×Q m nR , denote →× ∣ ∣×∣ ∣
Θ :αα

m n α α2 R R , →× ∣ ∣×∣ ∣
Θ :αβ

m n α β1 R R , →× ∣ ∣×∣ ∣
Θ :αβ

m n α β2 R R , and →×
Θ :αc

m nR
∣ ∣×∣ ∣α cR as follows:

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

≔
+

∈ ∈

≔
−

−
∈ ∈

≔
+

+
∈ ∈

≔ ∈ ∈ −

+∣ ∣

+∣ ∣

+∣ ∣

+∣ ∣

Q
λ

σ Q σ Q
i α j α

Q
λ σ Q

σ Q σ Q
i α j β

Q
λ σ Q

σ Q σ Q
i α j β

Q
λ

σ Q
i α j n m

Θ

2 *

, , ,

Θ

*

, , ,

Θ

*

, , ,

Θ

*

, , .

αα ij

i j

αβ ij

j α

i j α

αβ ij

j α

i j α

αc ij

i

2

1

2

( ( ))
( ) ( )

[∣ ∣] [∣ ∣]

( ( ))
( )

( ) ( )
[∣ ∣] [∣ ∣]

( ( ))
( )

( ) ( )
[∣ ∣] [∣ ∣]

( ( ))
( )

[∣ ∣] [ ]

Define two linear matrix operators →×S :
p p pR � and →× ×T :

p p p pR R by

≔ + ≔ − ∀ ∈ ×S H H H T H H H H
1

2

and

1

2

, .
T T p pR( ) ( ) ( ) ( ) (3.10)

For all ∈ ×Q m nR and ∈ ×D m nR , let =D D D1 2[ ]with ∈ ×D m m
1 R , and ∈ × −D m n m

2 R ( ). We define four matrix
mappings × →× × ∣ ∣×∣ ∣

Ξ :
m n m n α α

1 R R R , × →× × ∣ ∣×∣ ∣
Ξ :

m n m n α β
2 R R R , × →× × ∣ ∣×∣ ∣

Ξ :
m n m n β α

3 R R R , and Ξ :4

× →× × ∣ ∣×∣ ∣m n m n α cR R R by

⎧

⎨
⎪⎪

⎩
⎪
⎪

≔ ∘
≔ ∘ + ∘

≔ ∘ + ∘
≔ ∘

Q D Q T D

Q D Q S D Q T D

Q D Q S D Q T D

Q D Q D

Ξ , Θ ,

Ξ , Θ Θ ,

Ξ , Θ Θ ,

Ξ , Θ .

αα αα

αβ αβ αβ αβ

αβ
T

βα αβ
T

βα

αc αc

1

2

1

2

1

1

2

1

3

1

1

2

1

4

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ( )) ( ) ( ( )) ( )

( ) ( )

(3.11)

Therefore, according to [23, Theorem 3], the directional derivative ′ Q DProx ;θ( ) can be written as follows:

′ =
⎛

⎝
⎜

+ ⎞

⎠
⎟Q D U

Q D D Q D Q D

Q D D D
VProx ;

Ξ , Ξ Ξ , Ξ ,

Ξ ,

,θ

αα

ββ βc

T
1 2 4

3

( )
( ) ( ) ( ) ( )

( )

͠ ͠ ͠ ͠

͠ ͠ ͠
(3.12)

where ≔D U DVT͠ and

≔
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

×

×

−
∣ ∣

D

S D

Ξ

0

0

Π

.αα

α α

α α

α αα

1 1

2 2

3
3 3�

( )

( ( ))

͠

͠

(3.13)
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Theorem 3.1 in [24] shows that the singular value function is second-order directionally differentiable
in ×m nR . This means that the spectral norm function is second-order directional differentiable, and

″ ⋅ = ⋅⇊θ X θ X; ;( ) ( ). To analyze the SOSC of problem (1.1), which helps to characterize the ICKKTM, we need
to compute the “sigma term” of the problem (1.1), namely, the conjugate function of the second-order direc-
tional derivative of θ. For any =k r1,…, , define × →× × ×

Ω :a
m n m n a a

k

k kR R R by

≔ − −

+ − −

−P D S D P ν P I S D ν P D D

T D P ν P I T D

Ω , Σ 2

Σ ,

a a
T

k m a k a c a c

T

a
T

k m a

1

†

1

1

1

†

1

k k k k k

k k

( ) ( ( )) ( ( ) ( ) ) ( ( )) ( ( ))

( ( )) ( ( ) ( ) ) ( ( ))

͠ ͠ ͠ ͠

͠ ͠

where Z † is the Moore-Penrose pseudo-inverse of Z , ≔P σ PΣ Diag( ) ( ( )), Im is the ×m m identity matrix
and = =D D D U DV U DVT T

1 2 1 2[ ] [ ]͠ ͠ ͠ . By [25], we know that ∀ ∈ ×D m nR , the conjugate of ″ ⋅θ P D; ,( ) is

∑≔ ″ ⋅ = =
=

ψ W θ P D W W P D σ W P D* ; , * Σ , 2Ω , trace 2Ω , ,
P D αα α

k

r

k a
,

1

k

1

( ) ( ( )) ( ) ⟨( ( )) ( )⟩ ( ) ( ( ))
( )

(3.14)

where = ∈σ W σ Wk i i ak
( ) ( ( )) . Clearly, =ν P λ*k( ) when =k r1,…, ˜. Continuing to calculate formula (3.14), we can

obtain the explicit expression for ψ W*
P D,

( )
( )

as follows:

∑ ∑

∑

=
−

−

+
− −

≤ ≤
+ ≤ ≤ +

≤ ≤

≤ ≤
≤ ≤ +

∼

ψ W
σ W

ν P λ
S D

σ W

λ
D

σ W

ν P λ
T D

*

2

* *

2

*

.

P D
l r

r t r

l

t

a a

l r

l

a c

l r

t r

l

t

a a

,

1

1 1

1

2

1

2

1

1 1

1

2

l t l

l t

1 1

1

( )
( )

( )
‖( ( )) ‖

( )
‖ ‖

( )

( )
‖( ( )) ‖

͠ ͠

͠

( )

We are now prepared to give the main conclusions of this section, that is, some properties of the critical
cones and the conjugate function of second-order directional derivative ψ*.

Propositions 10 and 12 in [25] characterized the critical cones of θ and θ* defined in (3.8) and (3.9),
respectively. We summarize the results as follows.

Proposition 1. Let ∈ ∂W θ P( ) and = +Q P W admit the SVD as in (3.1). Let the index sets α, β, α1, α2, α3, and c
be defined as (3.2), (3.4), and (3.6). Given any ∈ ×D m nR , denote =D U DVT͠ . Then the following results hold:
(i) ∈D P W,θ� ( ) if and only if there exists some ∈τ R such that

≥ ≥∣ ∣λ S D τ λ S Dα α α α α11 1 1 3 3
( ( )) ( ( ))͠ ͠

and

=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

∣ ∣S D

S D

τI

S D

,αα

α α

α

α α

1 1

2

3 3

( )

( )

( )

͠

͠

͠

where λ Z( ) denote the real eigenvalue vector of symmetric matrix Z being arranged in nonincreasing order.
(ii) ∈D W P,θ*� ( ) if and only if

= ∈ ∈−
∣ ∣

+
∣ ∣

D S D Dtrace 0, ,αα α α
α

α α
α

1 1

1

3 3

3� �( ) ( )͠ ͠ ͠

and

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

D

D D D D D

D D D D D

D D D

D D

0 0

0 0 0

.

α α α α α α α β α c

α α α α α α α β α c

α α α α α α

βα βα

1 1 1 2 1 3 1 1

2 1 2 2 2 3 2 2

3 1 3 2 3 3

1 2

͠

͠ ͠ ͠ ͠ ͠

͠ ͠ ͠ ͠ ͠

͠ ͠ ͠

͠ ͠
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Remark 1. For the spectral norm function θ, the τ in part (i) of proposition 1 is actually the largest eigenvalue of
S Dαα( )͠ , i.e., =τ λ S Dαα1( ( ))͠ . This means that τ is relevant to D. It is easy to observe that the index sets α1 and α2

cannot exist simultaneously. When ≠ ∅α1 , there must be =α 11∣ ∣ and = ∅α2 , then ∈D P W,θ� ( ) if and only if

=
⎛

⎝
⎜

⎞

⎠
⎟S D

λ S D

S D
.αα

αα

α α

1

3 3

( )
( ( ))

( )
͠

͠

͠

When = ∅α1 , ≠ ∅α2 , ∈D P W,θ� ( ) if and only if

=
⎛

⎝
⎜

⎞

⎠
⎟

∣ ∣
S D

λ S D I

S D
.αα

αα α

α α

1 2

3 3

( )
( ( ))

( )
͠

͠

͠

In brief, we can conclude that ∈D P W,θ� ( ) if and only if

=
⎛

⎝
⎜

⎞

⎠
⎟

∣ ∣+∣ ∣
S D

λ S D I

S D
.αα

αα α α

α α

1 1 2

3 3

( )
( ( ))

( )
͠

͠

͠
(3.15)

Proposition 2. Let ∈ ∂W θ P( ) and = +Q P W admit the SVD as in (3.1). Let the index sets α, β, α1, α2, α3, and c
be defined as (3.2), (3.4), and (3.6). Given any ∈ ×H m nR , denote =H U HVT . Then the following results hold:
(i) If ∈H W P,θ*� ( ) and =φ P* 0

W H,
( )

( )
, then ∈ ∘H P W,θ�( ( )) .

(ii) ∈H P W,θ� ( ) and =ψ W* 0
P H,

( )
( )

if and only if ∈ ∘H W P,θ*�( ( )) .

Proof. We first prove part i( ). By [25, Proposition 16], ∀ ∈ ×H m nR , =ψ W* 0
P H,

( )
( )

if and only if =φ P* 0
W H,

( )
( )

,
which also is equivalent to

⎛

⎝
⎜

⎞

⎠
⎟ ∈ = =∣ ∣+∣ ∣

H H

H H
H H H H, , ,

α α α α

α α α α

α α
α α α α

T
α α α α

T1 1 1 2

2 1 2 2

1 2

1 3 3 1 2 3 3 2

 
 

   � ( ) ( )

= = = = = =H H H H H H0, 0, 0, 0.α β βα
T

α β βα
T

α c α c1 1 2 2 1 2

     ( ) ( )

Then, it follows from part ii( ) of Proposition 1 that ∈H W P,θ*� ( ) and =φ P* 0
W H,

( )
( )

are equivalent to

⎟⎜∈ = ∈ ∈ = ⎛
⎝

⎞
⎠

∣ ∣
−
∣ ∣

+
∣ ∣

H H H H H
H

, trace 0, , and
0 0

0 0 0

.αα
α

αα α α
α

α α
α αα

1 1

1

3 3

3   
� � �( ) (3.16)

By part i( ) of Proposition 1, for any ∈D P W,θ� ( ), there exists ′ ∈τ R such that

≥ ′ ≥∣ ∣λ S D τ λ S Dα α α α α11 1 1 3 3
( ( )) ( ( ))͠ ͠

and

=
⎡

⎣

⎢
⎢

′
⎤

⎦

⎥
⎥

∣ ∣S D

S D

τ I

S D

.αα

α α

α

α α

1 1

2

3 3

( )

( )

( )

͠

͠

͠

Hence, ∀ ∈D P W,θ� ( ) and H satisfies (3.16), based on the Fan’s inequality (3.3), we have that

= = = =
= + ′ +
≤ + ′ +
= − − + ′ +
≤ ′ + ′ + ′
= ′
=

H D H D H D S H D H S D

H S D τ H H S D

λ H λ S D τ H λ H λ S D

λ H λ S D τ H λ H λ S D

τ H τ H τ H

τ H

, , , , ,

, trace ,

trace

trace

trace trace trace

trace

0,

αα αα αα αα αα αα

α α α α α α α α α α

α α
T

α α α α α α
T

α α

α α
T

α α α α α α
T

α α

α α α α α α

αα

1 1 1 1 2 2 3 3 3 3

1 1 1 1 2 2 3 3 3 3

1 1 1 1 2 2 3 3 3 3

1 1 2 2 3 3

   
  
  
  

  


⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ( ) ⟩ ⟨ ( )⟩

⟨ ( )⟩ ( ) ⟨ ( )⟩

( ( )) ( ( )) ( ) ( ( )) ( ( ))

( ( )) ( ( ( ))) ( ) ( ( )) ( ( ))

( ) ( ) ( )

( )

͠ ͠ ͠ ͠

͠ ͠

͠ ͠

͠ ͠
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which means that ∈ ∘H P W,θ�( ( )) . Conversely, when ′τ in P W,θ� ( ) equals to 0, we cannot obtain
=Htrace 0αα

( ) , i.e., the reverse conclusion is not true. Then the proof of part i( ) is completed.
To prove ii( ), it is easy to see that =ψ W* 0

P H,
( )

( )
and ∈H P W,θ� ( ) hold if and only if there exists ″ ∈τ R

such that

≥ ″ ≥∣ ∣λ S H τ λ S Hα α α α α11 1 1 3 3

 ( ( )) ( ( ))

and

=

⎛

⎝

⎜
⎜
⎜⎜

″
⎞

⎠

⎟
⎟
⎟⎟

∣ ∣
H

S H

τ I

H H H

H H H

0 0 0 0

0 0 0 0

0 0

0 0

,

α α

α

α α α β α c

βα ββ β c

1 1

2

3 3 3 3

3 3





  

  

( )

which can be proved to be equivalent to ∈ ∘H W P,θ*�( ( )) by using the same method as in part i( ). □

The following propositions provide some properties of directional derivatives of the proximal mapping
of θ.

Proposition 3. Let ∈ ∂W θ P( ) and = +Q P W admit the SVD as in (3.1). Let the index sets α, β, α1, α2, α3, and c
be defined as (3.2), (3.4), and (3.6). Given any ∈ ×D m nR , denote =D U DVT͠ . The function ψ W*

P D,
( )

( )
is defined

in (3.14). For any ∈ ×D m nR , if = ′ +H Q H DProx ;θ( ) holds, then ∈H P W,θ� ( ) and = −H D ψ W, *
P D,

⟨ ⟩ ( )
( )

.

Proof. Suppose = ′ +H Q H DProx ;θ( ) holds, together with the expression for ′ ⋅QProx ;θ( ) in (3.12), we have that

= ′ +

=
⎛

⎝
⎜

+ + + + +
+ + +

⎞

⎠
⎟

H U Q H D V

Q H D H D Q H D Q H D

Q H D H D H D

Prox ;

Ξ , Ξ Ξ , Ξ ,

Ξ ,

,

T
θ

αα

ββ ββ βc βc

1 2 4

3



   
  

( )

( ) ( ) ( ) ( )

( )

͠ ͠ ͠ ͠

͠ ͠ ͠

(3.17)

where Ξαα is defined in (3.13). We first verify ∈H P W,θ� ( ). The equality

= + + +

= ∘ + +
⎛

⎝

⎜
⎜

+

⎞

⎠

⎟
⎟

×

×

−
∣ ∣

H Q H D H D

Q T H T D

S H S D

Ξ , Ξ

Θ

0

0

Π

αα αα

αα αα αα

α α

α α

α α α α

1

2

1 1

α

1 1

2 2

3
3 3 3 3

  




�

( ) ( )

( ) ( ( ) ( ) )

( ( ) ( ))

͠ ͠

͠

͠

implies that

=
⎛

⎝

⎜
⎜

+

⎞

⎠

⎟
⎟

×

×

−
∣ ∣

S H

S H S D

0

0

Π

.

α α

α α

α α α αα

1 1

2 2

3
3 3 3 3




�

( )

( ( ) ( ))͠

From part (i) of proposition 1, we obtain that ∈H P W,θ� ( ).
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For convenience, we denote ′ ≔ ∪α α α1 2. By directly calculating (3.17), we deduce that = ′ +H Q H DProx ;θ( )

if and only if

⎜ ⎟

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

= = =
∋ ⊥ = ∈

= ⎛
⎝

+
− ⎞

⎠
∈ ′ ∈ ′

=
−

∈ ′ ∈

=
−

∈ ′ ∈

=
−

−
+

−
−

∈ ∈

=
−

−
+

−
−

∈ ∈

= ⎛
⎝ − ⎞

⎠ ∈ ∈ −

=

=

′ ′ ′ ′

−
∣ ∣

+
∣ ∣

′ ′ ′ ′

′ ′

′ ′

+∣ ∣

+∣ ∣

+∣ ∣

+∣ ∣

+∣ ∣

+∣ ∣

S H S H S H

H D D

T D
σ Q σ Q

λ
H i α j α

T D
σ Q λ

λ
H i α j α

T D
σ Q λ

λ
H i α j α

D
λ σ Q λ

λ σ Q
H

σ Q σ Q λ

λ σ Q
H i α j β

D
λ σ Q λ

λ σ Q
H

σ Q σ Q λ

λ σ Q
H i α j β

D
σ Q

λ
H i α j n m

D

D

0, 0, 0,

,

2 *

1 , , ,

*

2 *

, , ,

*

2 *

, , ,

* *

*

*

*

, , ,

* *

*

*

*

, , ,

*

1 , , ,

0,

0.

α α α α α α

α
α α α α α α

α

α α ij

i j

α α ij

α α ij

i

α α ij

α α ji

i

α α ji

αβ ij

i

j α

αβ ij

j α i

j α

βα ji

βα ji

i

j α

βα ji

j α i

j α

αβ ij

αc ij

i

αc ij

ββ

βc

1 1

1 3

1 3

2 2 2 2

2 2 2 2

3 3

3

3 3 3 3 3 3

3

3 3

3 3

  









 

 



� � � �

( ) ( ) ( )

( ) ( )

( )
( ) ( )

( ) [∣ ∣] [∣ ∣]

( ( ) )
( )

( ) [∣ ∣] [∣ ∣]

( ( ) )
( )

( ) [∣ ∣] [∣ ∣]

( )
( ( ) )

( ( ))
( )

( )( ( ) )

( ( ))
( ) [∣ ∣] [∣ ∣]

( )
( ( ) )

( ( ))
( )

( )( ( ) )

( ( ))
( ) [∣ ∣] [∣ ∣]

( )
( )

( ) [∣ ∣] [ ]

͠ ͠

͠

͠

͠

͠

͠

͠

͠

͠

(3.18)

Noting that − =ν Q λ σ W*k k( ) ( ) for ≤ ≤k r1 1, =ν P λ*t( ) for ≤ ≤ ∼t r1 and =ν P ν Qt t( ) ( ) for + ≤ ≤ +∼r t r1 1.
Together with (3.18) and the fact that for any ∈ ×D p pR ,

= −
= = +

D D S D T D

D D D S D T D

, ,

, ,

T 2 2

2 2 2

⟨ ⟩ ‖ ( )‖ ‖ ( )‖

⟨ ⟩ ‖ ‖ ‖ ( )‖ ‖ ( )‖

we obtain that

∑ ∑

∑

∑ ∑

∑

⎟⎜

= = + + +

= + + +

=
−

+
−

+ ⎛
⎝
−

−
−

+
−

+
⎞
⎠

= −
−

+

+
+

≤ ≤
≤ ≤

≤ ≤

≤ ≤
+ ≤ ≤ +

≤ ≤
+ ≤ ≤ +

≤ ≤

≤ ≤
≤ ≤ +

∼

∼

∼

H D H D H D H D H D H D

H T D H D H D H D

ν Q λ

λ
T H

ν Q λ

λ
H

ν Q λ

ν Q λ
S H

ν Q λ

ν Q λ
T H

σ W

ν P λ
S H

σ W

λ
H

σ W

ν P λ
T H

, , , , , ,

, , , ,

*

*

*

*

2 *

*

2 *

*

2

* *

2

*

,

αα αα αβ αβ βα βα αc αc

αα αα αβ αβ βα βα αc αc

l r

t r

l

a a

l r

l

a c

l r

r t r

l

t

a a

l

t

a a

l r

r t r

l

t

a a

l r

l

a c

l r

t r

l

t

a a

1

1

1

2

1

2

1

1 1

1

2

1

2

1

1 1

1

2

1

2

1

1 1

1

2

l t l

l t l t

l t l

l t

1 1

1

1 1

1

    

   

 

 

 



⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩

⟨ ( )⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩

( )
‖( ( )) ‖

( )
‖ ‖

( ( ) )

( )
‖ ( ) ‖

( ( ) )

( )
‖ ( ) ‖

( )

( )
‖ ( ) ‖

( )
‖ ‖

( )

( )
‖ ( ) ‖

͠ ͠ ͠ ͠ ͠

͠ ͠ ͠ ͠

so we have

= = −H D H D ψ W, , * .
P H,

⟨ ⟩ ⟨ ⟩ ( )͠
( )

This completes the proof. □

Proposition 4. Let ∈ ∂W θ P( ) and = +Q P W admit the SVD as in (3.1). Let the index sets α, β, α1, α2, α3, and c
be defined as (3.2), (3.4), and (3.6). For any ∈ ×D m nR , then

′ = ⇔ ∈ ∘Q D D P WProx ; 0 , ,θ θ
0

�( ) ( ( ))
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where P W,θ
0

� ( ) represents the critical cone P W,θ� ( ) in the case of =τ 0, i.e.,

⎟⎜=
⎧
⎨
⎩

∈ =
⎛
⎝

⎞

⎠
∈

⎫
⎬
⎭

× ∣ ∣+∣ ∣
−
∣ ∣

P W H S H
S H

S H,

0

, .θ
m n

αα

α α

α α

α α
α0

1 2

3 3

3 3

3R 


� �( ) ∣ ( )
( )

( )

Proof. It is easy to verify either ′ =Q DProx ; 0θ( ) or ∈ ∘D P W,θ
0

�( ( )) is equivalent to

⎟⎜= ⎛
⎝

⎞
⎠

∈ ∈∣ ∣
+
∣ ∣

D
D

D D
0 0

0 0 0

, , .
αα

αα
α

α α
α

3 3

3� �͠
͠

͠ □

4 The robust ICKKTM

In this section, owing to the special linear structure of the problem (1.1), we first show the primal (dual) SRCQ is
equivalent to the dual (primal) SOSC. In fact, when the spectral norm in problem (1.1) is substituted by the
nuclear norm, the same results are already given in [16]. Therefore, we only briefly state here, and the main
tools we used are Propositions 1 and 2. The Lagrangian dual of problem (1.1) is as follows:

− − −

+ + + = ≤

∘b y δ y h w

y w S C S

max , *

s.t. * * 0,
*

1,

y w S, ,

� �

�⟨ ⟩ ( ) ( )

‖ ‖
(4.1)

where ∈ × × ×y w S, ,
l d m nR R R( ) , *� and *� represent the adjoint of � and � , respectively. The first order

optimality conditions, i.e., the KKT conditions for the primal problem (1.1) and the dual problem (4.1) are given
by

⎪

⎪

⎧
⎨
⎩

∇ + + + =
∋ ⊥ − ∈

∈ ∂
∈ × ×∘ × ×

h X C S y

y X b

S θ X

X y S

* * 0,

, , ,
m n l m nR R R

� � �

� � �

( )

( )

( ) (4.2)

and

⎪

⎪

⎧
⎨
⎩

+ + + =
∋ ⊥ − ∈
∈ ∂ ∈ ∂

∈ × × ×∘ × ×
y w S C

y X b

X h w X θ S

y w S X

* * 0,

,

* , * ,

, , , ,
l d m n m nR R R R

� �

� � �

� ( ) ( )

( ) (4.3)

respectively. We denote by XP� ( ) the set of Lagrangian multipliers respect to X for problem (1.1), namely,
≔ ∈ × ×X y S X y S, , , satisfies 4.2P

l m nR R� ( ) {( ) ∣( ) ( )}. We write y w S, ,D� ( ) the set of Lagrangian multi-
pliers respect to y w S, ,( ) for problem (4.1), i.e., ≔ ∈ ×y w S X y w S X, , , , , satisfies 4.3D

m nR� ( ) { ∣( ) ( )}.
Let ∈ ×y z,

l lR R( ) satisfies ∋ ⊥ ∈∘ y z� � . Define the critical cone of � at z for y as ≔z y z,� 	� �( ) ( )

∩ ⊥y and the critical cone of ∘� at y for z as ≔ ∩ ⊥∘ ∘y z y z,� 	� �( ) ( ) , respectively. Obviously,

=∘ ∘z y y z, , .� �� �( ( )) ( ) (4.4)

Now we are ready to demonstrate the crucial result of this article, namely, the relationship between the
primal SRCQ and the dual SOSC. Actually, this result was given in [16, Theorem 5.2], but they omitted the proof
details. For the sake of completeness, we supplement the proof below.

Theorem 1. Let ∈ × × ×y w S¯ , ¯ ,
l d m nR R R( ) be an optimal solution of problem (4.1) with ≠ ∅y w S¯ , ¯ ,D� ( ) .

Let ∈X y w S¯ , ¯ ,D� ( ). Then the following results are equivalent:
(i) The dual SOSC holds at y w S¯ , ¯ ,( ) with respect to X , i.e.,

∇ ′ − > ∀ ∈H h w H φ X H H H y w S, * ¯ ; * 0, , , ¯ , ¯ , \ 0 ,w w S H y w S
, S

�⟨ ( ) ( )⟩ ( ) ( ) ( ) { }
( ) (4.5)

10  Ziran Yin et al.



where y w S¯ , ¯ ,�( ) is the critical cone defined as follows:

≔
⎧
⎨
⎩

∈ × ×
+ + =

∈ − ∈
⎫
⎬
⎭

×
∘

y w S D D D

D D D

D y X b D S X
¯ , ¯ , , ,

* * 0,

¯ , , ,

.y w S
l d m n

y w S

y S θ*

R R R�
� �

� � ��

( ) ( ) ∣
( ) ( )

(ii) The primal SRCQ holds at X with respect to y S¯ ,( ), i.e.,

⎜ ⎟
⎛
⎝

⎞
⎠ +

⎛
⎝

− ⎞
⎠

= ⎛
⎝

⎞
⎠

×
××

X b y

X S

, ¯

,

.
m n

θ

l

m nm n
R

R

RR

�

�

� �

�

�( )

( )
(4.6)

Proof. “ ⇒i ii( ) ( )”. Denote

⎜ ⎟≔ ⎛
⎝

⎞
⎠ +

⎛
⎝

− ⎞
⎠

×
×

X b y

X S
Ψ

, ¯

,

.
m n

θ
m n

R
R

�

�

� �

�

�( )

( )

Suppose on the contrary that the SRCQ (4.6) does not hold at X for y S¯ ,( ), i.e., ≠ ⎛
⎝

⎞
⎠×Ψ

l

m n

R

R
. Then ≠ ⎛

⎝
⎞
⎠×clΨ

l

m n

R

R
.

Therefore, there exists ∈ ⎛
⎝

⎞
⎠×H

l

m n

R

R
s.t. ∉H clΨ. Since clΨ is a closed convex cone, − =H HΠclΨ( )

≠∘ HΠ 0clΨ ( )( ) . Denote ⎜ ⎟≔ = ⎛
⎝

⎞
⎠ ∈ ⎛

⎝
⎞
⎠×

∘H H
H

H
Π

l

m nclΨ

1

2

R

R
( )( ) . Obviously, ≤H D, 0⟨ ⟩ for any ∈D clΨ, which implies

that

= ∈ − =∘H H y X b H* 0, ¯ , , 0.1 1 2� � �� ( )

Thus, we have that ∈H y w S, 0,0 ¯ , ¯ , \ 01 �( ) ( ) { } and ∇ ′ − =h w φ X0, * ¯ ;0 * 0
S ,0

⟨ ( ) ( )⟩ ( )
( )

, which contradicts the SOSC
(4.5) at y w S¯ , ¯ ,( ) with respect to X .

“ ⇒ii i( ) ( )” Suppose on the contrary that the SOSC (4.5) does not hold at y w S¯ , ¯ ,( ) for X . Then,
∃ = ∈H H H H y w S, , ¯ , ¯ , \ 0y w S �( ) ( ) { } such that

∇ ′ − =H h w H φ X, * ¯ ; * 0.w w S H, S
⟨ ( ) ( )⟩ ( )

( )

From [25, Proposition 16], we know that ≤φ X* 0
S H,

( )
( )

for any ∈ ×H m nR . Moreover, because h is essentially
strictly convex, by [20, Theorem 26.3], h* is essentially smooth. Then, ∇h* is locally Lipschitz continuous and
directionally differentiable on hint dom *( ). Since y w S¯ , ¯ ,( ) is the optimal solution, it is not hard to verify by the
mean value theorem that ∇ ′ >H h w H, * ¯ ; 0w w⟨ ( ) ( )⟩ for any ≠H 0w such that ∈H H H y w S, , ¯ , ¯ , \ 0y w S �( ) ( ) { }.
Therefore,

= =H φ X0, * 0.w S H, S
( )

( )

From ∈H y w S¯ , ¯ , \ 0�( ) { }, we know that

+ = ∈ − ∈∘H H H y X b H S X* 0, ¯ , , , .y S y S θ*� � � �� ( ) ( )

Together with (4.4) and Proposition 2, we have

∈ − ∈∘ ∘H X b y H X S, ¯ , , .y S θ� � ��( ( )) ( ( ))

Because the SRCQ (4.6) holds at X for y S¯ ,( ), there exist ∈ ×W m nR and ⎟⎜ ⎜ ⎟=
⎛
⎝

⎞
⎠

∈
⎛
⎝

− ⎞
⎠

H
H

H

X b

X S,θ

1

2





� �

�

�( )

( )
such that

⎜ ⎟⎟⎜
⎛
⎝

⎞
⎠ +

⎛
⎝

⎞
⎠

=
⎛
⎝

⎞
⎠×

W
H

H

H

H
,

y

S

1

2

m nR




�

�

i.e.,

+ = + =W H H W H H, .y S1 2
  �
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Thus,

= + + +

= + + +

= + +
≤

H H H W H H W H

H H W H H H H

H H H H

, , ,

* , , ,

0 , ,

0,

y S

y S y S

y S

1 2

1 2

1 2

 

 

 

 


�

�

⟨ ⟩ ⟨ ⟩ ⟨ ⟩

⟨ ⟩ ⟨ ⟩ ⟨ ⟩

⟨ ⟩ ⟨ ⟩

which means that =H 0. This contradicts the hypothesis that ≠H 0. □

Switching the “primal” and “dual” in the aforementioned theorem, we can also obtain that the primal
SOSC is equivalent to the dual SRCQ from Proposition 2. One may refer to [16, Theorem 5.1] for more details.

Theorem 2. Let ∈ ×X m nR be an optimal solution of problem (1.1) with ≠ ∅XP� ( ) . Let ∈y S X¯ , P�( ) ( ). Then
the following results are equivalent:
(i) The dual SRCQ holds at ȳ for X , i.e.,

+ − + = ×∘ y X b S X* * ¯ , , .
d

θ
m n

*R R� � � � �� ( ) ( ) (4.7)

(ii) The primal SOSC holds at X for y S¯ ,( ), i.e.,

∇ − > ∀ ∈D h X D ψ S D X, * 0, \ 0 ,
X D

2

,
� � � �⟨ ( ) ⟩ ( ) ( ) { }

( ) (4.8)

where ≔ ∈ ∈ − ∈×X D D X b y D X S, ¯ , ,
m n

θR� � � � ��( ) { ∣ ( ) ( )}.

In the following, we first give the definition of the KKT mapping for problem (1.1). Then, we demonstrate
that both the SOSC and the SRCQ are sufficient and necessary for the ICKKTM. Finally, based on the afore-
mentioned result, we give a series of characterizations of the robust ICKKTM for problem (1.1).

The KKT conditions (4.2) for problem (1.1) can be equivalently expressed as the nonsmooth equation:

=F X y S, , 0,( )

where × × → × ×× × × ×F :
m n l m n m n l m nR R R R R R is defined by

≔
⎡

⎣

⎢
⎢

+ + ∇ +
− − − +

− +

⎤

⎦

⎥
⎥

∈ × ×× ×F X y S

C y h X S

X b X b y

X X S

X y S, ,

* *

Π

Prox

, , , .Q

θ

m n l m nR R R

� � �

� �( )

( )

( )

( )

( )

Denote the KKT mapping for problem (1.1) by

≔ ∈ × × =× ×S δ X y S F X y S δ, , , , .
m n l m n

KKT R R R( ) {( ) ∣ ( ) }

Thus, we know from [13] that the isolated calmness of SKKT at the origin for X y S, ¯ ,( ) is equivalent
to ′ = ⇒ =F X y S Z y S Z y S, ¯ , ; Δ , Δ , Δ 0 Δ , Δ , Δ 0(( ) ( )) ( ) .

Define the strong SRCQ (SSRCQ) at X for y S¯ ,( ) as follows:

⎟⎜
⎛
⎝

⎞
⎠ +

⎛

⎝

− ⎞

⎠
= ⎛

⎝
⎞
⎠

×
××

X b y

X S

, ¯

,

.
m n

θ

l

m n0m n
R

R

RR

�

�

� �

�

�( )

( )
(4.9)

Similarly, define the weak SOSC (WSOSC) holds at X for y S¯ ,( ), i.e.,

∇ − > ∀ ∈D h X D ψ S D X, * 0, \ 0 ,
X D

2

,

0� � � �⟨ ( ) ⟩ ( ) ( ) { }
( ) (4.10)

where ≔ ∈ ∈ − ∈×X D D X b y D X S, ¯ , ,
m n

θ
0 0R� � � � ��( ) { ∣ ( ) ( )}.

Theorem 3. Let ∈ ×X m nR be an optimal solution of problem (1.1) with ∈ ≠ ∅y S X¯ , P�( ) ( ) . Then the fol-
lowing results are equivalent:
(i) The SSRCQ (4.9) holds at X for y S¯ ,( ) and the WSOSC (4.10) holds at X for y S¯ ,( ).
(ii) The KKT mapping SKKT is isolated calm at the origin for X y S, ¯ ,( ).
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Proof. “ ⇒i ii( ) ( )”. Let ∈ × ×× ×Z y SΔ , Δ , Δ
m n l m nR R R( ) satisfies

′ =
⎡

⎣

⎢
⎢

∇ + +
− ′ − + +

− ′ + +

⎤

⎦

⎥
⎥

=F X y S Z y S

h X Z y S

Z X b y Z y

Z X S Z S

, ¯ , ; Δ , Δ , Δ

* Δ *Δ Δ

Δ Π ¯ ; Δ Δ

Δ Prox ; Δ Δ

0.Q

θ

2� � � �

� � �(( ) ( ))

( )

( )

( )

(4.11)

From the second equation of (4.11) and [9, Lemma 4.2], we know that

∈ − =Z X b y y ZΔ , ¯ , Δ , Δ 0.Q� � � �( ) ⟨ ⟩ (4.12)

Proposition 3 and the third equation of (4.11) means that

∈ = −Z X S Z S ψ SΔ , , Δ , Δ * .θ X Z

0

,Δ
� ( ) ⟨ ⟩ ( )

( ) (4.13)

Thus, we can conclude from (4.12) and (4.13) that

∈Z XΔ .
0� ( )

By taking the inner product of ZΔ and the first equation of (4.11), together with (4.12) and (4.13), we can obtain

∇ + +
= ∇ + +
= ∇ + +
= ∇ −
=

Z h X Z y S

Z h X Z Z y Z S

Z h X Z Z y Z S

Z h X Z ψ S

Δ , * Δ *Δ Δ

Δ , * Δ Δ , *Δ Δ , Δ

Δ , Δ Δ , Δ Δ , Δ

Δ , Δ *

0.

X Z

2

2

2

2

,Δ

� � � �

� � � �

� � � �

� � �

⟨ ( ) ⟩

⟨ ( ) ⟩ ⟨ ⟩ ⟨ ⟩

⟨ ( ) ⟩ ⟨ ⟩ ⟨ ⟩

⟨ ( ) ⟩ ( )
( )

Then, from the WSOSC (4.10), we know that

=ZΔ 0.

Therefore, (4.11) reduces to

⎡

⎣

⎢
⎢

+
′ − +

′ +

⎤

⎦

⎥
⎥

=

y S

X b y y

X S S

*Δ Δ

Π ¯ ; Δ

Prox ; Δ

0.Q

θ

�

�( )

( )

(4.14)

From Lemma 4.3 in [9] and Proposition 4, we obtain that (4.14) is equivalent to the following formula:

⎟⎜
⎛
⎝

⎞
⎠ ∈

⎡

⎣
⎢
⎛
⎝

⎞
⎠ +

⎛

⎝

− ⎞

⎠

⎤

⎦
⎥×

∘

×

y

S

X b y

X S

Δ

Δ

, ¯

,

.
m n

θ
0m n

R
R

�

�

� �

�

�( )

( )
(4.15)

According to the SSRCQ (4.9),

=y SΔ , Δ 0.( )

This, together with =ZΔ 0, imply that the KKT mapping is isolated calm at the origin for X y S, ¯ ,( ).
We prove “ ⇒ii i( ) ( )” by contradiction. Assume that the SSRCQ (4.9) does not hold at X for y S¯ ,( ).

Then ∃ ≠y SΔ , Δ 0( ) s.t. (4.15) holds, which also means that (4.14) holds. Hence, ′ =F X y S y S, ¯ , ; 0, Δ , Δ 0(( ) ( )) .
This contradicts with the ICKKTM at the origin for X y S, ¯ ,( ).

Because X is an optimal solution of problem (1.1) and the SSRCQ (4.9) holds at X for y S¯ ,( ), the Lagrangian
multipliers XP� ( ) is a singleton and the second-order necessary condition holds at X , i.e.,

∇ − ≥ ∀ ∈D h X D ψ S D X, * 0, .
X D

2

,

0� � � �⟨ ( ) ⟩ ( ) ( )
( )

Suppose that the WSOSC (4.10) does not hold at X for y S¯ ,( ), which means that ∃ ′ ∈Z XΔ \ 0
0� ( ) { } such that

′ ∇ ′ − =′Z h X Z ψ SΔ , Δ * 0.
X Z

2

,Δ
� � �⟨ ( ) ⟩ ( )

( )
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By [25, Proposition 16], ∀ ∈ ×H m nR , ≤ψ S* 0
X H,

( )
( )

. Besides, since h is essentially strictly convex,
∇ >H h X H, 0

2� � �⟨ ( ) ⟩ for any ∈ ×H m nR satisfies ≠H 0� . Consequently,

′ = =′Z ψ SΔ 0, * 0.
X Z,Δ

� ( )
( )

From ′ ∈Z XΔ \ 0
0� ( ) { }, we know that

′ ∈ − ′ ∈Z X b y Z X SΔ , ¯ , Δ , .θ
0

� � � ��( ) ( ) (4.16)

Thus, from [9, Lemma 4.2], the first formula in (4.16) is equivalent to

′ = ′ − + ′Z X b y ZΔ Π ¯ ; Δ .Q� � �( ) (4.17)

We can conclude from the second formula in (4.16) and (3.12) that

′ = ′ + ′Z X S ZΔ Prox ; Δ .θ( ) (4.18)

Therefore, formulas (4.17), (4.18), and ′ =ZΔ 0� imply that

′ ′ =F X y S Z, ¯ , ; Δ , 0,0 0.(( ) ( ))

Notice that ′ ≠ZΔ 0, which contradicts with the isolated calmness of SKKT at the origin for X y S, ¯ ,( ). That is,
the WSOSC (4.10) holds at X for y S¯ ,( ). This completes the proof. □

It is said that the Robinson constraint qualification (RCQ) holds at ∈ ×X m nR for problem (1.1) if

+ − =× X b .
m n lR R� 	 ��( ) (4.19)

Finally, we can establish a series of equivalent conditions of the robust ICKKTM for problem (1.1).

Theorem 4. Let ∈ ×X m nR and ∈ × × ×y w S¯ , ¯ ,
l d m nR R R( ) be optimal solutions of problems (1.1) and (4.1),

respectively. Assume that ∈y S X¯ , P�( ) ( ) and ∈X y w S¯ , ¯ ,D� ( ), and the RCQ (4.19) holds at X . Then the
following statements are equivalent:
(a) The KKT mapping SKKT is (robustly) isolated calm at the origin for X y S, ¯ ,( ).
(b) The primal WSOSC (4.10) holds at X for y S¯ ,( ) and the primal SSRCQ (4.9) holds at X for y S¯ ,( ).
(c) The primal SOSC (4.8) holds at X for y S¯ ,( ) and the primal SRCQ (4.6) holds at X for y S¯ ,( ).
(d) The primal SOSC (4.8) holds at X for y S¯ ,( ) and the dual SOSC (4.5) holds at y w S¯ , ¯ ,( ) for X .
(e) The dual SRCQ (4.7) holds at y w S¯ , ¯ ,( ) for X and the dual SOSC (4.5) holds at y w S¯ , ¯ ,( ) for X .
(f) The dual SRCQ (4.7) holds at y w S¯ , ¯ ,( ) for X and the primal SRCQ (4.6) holds at X for y S¯ ,( ).

Proof. Since the spectral norm function ⋅ 2‖ ‖ is 2� -cone reducible, the “robustly” in (a) of the Theorem 4,
which means that SKKT is also lower semicontinuous at the origin for X y S, ¯ ,( ), can be obtained automatically
from [13, Theorem 17]. Besides, since the spectral norm function is Lipschitz continuous at X , by combining
Theorems 1, 2, 3, [13, Theorem 17], and [16, Proposition 3.3], we can obtain that ⇔ ⇔ ⇔a b c d( ) ( ) ( ) ( )

⇔ ⇔e f( ) ( ). □

Remark 2. Proposition 3.3 in [16] is obtained indirectly by transforming problem (1.1) into a matrix conic
optimization induced by nuclear norm and then applying [13, Theorem 24]. In the aforementioned theorem,
we give a direct proof. The difference is that we need to use the variational properties of the directional
derivatives of the proximal mapping of spectral norm, while [13] uses the projection mapping.

5 Conclusion

This article is devoted to establishing a series of equivalent conditions of the robust ICKKTM for spectral norm
regularized convex matrix optimization problems. We extend the results for nuclear norm regularized convex
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optimization problems in [16] to spectral norm regularized convex optimization problems. There is still much
work to be done, such as how to apply the variational properties of proximal mapping of spectral norm
function to directly prove the equivalence between (a) and (c) in Theorem 4, whether the conclusions in this
article or in [16] can be extended to the Ky Fan k -norm regularized problems, or whether the variational
properties of the spectral norm function obtained in this article can be applied to provide stability results for
the generalized variational inequality problemwith the spectral norm function. These are all the topics we will
study in the future.
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