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Abstract: In this study, we establish necessary conditions for the embeddings of lattices and apply these
conditions to the problem of characterizing algebraic K3 surfaces that cover an Enriques surface. By refining
existing criteria and providing a more elementary approach, we offer a new perspective on the structure
of such surfaces. Our results apply to any lattices, extending beyond specific cases and offering a comprehen-
sive framework for understanding the embedding conditions in terms of Gram matrices.
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1 Introduction

In this work, we give the necessary conditions for the embeddings of lattices and present an application of the
provided criterion for the problem of characterizing algebraic K3 surfaces covering an Enriques surface.
The main result of this article is the following theorem, whose proof is given in Section 3.

Theorem 1.1. Let L and M be even integral lattices of rank(L) and rank(M), and let rank,(L) and rank (M)

denote their ranks over Z [2. Let ¢ be an embedding of L into M. Then, one of the following conditions holds:
(D) If rank (M) = 0, then there exists a lattice T such that L = T(2).

(D If ranky(M) > 0 and rank,(L) = 0, then

1
rank(L) < rank(M) - 2 rank ,(M),

and there exists a lattice T such that L = T(2).
(1D If ranky(M) > 0 and ranky(L) > 0, then

1 1
rank(L) < rank(M) - Erank oAM) + Erank oL),

and there exists an even lattice T such that L = T and its associated Gram matrix must have the form

2a;1 Q... ap

app 20
Gr = : . i

aq) ZaM

where Qyx-12x 1S odd for each1 < k < %rank o(L), and the remaining off-diagonal entries are even.

(Iv) If rank(L) = rank(M), L = M, provided that the embedding is primitive.
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Recall that an algebraic K3 surface over C is a smooth projective surface X such that the canonical divisor
Ky of X is trivial and H'(X, Ox) = 0 and an Enriques surface is a smooth projective surface Y such that 2Ky
is trivial and HY(Y, Oy) = H¥Y, Oy) = 0, where Ky is a canonical divisor of Y. The Néron-Severi lattice NS(X)
is a sublattice of the cohomology group H%(X, Z) of X that is a unimodular lattice of rank 22. The rank of NS(X)
is called the Picard number of X, denoted by p(X). The orthogonal complement of NS(X) in H%(X, Z) is called
the transcendental lattice Ty, which has signature (2,20 — p(X)).

The following criterion was established by Keum, which was originally proven under an additional
assumption that Ohashi subsequently showed to be unnecessary [1].

Theorem 1.2. (Keum’s criterion) [2, Theorem 1] A K3 surface X with transcendental lattice Tx covers an Enriques
surface if and only if there exists a primitive embedding of Tx into X" = U @ U(2) @ Eg(2) such that there exists
no vector v € Ty with v = -2.

Using the criterion mentioned above, Keum proved that every algebraic Kummer surface is a K3 cover
of some Enriques surface [2]. Sert6z [3] identified conditions on the entries of the Gram matrix of the
transcendental lattice Ty under which X covers an Enriques surface when p(X) = 20. Subsequently, Lee [4]
and Yoriik [5] extended these results to cases where p(X) = 18 and p(X) = 19.

In his work [6, Prop. 1.15.1], Nikulin provides a criterion to enumerate all primitive embeddings of a fixed
lattice T into lattices of signature (m., m-) and discriminant form ¢ for a given pair of nonnegative integers
(m,,m.) and a finite quadratic form g. Brandhorst et al. [7], employed Nikulin’s criterion to enumerate
all primitive embeddings of Ty into A", and applied Keum’s criterion to characterize complex K3 surfaces
that cover Enriques surfaces in terms of their Gram matrices.

In this article, we establish necessary conditions for the embeddings of a fixed lattice L into arbitrary
lattices by analyzing their Gram matrices over Z/2, considered up to the action of GL,(Z/2). By using the
necessary conditions above and applying Keum’s criterion, we characterize complex K3 surfaces that cover
Enriques surfaces in terms of their Gram matrices.

By Keum’s criterion, there are two reasons why a K3 surface X cannot cover any Enriques surface: firstly,
there exists no primitive embedding of Ty into A", second, for every primitive embedding of Ty into A, there
exists a vector v in the orthogonal complement of Ty in A with v2 = 2. In the latter, the transcendental lattice
Ty is called a co-idoneal lattice in [7].

By providing the necessary conditions for the embeddings of lattices, we obtain the following theorem,
whose proof is given in Section 4.

Theorem 1.3. Let X be a K3 surface with 10 < p(X) < 20 whose transcendental lattice Tx is of rank A and
signature (2, A — 2). Then, X covers an Enriques surface if and only if one of the following conditions holds:
() 11 < p(X) < 20, and there exists an even lattice T such that Ty = T(2).
(ID 11 = p(X) < 20, and there exists an odd lattice T such that Ty = T(2) except when Ty is co-idoneal.
(I 11 < p(X) < 20, and there exists an even lattice T such that Ty = T and its associated Gram matrix must
be in the following form:

2a11 Ay ... 4y

[¢57) 26122
Gr=| . - )

ay) e . 20 )

such that a; is even for each 1 < i,j < A except ay, a.
(V) p(X)=10,and Ty = X

Furthermore, we will derive refined characterizations of the forms of exceptional lattices, referred to as
co-idoneal lattices in Section 5.
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2 Preliminaries

An integral lattice (L, B) is a finitely generated, free Z-module equipped with an integral symmetric
bilinear form B, L =(Z" B). The lattice L is even if B(x,x)=0mod2 for all x € L, and is odd
otherwise.

Let B = {ej, ...,e;} be a basis of Z-module L. The symmetric matrix G = (a;), given by a; = B(e;, ¢),
is the Gram matrix of L with respect to this basis B, written as L = G;. The discriminant of a lattice L
is the determinant of G;.

Let L and M be two Z-modules, § and B’ be bilinear forms on L and M, respectively. A module
homomorphism ¢ :L - M is called a lattice morphism if it satisfies the isometry relation, i.e.,
Bx,y) = B(¢(x), ¢(y)) for all x,y € L. Furthermore, a lattice morphism ¢ : L = M is called a lattice
embedding if ¢ is a monomorphism. The embedding is called primitive if M/¢(L) is a free module, i.e.,
it has a basis. L = M if ¢ is also an epimorphism.

Two matrices T; and T are said to be Z-equivalent if there exists an element g € GL(n, Z) together with
its transpose g7 such that

T, = g°Tig.

The negative definite exceptional lattice is denoted E,, and the hyperbolic lattice is denoted U.

For any integer n, we denote by [n], the lattice Ze of rank 1 with f(e, e) = n. For any integer n,
and L = G = (ay), the lattice L(n) has G = (nay). By abuse of language, a symmetric bilinear form g will
be denoted by dot product.

The following theorem in [3] characterizes the primitive embeddings of lattices.

Theorem 2.1. [3] A lattice embedding is primitive if and only if the greatest common divisor of the maximal
minors of the embedding matrix with respect to any choice of basis is 1.

Under certain assumptions on the discriminant of a lattice, an odd indefinite lattice can be decomposed
into one of the following forms:

Theorem 2.2. [8, Theorem 1] Let L be an odd indefinite Z -lattice of rank 1 > 3 with square free discriminant d. Then,

L =m[1] & n[-1] & B, 2.1

where B is a lattice of rank 2, and m, n = 0. Moreover, if d is even, then B can be chosen to be definite or indefinite.

Theorem 2.3. [9, Theorem 6] Let L be an odd indefinite Z-lattice of rank |l = 3 and cube-free discriminant
d # 0(mod4). Then, L has an orthogonal splitting

L =m[1] & n[-1] & B, 2.2)

where B is an indefinite odd lattice of rank 3, and m,n = 0.
Lemma 2.4. The map GL,(Z) — GL,(Z/2Z) is surjective.

Proof. Indeed, GL,(Z/2Z) = SL,(Z/27) is generated by transvections (elementary), and these obviously lift
to GL,(Z). O
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3 Necessary conditions of embeddings of lattices
In this section, we will provide the necessary conditions for the embedding of lattices.

Theorem 3.1. Let F be a finite field of characteristic 2. Then, every symmetric matrix M, over F with zero
diagonal is congruent to ®_H & &1 7[0] or &},[0], where q € N* and
01

H=11

Furthermore, two symmetric matrices with zero diagonal over the field F are congruent if and only if they have
the same rank.

Proof. Suppose that M = 0, the result is trivial.

Suppose that M # 0, so that there exists some non-zero element a; of M. Since GL(Z/2Z) = SL,(Z/2Z)
is generated by the elementary matrices E;(a), where a € Z/2, performing the elementary congruent trans-
formations, we may write

H B

M=1p 4

], where H =

01]
10/

Performing successive elementary congruent transformations of E;(a), i varying from 3 to n, we obtain
a symmetric matrix such that

H 0
M=[0 A1]’ where H = 10

0 1].

4 is an (n - 2)-rowed symmetric matrix with zero diagonal. Therefore, we may proceed recursively

and obtain a symmetric matrix of the form ®L,H & EB{‘:]Z‘Z[O] congruent to the given matrix M.

Because of the fact that the congruence of matrices is an equivalence relation possessing symmetry
and transitivity, and by the above reasoning, two symmetric matrices of M, with zero diagonal over the field
F are congruent if and only if they have the same rank. This completes the proof. (I

As a direct consequence, we obtain the following.

Corollary 3.2. The number o(n) of orbits of the even symmetric matrix M, of size n x n over Z[2Z with a zero
diagonal under the action of GL,(Z [2Z) by the transposition is given by

1
—(n+1), if nis odd,
2
o(n) =
E(n +2), if n is even.

The map GL,(Z) - GL,(Z/27Z) is surjective by Lemma 2.4; therefore, we can consider the action
of GLn(Z [2Z) by the transposition on the set of the even symmetric matrices M, of size n x n over Z/27.

We will characterize associated Gram matrices of lattices with respect to their ranks over Z/2
by the following.

Definition 3.3. Let L be an integral even lattice of rank A and G be its associated Gram matrix. Let L’ be
an induced Z /2-module of L by restriction of ring of integers Z to Z/2 and their associated Gram matrices
Gy = (ay) of L and G- = (a;(mod2)) of L’. The rank of G; of L over the field of characteristic 2 will be the rank
of G;- of L’, denoted by ranky(L).
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Lemma 3.4. Let L be an integral even lattice of rank A and Gy, be its associated Gram matrix, with rank (L) = 2q.
Then,

2a;1 Qi ... Qg

_ | 12 2a22
Gr = : - g
agn ZaM

such that ax-12x is odd for each 1 < k < q, and the remaining off-diagonal entries are even.

Proof. Let L be an even lattice. The Gram matrix G, of L is symmetric, and its diagonal entries are even.

Reduction of G, modulo 2 yields a symmetric matrix over Z/2Z. The diagonal entries, being even, reduce
to zero, so the reduced matrix has zero diagonal entries, and the off-diagonal entries are either 0 or 1.

By Lemma 2.4, the map GL,(Z) — GL,(Z/27) is surjective. Therefore, we can use the action of GL,(Z/27)
to bring G, mod 2 into a canonical form.

Over Z /27, by Theorem 3.1, every symmetric matrix with zero diagonal can be reduced, via congruence,
to a block diagonal form consisting of 2 x 2 blocks of the type

01
= [1 0]
and possibly zero blocks.

The number of such blocks corresponds to the rank of the matrix modulo 2. Let ranky(L) = 2q, which
means G;, mod 2 can be transformed into a block diagonal matrix with g blocks of the form H, while the
remaining part of the matrix consists of zero blocks.

Once we have the canonical form of G, mod 2, we lift this back to an integral matrix over Z. For each
block H in the reduced matrix, the corresponding entries in the lifted matrix G; will be odd. That is, the off-
diagonal terms a1 are odd for each k=1, 2,..., q. The remaining off-diagonal terms, which were zero
modulo 2, will be even in G;. This completes the proof. O

Proof of Theorem 1.1. Let L have a Gram matrix G; and let M have a Gram matrix Gy;. The induced
Z [2-modules are given by

l m
L'=eZ/2)x; and M = o(Z/2u,,
i=1 i=1

where {x;}; and {u;}; are basis for L and M of ranks [ and m, respectively.
By Theorem 3.1 and Corollary 3.2, we know that

p I-2p l
Gr=oH® ©[0] or o [0],
i=1 i=1 i=1
where rank,(L) = 2p. Similarly,
q m-2q m
Gyw=®H® & [0] or @ [0],
i=1 i=1 i=1

where ranky(M) = 2q. They are uniquely determined by their ranks over Z and Z/2 by Theorem 3.1
and Corollary 3.2.

Consider the embedding ¢ : L - M and the induced embedding ¢’ : L’ — M’. Since ¢ and ¢’ are embed-
dings, the necessary conditions for the embedding of L” into M” are that

rank(L) < rank(M), ranky(L) < rank(M).
Therefore, each embedding ¢ of L into M must satisfy
rank(L) < rank(M), ranky(L) < rank(M).

Now we can analyze each case.
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Case I: rank,(M) = 0.
Since rank,(M) = 0, Gy = ®24[0]. It implies that

1
Gy = o[0],
i=1
where [ < m.
By Lemma 3.4, there exists a lattice T such that L = T(2). Thus, we have:
L=T(2)

for some lattice T. This completes the proof for Case I.
Case II: rank (M) > 0 and rank,(L) = 0.
Since rank,(L) = 0, we conclude that G, = &!_,[0]. Suppose that

rank(L) > rank(M) - % rank ,(M).

By Theorem 3.1, Corollary 3.2, we have
t -2t
G, =oH® o[0] (31
i=1 i=1
for some t € N*. This contradicts the condition that rank (L) = 0. Therefore,
1
rank(L) < rank(M) - Erank olM).

The existence of a lattice T such that L = T(2) follows from Lemma 3.4. This completes the proof for
Case II.
Case III: rank (M) > 0 and rank,(L) > 0.

Suppose that

1 1
rank(L) > Erankz(L) + rank(M) - Erankz(M).

By Theorem 3.1 and Corollary 3.2, we have
1-2t
G, =oH® o][0] (3.2
i=1 i=1

for some t € N* such thatt > rank,(L). This leads to a contradiction with the uniqueness of its canonical form.
Hence, we obtain the following rank condition:

1 1
rank(L) < rank(M) - Erank oAM) + Erankz(L).

By Lemma 3.4, we can express the Gram matrix G, of L in the specified form:

2a11 Ay ... 4

_ | G2 2a22
Gr=| . - N
(25D Z(ZM

where a1 is odd for each 1 < k < %rank 2(L), and the remaining off-diagonal entries are even.

This completes the proof for Case III.
Case IV: rank(L) = rank(M).
If rank(L) = rank(M), then L = M. The claim trivially follows by the definition of a primitive embedding.
By addressing each case, we have proved that for any embedding ¢ of L into M, one of the conditions
stated in the theorem must hold. Therefore, the proof is complete. O



DE GRUYTER Embedding of lattices and K3-covers of an enriques surface == 7

4 Proof of Theorem 1.3

As a consequence of the foregoing theorem, we derive the following:

Theorem 4.1. Let Tx be transcendental lattice of signature (2, A — 2). If there exists an embedding of Ty into X,
then ranky(Ty) = 0 or 2. Particularly, the associated Gram matrix of each embedding of Tx into X' must be one
of the following types:

(1) Tx = T(2), where T is an even lattice,

(2) Tx = T(2), where T is an odd lattice,

(3) ranky(Tx) = 2,

2a;1 Qi ... ap

_ | 12 2a22 :
GTX = : . .
ag; ZCIM

such that a;; is even for each 1 < i,j < A except ay, ar.

Proof. Let {x;}; be a basis of the transcendental lattice Ty and let {uy, u} and {v;, v,} be the standard basis of U
and U(2), respectively.
If ¢ : Ty = A is an embedding defined generically by

o) = ajth + aply + ajvy + ajvy + w, 4.1
where a;; are integers and w; € Eg(2) for 1 < i< A and 1< < 4 then, we have that
$00) - p(x) = 2a5ay, + dajaf + wi = 2ay, (4.2)
for1<i<Aand
(%) - 9(Xi) = ajag, + Ajpagy + 2053054 + 23054 + Wik = Gk (4.3)

forlsi<ksA
By Theorem 1.1, equations (4.2) and (4.3) are solvable over Z/2 if and only if ranky(Tyx) < ranky(X).
Since ranky(A") = 2, ranky(Ty) is either 0 or 2.
Case I: rank(Tx) = 0.
Since ranky(Ty) = 0, Ty = ®/,[0], A < 11 using Theorem 1.1. By Lemma 3.4, there are two types of asso-
ciated Gram matrices of Ty rising after lifting up to Z:
* Tx = T(2), where T is an even lattice,
» Tx = T(2), where T is an odd lattice.
Case II: rank (Ty) = 2
If ranky(Tx) = 2, by Theorem 1.1 and Lemma 3.4,

Zan Ay ... a4

_ | G2 2a22
Gry = : - .
ay) ZaM

such that ay; is odd and the remaining off-diagonal entries are even.

To determine the parities of diagonal entries of Ty, we need to consider the equations (4.2) and (4.3). If both
ay; and ay, are odd, it contradicts with equations (4.2) and (4.3). Suppose both a;; and ay; are even. Then, under
the action of element g € GL(A, Z) where all diagonal entries are 1, the (2,1)-entry is 1, and all other off-
diagonal entries are 0, both aj; and aj;, will be odd, the parities of remaining entries of Tx will be invariant.
Hence, without loss of generality, assume that ay; is odd and ay; is even. Since ay; is odd, it enforces that a;; and
aj, are odd by equation (4.2). aj; is odd, it also enforces that ay and ay, have a different parity by equation (4.3).
Thus, by equations (4.2) and (4.3), both a; and a;, are even for 3 <i < A, it implies thata; € 2Z for3<i < A.
This completes the proof. O



8 =—— Serkan Sonel DE GRUYTER

We will now present and prove the subsequent theorems that broaden the criteria for K3-covers an
Enriques surface, showing that for each embedding of Ty into A" or an induced embedding Ty into A7, there
exists no v € Ty with v = -2, as opposed to relying solely on primitive embeddings. By Lemma 3.4 and
Theorem 1.1, the following result can be generalized to any embedding of a lattice L into another lattice M,
provided that rank,(L) = ranky,(M). However, we will limit our focus to the specific case of embedding Ty
into A.

Lemma 4.2. Let Ty be an even lattice of signature (2, A — 2), ranky(Tx) = 2. Then, for each embedding of Ty into X,
there exists no v € Ty with v2 = -2,

Proof. Let {x;}; be a basis of the transcendental lattice Tx, and let {u, u;} and {v;, v} be the standard basis
of U and U(2), respectively. Consider the embedding ¢ : Ty = A defined generically by

AOx) = ajug + ajly + agvy + ajvy + w, 4.4

where a;; are integers and w; € Eg(2) for1<i<Aand1<j<4.

By Theorem 4.1, a; is odd, it enforces that aj; and a;, are odd. Similarly, aj; is odd, it also enforces that ay;
and ay, have a different parity.

To prove the orthogonal complement of the image of ¢ in A contains no self-intersection -2 vector,
let f=Xu + XUy + Yv; + y'v; + € € X, where e € Eg(2) with e - e = -4k, k =2 0. From the equation,

[ o06) = (Xug + XUy + Yy + y'vp + €)(anls + gl + agvy + azve + wy) = 0,
we obtain that
x'ay + Xazx = 0 mod 2. 4.5
Since ay; and ay, have a different parity, x” or X must be even. We obtain
f-f=2Xx"+4Yy’ + e-e =0 mod 4. (4.6)

Therefore, the orthogonal complement of the image of ¢ in A contains no self-intersection -2 vector. [

Lemma 4.3. Let Tx be an even lattice of signature (2, A — 2) and Tx = T(2), where T is an even lattice. Then, for
each embedding of Ty into X, there exists an induced embedding such that there exists nov € Ty with v> = 2.

Proof. Let {x;}; be a basis of the transcendental lattice Ty, and let {u;, u;} and {v;, v} be the standard basis
of U and U(2), respectively. Consider the embedding ¢ : Ty = A" defined generically by

O(x) = ajug + ajly + agvy + ajvy + w, @7

where a;; are integers and w; € Eg(2) for1<i<Aand1<j<4.

Suppose Ty = T(2), where T is an even lattice, a; is even for 1 < i,j < A < 11 by Theorem 4.1.

Since Ty is an even lattice of signature (2, A - 2), there exists a; such that aj#0 forl<i<landl=<j<2.

Suppose that aj; and a;, have different parity for 1 < i < A, then by the same reasoning as in Lemma 4.2,
the orthogonal complement of the image of ¢ in A contains no self-intersection -2 vector.

Suppose that a;; and a; are of the form a; = 2ki. my;, where k; € Z*, m; & 27 for all aj#0,1<si<)
1 <j < 2. Let k be a minimum among the all v;(a;;) the exponent of the largest power of 2 of a;; # 0. Without
loss of generality, let k = kyy. If we insert ajf = 2ka7K. m; and aj, = 2%2*K. m;, in the place of aj # 0, a5, # 0,
respectively; equations (4.2) and (4.3) are satisfied for the new embedding ¢’ induced by the embedding ¢
for i,j,1<i<A,1<j <2 Particularly, if ¢ is primitive, then the induced embedding ¢’ is also primitive
by Theorem 2.1.

Since af] and ay; have different parity, again by the same reasoning as in Theorem 4.2, the orthogonal
complement of the image of ¢ in A" contains no self-intersection -2 vector. O
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Proof of Theorem 1.3. Let X be a K3 surface of 11 < p(X) < 20 with its transcendental lattice Ty of rank A
and signature (2,A - 2). Each primitive embedding of Ty into A" is also an embedding, by Theorem 4.1,
the associated Gram matrix of Ty of each embedding of Ty into A must be one of the following types:

» Ty = T(2), where T is an even lattice,

o Ty = T(2), where T is an odd lattice,

o ranky(Ty) = 2,

2a11 Ay ... 4

_ | Q12 2(,122
Gry = : - )
ag) Z(IM

such that aj is even for each 1 < i,j < A except ayy, az.

If Ty = T(2), where T is an even lattice, by Lemma 4.3, for each embedding of Ty into A, there exists
an induced embedding such that there exists no v € Ty with v2 = -2. By Theorem 1.2, the claim follows.

If Ty = T(2), where T is an odd lattice, and Ty is not a co-idoneal lattice, by the definition of the co-idoneal
lattice and Theorem 1.2, the claim follows.

If ranky(Tx) = 2, by Lemma 4.2, for each embedding of Ty into A, there exists no v € Ty with v2 = -2,
Hence, by Theorem 1.2, the claim follows.

Finally, if p(X) = 10, then rank(Ty) = rank(A"), Tx = A, so the claim is trivial. O

5 Exceptional lattices

Recall that a transcendental lattice Ty is called a co-idoneal lattice if, for every primitive embedding of Ty
into A7, there exists a vector v in the orthogonal complement of Ty in A with v? = -2.
The following theorem, obtained as Corollary 3.13 in [7], will be proven using elementary techniques.

Theorem 5.1. If Tx is a co-idoneal lattice, Ty = T(2), where T is an odd lattice.
Proof. The proof of this theorem is a direct consequence of Theorem 4.1 and Lemmas 4.2 and 4.3. O
For the transcendental lattices Ty of rank A > 3, we prove the following theorems:

Theorem 5.2. If Ty is a co-idoneal lattice such that Tx = T(2), where T has a square free discriminant d, then Tx
must be the following forms: m[2] & n[-2] @ B(2) for some m, n € N, where B is a lattice of rank 2,0 < m < 2.
Moreover, if d is even, Ty must be the one of the following forms: 2[2] & n[-2] & B(2) for some n, where B
is a negative definite lattice of rank 2, or n[-2] & B(2), where B is a positive definite lattice of rank 2.

Proof. By Theorem 5.1, since Ty is a co-idoneal lattice, Ty = T'(2), where T is an odd lattice. By Theorem 2.2,
all odd lattices with a square-free discriminant d can be diagonalized in that form. Hence, the result
follows. O

Theorem 5.3. If Ty is a co-idoneal lattice such that Tx = T(2), where T has a cube free discriminant d, then Tx
must be the following forms: m[2] ® n[-2] & B(2) for some m,n €N, where B is a lattice of rank 3,
and0 £m<2.

Proof. By Theorem 5.1, since Ty is a co-idoneal lattice, Ty = T(2), where T is an odd lattice. By Theorem 2.3,
all odd lattices with a cube-free discriminant d can be diagonalized in that form. Hence, the result
follows. O
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