
Research Article

Serkan Sonel*

Embedding of lattices and K3-covers
of an Enriques surface

https://doi.org/10.1515/math-2025-0188
received October 14, 2024; accepted July 4, 2025

Abstract: In this study, we establish necessary conditions for the embeddings of lattices and apply these
conditions to the problem of characterizing algebraic K 3 surfaces that cover an Enriques surface. By refining
existing criteria and providing a more elementary approach, we offer a new perspective on the structure
of such surfaces. Our results apply to any lattices, extending beyond specific cases and offering a comprehen-
sive framework for understanding the embedding conditions in terms of Gram matrices.
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1 Introduction

In this work, we give the necessary conditions for the embeddings of lattices and present an application of the
provided criterion for the problem of characterizing algebraic K 3 surfaces covering an Enriques surface.

The main result of this article is the following theorem, whose proof is given in Section 3.

Theorem 1.1. Let L and M be even integral lattices of ( )Lrank and ( )Mrank , and let ( )Lrank 2 and ( )Mrank 2

denote their ranks over �∕2. Let ϕ be an embedding of L into M. Then, one of the following conditions holds:
(I) If ( ) =Mrank 02 , then there exists a lattice T such that ( )≅L T 2 .
(II) If ( ) >Mrank 02 and ( ) =Lrank 02 , then

( ) ( ) ( )≤ −L M Mrank rank
1

2
rank ,2

and there exists a lattice T such that ( )≅L T 2 .
(III) If ( ) >Mrank 02 and ( ) >Lrank 02 , then

( ) ( ) ( ) ( )≤ − +L M M Lrank rank
1

2
rank

1

2
rank ,2 2

and there exists an even lattice T such that ≅L T and its associated Gram matrix must have the form
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where −a k k2 1,2 is odd for each ( )≤ ≤k L1 rank
1

2 2 , and the remaining off-diagonal entries are even.

(IV) If rank(L) = rank(M), ≅L M , provided that the embedding is primitive.
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Recall that an algebraic K3 surface over � is a smooth projective surface X such that the canonical divisor
KX of X is trivial and �( ) =H X , 0X

1 and an Enriques surface is a smooth projective surface Y such that K2 Y

is trivial and � �( ) ( )= =H Y H Y, , 0Y Y
1 2 , where KY is a canonical divisor of Y . The Néron-Severi lattice ( )NS X

is a sublattice of the cohomology group �( )H X ,2 of X that is a unimodular lattice of rank 22. The rank of ( )NS X

is called the Picard number of X , denoted by ( )ρ X . The orthogonal complement of ( )NS X in �( )H X ,2 is called
the transcendental lattice TX , which has signature ( ( ))− ρ X2,20 .

The following criterion was established by Keum, which was originally proven under an additional
assumption that Ohashi subsequently showed to be unnecessary [1].

Theorem 1.2. (Keum’s criterion) [2, Theorem 1] A K3 surface X with transcendental latticeTX covers an Enriques
surface if and only if there exists a primitive embedding of TX into ( ) ( )≔ ⊕ ⊕−Λ U U E2 28 such that there exists
no vector ∈ ⊥

v TX with = −v 22 .

Using the criterion mentioned above, Keum proved that every algebraic Kummer surface is a K3 cover
of some Enriques surface [2]. Sertöz [3] identified conditions on the entries of the Gram matrix of the
transcendental lattice TX under which X covers an Enriques surface when ( ) =ρ X 20. Subsequently, Lee [4]
and Yörük [5] extended these results to cases where ( ) =ρ X 18 and ( ) =ρ X 19.

In his work [6, Prop. 1.15.1], Nikulin provides a criterion to enumerate all primitive embeddings of a fixed
lattice T into lattices of signature ( )+ −m m, and discriminant form q for a given pair of nonnegative integers
( )+ −m m, and a finite quadratic form q. Brandhorst et al. [7], employed Nikulin’s criterion to enumerate
all primitive embeddings of TX into −Λ , and applied Keum’s criterion to characterize complex K3 surfaces
that cover Enriques surfaces in terms of their Gram matrices.

In this article, we establish necessary conditions for the embeddings of a fixed lattice L into arbitrary
lattices by analyzing their Gram matrices over �∕2, considered up to the action of �( )∕GL 2n . By using the
necessary conditions above and applying Keum’s criterion, we characterize complex K3 surfaces that cover
Enriques surfaces in terms of their Gram matrices.

By Keum’s criterion, there are two reasons why a K3 surface X cannot cover any Enriques surface: firstly,
there exists no primitive embedding of TX into −Λ , second, for every primitive embedding of TX into −Λ , there
exists a vector v in the orthogonal complement of TX in −Λ with = −v 22 . In the latter, the transcendental lattice
TX is called a co-idoneal lattice in [7].

By providing the necessary conditions for the embeddings of lattices, we obtain the following theorem,
whose proof is given in Section 4.

Theorem 1.3. Let X be a K3 surface with ( )≤ ≤ρ X10 20 whose transcendental lattice TX is of rank λ and
signature ( )−λ2, 2 . Then, X covers an Enriques surface if and only if one of the following conditions holds:
(I) ( )≤ ≤ρ X11 20, and there exists an even lattice T such that ( )≅T T 2X .
(II) ( )≤ ≤ρ X11 20, and there exists an odd lattice T such that ( )≅T T 2X except when TX is co-idoneal.
(III) ( )≤ ≤ρ X11 20, and there exists an even lattice T such that ≅T TX and its associated Gram matrix must

be in the following form:
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such that aij is even for each ≤ ≤i j λ1 , except a a,11 12.
(IV) ( ) =ρ X 10, and ≅ −T Λ .X

Furthermore, we will derive refined characterizations of the forms of exceptional lattices, referred to as
co-idoneal lattices in Section 5.
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2 Preliminaries

An integral lattice ( )L β, is a finitely generated, free �-module equipped with an integral symmetric
bilinear form β, �( )≅L β,n . The lattice L is even if ( ) ≡β x x, 0 mod 2 for all ∈x L, and is odd
otherwise.

Let { }=B e e, …, n1 be a basis of �-module L. The symmetric matrix ( )=G aij , given by ( )=a β e e,ij i j ,
is the Gram matrix of L with respect to this basis B, written as ≅L GL. The discriminant of a lattice L

is the determinant of GL.
Let L and M be two �-modules, β and ′β be bilinear forms on L and M , respectively. A module

homomorphism →ϕ L M: is called a lattice morphism if it satisfies the isometry relation, i.e.,
( ) ( ( ) ( ))= ′β x y β ϕ x ϕ y, , for all ∈x y L, . Furthermore, a lattice morphism ↪ϕ L M: is called a lattice

embedding if ϕ is a monomorphism. The embedding is called primitive if ( )∕M ϕ L is a free module, i.e.,
it has a basis. ≅L M if ϕ is also an epimorphism.

Two matrices T1 and T2 are said to be �-equivalent if there exists an element �( )∈g GL n, together with
its transpose gτ such that

=T g T g.τ
2 1

The negative definite exceptional lattice is denoted En, and the hyperbolic lattice is denoted U.
For any integer n, we denote by [ ]n , the lattice �e of rank 1 with ( ) =β e e n, . For any integer n,

and ( )≅ =L G aij , the lattice ( )L n has ( )( ) =G na .L n ij By abuse of language, a symmetric bilinear form β will
be denoted by dot product.

The following theorem in [3] characterizes the primitive embeddings of lattices.

Theorem 2.1. [3] A lattice embedding is primitive if and only if the greatest common divisor of the maximal
minors of the embedding matrix with respect to any choice of basis is 1.

Under certain assumptions on the discriminant of a lattice, an odd indefinite lattice can be decomposed
into one of the following forms:

Theorem 2.2. [8, Theorem 1] Let L be an odd indefinite �-lattice of rank ≥l 3 with square free discriminant d. Then,

[ ] [ ]≅ ⊕ − ⊕L m n B1 1 , (2.1)

where B is a lattice of rank 2, and ≥m n, 0. Moreover, if d is even, then B can be chosen to be definite or indefinite.

Theorem 2.3. [9, Theorem 6] Let L be an odd indefinite �-lattice of rank ≥l 3 and cube-free discriminant
( )≢d 0 mod4 . Then, L has an orthogonal splitting

[ ] [ ]≅ ⊕ − ⊕L m n B1 1 , (2.2)

where B is an indefinite odd lattice of rank 3, and ≥m n, 0.

Lemma 2.4. The map � � �( ) ( )→ ∕GL GL 2n n is surjective.

Proof. Indeed, � � � �( ) ( )∕ ≅ ∕GL 2 SL 2n n is generated by transvections (elementary), and these obviously lift
to �( )GLn . □
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3 Necessary conditions of embeddings of lattices

In this section, we will provide the necessary conditions for the embedding of lattices.

Theorem 3.1. Let F be a finite field of characteristic 2. Then, every symmetric matrix Mn over F with zero
diagonal is congruent to [ ]⊕ ⊕ ⊕= =

−
H 0i

q

i

n q

1 1

2 or [ ]⊕ = 0i
n

1 , where �∈ +q and

≅ ⎡
⎣

⎤
⎦H

0 1

1 0
.

Furthermore, two symmetric matrices with zero diagonal over the field F are congruent if and only if they have
the same rank.

Proof. Suppose that =M 0, the result is trivial.
Suppose that ≠M 0, so that there exists some non-zero element aij of M . Since � � � �( ) ( )∕ ≅ ∕GL 2 SL 2n n

is generated by the elementary matrices ( )αEij , where �∈ ∕α 2, performing the elementary congruent trans-
formations, we may write

≅ ⎡
⎣

⎤
⎦ ≅ ⎡

⎣
⎤
⎦M

H B

B A
H, where

0 1

1 0
.

t

Performing successive elementary congruent transformations of ( )αEij , i varying from 3 to n, we obtain
a symmetric matrix such that

≅ ⎡
⎣

⎤
⎦ ≅ ⎡

⎣
⎤
⎦M

H

A
H

0

0
, where

0 1

1 0
.

1

A1 is an ( )−n 2 -rowed symmetric matrix with zero diagonal. Therefore, we may proceed recursively
and obtain a symmetric matrix of the form [ ]⊕ ⊕ ⊕= =

−
H 0i

q

i

n q

1 1

2 congruent to the given matrix M .
Because of the fact that the congruence of matrices is an equivalence relation possessing symmetry

and transitivity, and by the above reasoning, two symmetric matrices of Mn with zero diagonal over the field
F are congruent if and only if they have the same rank. This completes the proof. □

As a direct consequence, we obtain the following.

Corollary 3.2. The number ( )o n of orbits of the even symmetric matrix Mn of size ×n n over � �∕2 with a zero
diagonal under the action of � �( )∕GL 2n by the transposition is given by

( )

( )

( )

=

⎧

⎨
⎪

⎩⎪

+

+
o n

n if n is odd

n if n is even

1

2
1 , ,

1

2
2 , .

The map � � �( ) ( )→ ∕GL GL 2n n is surjective by Lemma 2.4; therefore, we can consider the action
of � �( )∕GL 2n by the transposition on the set of the even symmetric matrices Mn of size ×n n over � �∕2 .

We will characterize associated Gram matrices of lattices with respect to their ranks over �∕2

by the following.

Definition 3.3. Let L be an integral even lattice of rank λ and GL be its associated Gram matrix. Let ′L be
an induced �∕2-module of L by restriction of ring of integers � to �∕2 and their associated Gram matrices

( )=G aL ij of L and ( ( ))=′G a mod2L ij of ′L . The rank of GL of L over the field of characteristic 2 will be the rank
of ′GL of ′L , denoted by ( )Lrank2 .
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Lemma 3.4. Let L be an integral even lattice of rank λ andGL be its associated Grammatrix, with ( ) =L qrank 22 .
Then,

≅

⎛

⎝

⎜
⎜⎜

⋮
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⎞

⎠

⎟
⎟⎟

G

a a a

a a

a a

2 …
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… … 2

,L

λ

λ λλ

11 12 1

12 22

1

such that −a k k2 1,2 is odd for each ≤ ≤k q1 , and the remaining off-diagonal entries are even.

Proof. Let L be an even lattice. The Gram matrix GL of L is symmetric, and its diagonal entries are even.
Reduction of GL modulo 2 yields a symmetric matrix over � �∕2 . The diagonal entries, being even, reduce

to zero, so the reduced matrix has zero diagonal entries, and the off-diagonal entries are either 0 or 1.
By Lemma 2.4, the map � � �( ) ( )→ ∕GL GL 2n n is surjective. Therefore, we can use the action of � �( )∕GL 2n

to bring G mod 2L into a canonical form.
Over � �∕2 , by Theorem 3.1, every symmetric matrix with zero diagonal can be reduced, via congruence,

to a block diagonal form consisting of 2 × 2 blocks of the type

= ⎡
⎣

⎤
⎦H

0 1

1 0

and possibly zero blocks.
The number of such blocks corresponds to the rank of the matrix modulo 2. Let ( ) =L qrank 22 , which

means G mod 2L can be transformed into a block diagonal matrix with q blocks of the form H , while the
remaining part of the matrix consists of zero blocks.

Once we have the canonical form of G mod 2L , we lift this back to an integral matrix over � . For each
block H in the reduced matrix, the corresponding entries in the lifted matrix GL will be odd. That is, the off-
diagonal terms −a k k2 1,2 are odd for each =k q1, 2,…, . The remaining off-diagonal terms, which were zero
modulo 2, will be even in GL. This completes the proof. □

Proof of Theorem 1.1. Let L have a Gram matrix GL and let M have a Gram matrix GM . The induced
�∕2-modules are given by

� �( ) ( )′ ≅ ⊕ ∕ ′ ≅ ⊕ ∕
= =

L x M u2 and 2 ,
i

l

i

i

m

i

1 1

where { }xi i and { }ui i are basis for L and M of ranks l and m, respectively.
By Theorem 3.1 and Corollary 3.2, we know that

[ ] [ ]≅ ⊕ ⊕ ⊕ ⊕′
= =

−

=
G H 0 or 0 ,L

i

p

i

l p

i

l

1 1

2

1

where ( ) =L prank 22 . Similarly,

[ ] [ ]≅ ⊕ ⊕ ⊕ ⊕′
= =

−

=
G H 0 or 0 ,M

i

q

i

m q

i

m

1 1

2

1

where ( ) =M qrank 22 . They are uniquely determined by their ranks over � and �∕2 by Theorem 3.1
and Corollary 3.2.

Consider the embedding →ϕ L M: and the induced embedding ′ ′ → ′ϕ L M: . Since ϕ and ′ϕ are embed-
dings, the necessary conditions for the embedding of ′L into ′M are that

( ) ( ) ( ) ( )≤ ≤L M L Mrank rank , rank rank .2 2

Therefore, each embedding ϕ of L into M must satisfy

( ) ( ) ( ) ( )≤ ≤L M L Mrank rank , rank rank .2 2

Now we can analyze each case.
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Case I: ( ) =Mrank 02 .
Since ( ) =Mrank 02 , [ ]≅ ⊕′ =G 0M i

m
1 . It implies that

[ ]≅ ⊕′
=

G 0 ,L

i

l

1

where ≤l m.
By Lemma 3.4, there exists a lattice T such that ( )≅L T 2 . Thus, we have:

( )≅L T 2

for some lattice T . This completes the proof for Case I.
Case II: ( ) >Mrank 02 and ( ) =Lrank 02 .

Since ( ) =Lrank 02 , we conclude that [ ]≅ ⊕′ =G 0L i
l

1 . Suppose that

( ) ( ) ( )> −L M Mrank rank
1

2
rank .2

By Theorem 3.1, Corollary 3.2, we have

[ ]≅ ⊕ ⊕ ⊕′
= =

−
G H 0L

i

t

i

l t

1 1

2

(3.1)

for some �∈ +t . This contradicts the condition that ( ) =Lrank 02 . Therefore,

( ) ( ) ( )≤ −L M Mrank rank
1

2
rank .2

The existence of a lattice T such that ( )≅L T 2 follows from Lemma 3.4. This completes the proof for
Case II.
Case III: ( ) >Mrank 02 and ( ) >Lrank 02 .

Suppose that

( ) ( ) ( ) ( )> + −L L M Mrank
1

2
rank rank

1

2
rank .2 2

By Theorem 3.1 and Corollary 3.2, we have

[ ]≅ ⊕ ⊕ ⊕′
= =

−
G H 0L

i

t

i

l t

1 1

2

(3.2)

for some �∈ +t such that ( )>t Lrank 2 . This leads to a contradiction with the uniqueness of its canonical form.
Hence, we obtain the following rank condition:

( ) ( ) ( ) ( )≤ − +L M M Lrank rank
1

2
rank

1

2
rank .2 2

By Lemma 3.4, we can express the Gram matrix GL of L in the specified form:

≅

⎛

⎝

⎜
⎜⎜

⋮
⋮ ⋱ ⋮

⎞

⎠

⎟
⎟⎟

G

a a a

a a

a a

2 …

2

… … 2

,L

λ

λ λλ

11 12 1

12 22

1

where −a k k2 1,2 is odd for each ( )≤ ≤k L1 rank
1

2 2 , and the remaining off-diagonal entries are even.

This completes the proof for Case III.
Case IV: ( ) ( )=L Mrank rank .

If rank(L) = rank(M), then ≅L M . The claim trivially follows by the definition of a primitive embedding.
By addressing each case, we have proved that for any embedding ϕ of L into M , one of the conditions

stated in the theorem must hold. Therefore, the proof is complete. □
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4 Proof of Theorem 1.3

As a consequence of the foregoing theorem, we derive the following:

Theorem 4.1. Let TX be transcendental lattice of signature ( )−λ2, 2 . If there exists an embedding of TX into −Λ ,
then ( ) =Trank 0X2 or 2. Particularly, the associated Gram matrix of each embedding of TX into −Λ must be one
of the following types:
(1) ( )≅T T 2X , where T is an even lattice,
(2) ( )≅T T 2X , where T is an odd lattice,
(3) ( ) =Trank 2X2 ,

≅

⎛

⎝

⎜
⎜⎜

⋮
⋮ ⋱ ⋮

⎞

⎠

⎟
⎟⎟

G

a a a

a a

a a

2 …

2

… … 2

,T

λ

λ λλ

11 12 1

12 22

1

X

such that aij is even for each ≤ ≤i j λ1 , except a a,11 12.

Proof. Let { }xi i be a basis of the transcendental lattice TX and let { }u u,1 2 and { }v v,1 2 be the standard basis of U

and ( )U 2 , respectively.
If ↪ −ϕ T Λ: X is an embedding defined generically by

( ) = ′ + ′ + ′ + ′ +ϕ x a u a u a v a v w ,i i i i i i1 1 2 2 3 1 4 2 (4.1)

where ′aij are integers and ( )∈w E 2i 8 for ≤ ≤i λ1 and ≤ ≤j1 4 then, we have that

( ) ( )⋅ = ′ ′ + ′ ′ + =ϕ x ϕ x a a a a w a2 4 2 ,i i i i i i ii1 2 3 4 1

2 (4.2)

for ≤ ≤i λ1 and

( ) ( )⋅ = ′ ′ + ′ ′ + ′ ′ + ′ ′ + =ϕ x ϕ x a a a a a a a a w w a2 2i k i k i k i k i k i k ik1 2 2 1 3 4 4 4 (4.3)

for ≤ < ≤i k λ1 .
By Theorem 1.1, equations (4.2) and (4.3) are solvable over �∕2 if and only if ( ) ( )≤ −T Λrank rankX2 2 .

Since ( ) =−Λrank 22 , ( )Trank X2 is either 0 or 2.
Case I: ( ) =Trank 0X2 .

Since ( ) =Trank 0X2 , [ ]′ ≅ ⊕ =T 0X i
λ

1 , ≤λ 11 using Theorem 1.1. By Lemma 3.4, there are two types of asso-
ciated Gram matrices of TX rising after lifting up to � :
• ( )≅T T 2X , where T is an even lattice,
• ( )≅T T 2X , where T is an odd lattice.
Case II: ( ) =Trank 2X2

If ( ) =Trank 2X2 , by Theorem 1.1 and Lemma 3.4,

≅

⎛

⎝

⎜
⎜⎜

⋮
⋮ ⋱ ⋮

⎞

⎠

⎟
⎟⎟

G

a a a

a a

a a

2 …

2

… … 2

,T

λ

λ λλ

11 12 1

12 22

1

X

such that a12 is odd and the remaining off-diagonal entries are even.
To determine the parities of diagonal entries ofTX , we need to consider the equations (4.2) and (4.3). If both

a11 and a22 are odd, it contradicts with equations (4.2) and (4.3). Suppose both a11 and a22 are even. Then, under
the action of element �( )∈g λGL , where all diagonal entries are 1, the ( )2,1 -entry is 1, and all other off-
diagonal entries are 0, both ′a11 and ′a12 will be odd, the parities of remaining entries of TX will be invariant.
Hence, without loss of generality, assume that a11 is odd and a22 is even. Since a11 is odd, it enforces that ′a11 and

′a12 are odd by equation (4.2). a12 is odd, it also enforces that ′a21 and ′a22 have a different parity by equation (4.3).
Thus, by equations (4.2) and (4.3), both ′ai1 and ′ai2 are even for ≤ ≤i λ3 , it implies that �∈a 2ii for ≤ ≤i λ3 .
This completes the proof. □
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We will now present and prove the subsequent theorems that broaden the criteria for K3-covers an
Enriques surface, showing that for each embedding of TX into −Λ or an induced embedding TX into −Λ , there
exists no ∈ ⊥

v TX with = −v 22 , as opposed to relying solely on primitive embeddings. By Lemma 3.4 and
Theorem 1.1, the following result can be generalized to any embedding of a lattice L into another lattice M ,
provided that ( ) ( )=L Mrank rank2 2 . However, we will limit our focus to the specific case of embedding TX

into −Λ .

Lemma 4.2. LetTX be an even lattice of signature ( )−λ2, 2 , ( ) =Trank 2X2 . Then, for each embedding ofTX into −Λ ,
there exists no ∈ ⊥

v TX with = −v 22 .

Proof. Let { }xi i be a basis of the transcendental lattice TX , and let { }u u,1 2 and { }v v,1 2 be the standard basis
of U and ( )U 2 , respectively. Consider the embedding ↪ −ϕ T Λ: X defined generically by

( ) = ′ + ′ + ′ + ′ +ϕ x a u a u a v a v w ,i i i i i i1 1 2 2 3 1 4 2 (4.4)

where ′aij are integers and ( )∈w E 2i 8 for ≤ ≤i λ1 and ≤ ≤j1 4.
By Theorem 4.1, a11 is odd, it enforces that ′a11 and ′a12 are odd. Similarly, a12 is odd, it also enforces that ′a21

and ′a22 have a different parity.
To prove the orthogonal complement of the image of ϕ in −Λ contains no self-intersection −2 vector,

let = + ′ + + ′ + ∈ −f Xu x u Yv y v e Λ1 2 1 2 , where ( )∈e E 28 with ⋅ = − ≥e e k k4 , 0. From the equation,

( ) ( ) ( )⋅ = + ′ + + ′ + ⋅ ′ + ′ + ′ + ′ + =f ϕ x Xu x u Yv y v e a u a u a v a v w 0,i2 1 2 1 2 21 1 22 2 23 1 24 2

we obtain that

′ ′ + ′ ≡x a Xa x 0 mod 2.21 22 (4.5)

Since ′a21 and ′a22 have a different parity, ′x or X must be even. We obtain

⋅ = ′ + ′ + ⋅ ≡f f Xx Yy e e2 4 0 mod 4. (4.6)

Therefore, the orthogonal complement of the image of ϕ in −Λ contains no self-intersection −2 vector. □

Lemma 4.3. Let TX be an even lattice of signature ( )−λ2, 2 and ( )≅T T 2X , where T is an even lattice. Then, for
each embedding of TX into −Λ , there exists an induced embedding such that there exists no ∈ ⊥

v TX with = −v 22 .

Proof. Let { }xi i be a basis of the transcendental lattice TX , and let { }u u,1 2 and { }v v,1 2 be the standard basis
of U and ( )U 2 , respectively. Consider the embedding ↪ −ϕ T Λ: X defined generically by

( ) = ′ + ′ + ′ + ′ +ϕ x a u a u a v a v w ,i i i i i i1 1 2 2 3 1 4 2 (4.7)

where ′aij are integers and ( )∈w E 2i 8 for ≤ ≤i λ1 and ≤ ≤j1 4.
Suppose ( )≅T T 2X , where T is an even lattice, aij is even for ≤ ≤ ≤i j λ1 , 11 by Theorem 4.1.
SinceTX is an even lattice of signature ( )−λ2, 2 , there exists ′aij such that ′ ≠a 0ij for ≤ ≤i λ1 and ≤ ≤j1 2.
Suppose that ′ai1 and ′ai2 have different parity for ≤ ≤i λ1 , then by the same reasoning as in Lemma 4.2,

the orthogonal complement of the image of ϕ in −Λ contains no self-intersection −2 vector.
Suppose that ′ai1 and ′ai2 are of the form ′ =a m2 .ij

k
ij

ij , where �∈ +kij , �∉m 2ij for all ′ ≠a 0ij , ≤ ≤i λ1 ,
≤ ≤j1 2. Let k be a minimum among the all ( )′υ ai2 1 the exponent of the largest power of 2 of ′ ≠a 0i1 . Without

loss of generality, let =k k11. If we insert ″ = −a m2 .i
k k

i1 1
i1 and ″ = +a m2 .i

k k
i2 2

i2 in the place of ′ ≠a 0i1 , ′ ≠a 0i2 ,
respectively; equations (4.2) and (4.3) are satisfied for the new embedding ′ϕ induced by the embedding ϕ

for i j, , ≤ ≤i λ1 , ≤ ≤j1 2. Particularly, if ϕ is primitive, then the induced embedding ′ϕ is also primitive
by Theorem 2.1.

Since ″a11 and ″a12 have different parity, again by the same reasoning as in Theorem 4.2, the orthogonal
complement of the image of ϕ in −Λ contains no self-intersection −2 vector. □
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Proof of Theorem 1.3. Let X be a K3 surface of ( )≤ ≤ρ X11 20 with its transcendental lattice TX of rank λ

and signature ( )−λ2, 2 . Each primitive embedding of TX into −Λ is also an embedding, by Theorem 4.1,
the associated Gram matrix of TX of each embedding of TX into −Λ must be one of the following types:
• ( )≅T T 2X , where T is an even lattice,
• ( )≅T T 2X , where T is an odd lattice,
• ( ) =Trank 2X2 ,

≅

⎛

⎝

⎜
⎜⎜

⋮
⋮ ⋱ ⋮

⎞

⎠

⎟
⎟⎟

G

a a a

a a

a a

2 …

2

… … 2

,T

λ

λ λλ

11 12 1

12 22

1

X

such that aij is even for each ≤ ≤i j λ1 , except a a,11 12.
If ( )≅T T 2X , where T is an even lattice, by Lemma 4.3, for each embedding of TX into −Λ , there exists

an induced embedding such that there exists no ∈ ⊥
v TX with = −v 22 . By Theorem 1.2, the claim follows.

If ( )≅T T 2X , where T is an odd lattice, and TX is not a co-idoneal lattice, by the definition of the co-idoneal
lattice and Theorem 1.2, the claim follows.

If ( ) =Trank 2X2 , by Lemma 4.2, for each embedding of TX into −Λ , there exists no ∈ ⊥
v TX with = −v 22 .

Hence, by Theorem 1.2, the claim follows.
Finally, if ( ) =ρ X 10, then ( ) ( )= −T Λrank rankX , ≅ −T ΛX , so the claim is trivial. □

5 Exceptional lattices

Recall that a transcendental lattice TX is called a co-idoneal lattice if, for every primitive embedding of TX

into −Λ , there exists a vector v in the orthogonal complement of TX in −Λ with = −v 22 .
The following theorem, obtained as Corollary 3.13 in [7], will be proven using elementary techniques.

Theorem 5.1. If TX is a co-idoneal lattice, ( )≅T T 2X , where T is an odd lattice.

Proof. The proof of this theorem is a direct consequence of Theorem 4.1 and Lemmas 4.2 and 4.3. □

For the transcendental lattices TX of rank ≥λ 3, we prove the following theorems:

Theorem 5.2. If TX is a co-idoneal lattice such that ( )≅T T 2X , where T has a square free discriminant d, then TX

must be the following forms: [ ] [ ] ( )⊕ − ⊕m n B2 2 2 for some �∈m n, , where B is a lattice of rank 2, ≤ ≤m0 2.
Moreover, if d is even, TX must be the one of the following forms: [ ] [ ] ( )⊕ − ⊕n B2 2 2 2 for some n, where B
is a negative definite lattice of rank 2, or [ ] ( )− ⊕n B2 2 , where B is a positive definite lattice of rank 2.

Proof. By Theorem 5.1, since TX is a co-idoneal lattice, ( )≅T T 2X , where T is an odd lattice. By Theorem 2.2,
all odd lattices with a square-free discriminant d can be diagonalized in that form. Hence, the result
follows. □

Theorem 5.3. If TX is a co-idoneal lattice such that ( )≅T T 2X , where T has a cube free discriminant d, then TX

must be the following forms: [ ] [ ] ( )⊕ − ⊕m n B2 2 2 for some �∈m n, , where B is a lattice of rank 3,
and ≤ ≤m0 2.

Proof. By Theorem 5.1, since TX is a co-idoneal lattice, ( )≅T T 2X , where T is an odd lattice. By Theorem 2.3,
all odd lattices with a cube-free discriminant d can be diagonalized in that form. Hence, the result
follows. □

Embedding of lattices and K3-covers of an enriques surface  9
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