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Abstract: Let S be a semigroup. In this study, we first introduce the Green’s digraphs and Green’s graphs
related to the Green’s relationsL,R, andJ of S . Further, the connectedness and completeness of the Green’s
graphs are discussed. For a finite semigroup S , we show that each of the Green’s graphs of S has a transitive
orientation. Moreover, we obtain that these Green’s graphs are perfect. Finally, the structures of the Green’s
graphs are characterized using the generalized lexicographic product.
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1 Introduction and preliminaries

Graphs related to groups and semigroups have been actively investigated in the literature [1–6]. Given
a semigroup, there are many different ways to associate a directed or undirected graph with the semigroup,
including the zero-divisor graphs [4], divisibility graphs [2], power graphs [2,5], and Cayley graphs [1,3], etc. Let
S be a semigroup, and let T be a subset of S . The Cayley graph ( )Cay S T, of S relative to T is defined as the
directed graph with vertex set S and arc set consisting of those ordered pairs ( )x y, where =tx y and ≠x y for
some ∈t T . Kelarev and Praeger [3] characterized all vertex-transitive Cayley graphs arising from periodic
semigroups. Kelarev [1] described all finite inverse semigroups and all commutative inverse semigroups with
bipartite Cayley graphs. The Cayley graph of a semigroup is related to finite state automata and has many
applications [7–16].

The directed power graph of a semigroup S was defined by Kelarev and Quinn in [2] as the directed graph

P( )
→

S with vertex set S in which there is an arc from x to y if and only if ≠x y and =y xm for some positive
integer m. Motivated by this, Chakrabarty et al. [5] focused their study on the undirected power graphs of
a semigroup S , in which distinct x and y are adjacent if one is a power of the other. They characterized the class
of semigroups S for which the power graph P( )S is connected or complete. Based on these, Cameron and
Ghosh [17,18] explored the power graphs of finite groups, obtained many profound results, and promoted the
research of related problems. Nowadays, power graphs of groups and semigroups are actively investigated by
researchers [6,19–23]. A detailed list of results and open problems can be found in [24,25].

Dalal et al. [21], as a generalization of power graphs of semigroups, introduced a new graph: the enhanced
power graph of a semigroup S , denoted byP( )Se , as the graph whose vertex set is S and in which two distinct
vertices x y, are adjacent if ⟨ ⟩∈x y z, for some ∈z S . They described the structure ofP( )Se and discussed some
of its graph-theoretic properties. Ma et al. [26], gave a recent survey on the enhanced power graphs of groups.
An interesting notion of an E-extended power graph of a finite semigroup is studied recently in [27].
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It is known that Green’s relations play a fundamental role in the study of semigroups. Let S be
a semigroup. Green’s relations on S are defined as follows. The relations � , � , and � on S are given by

L R J⇔ = ⇔ = ⇔ =a b S a S b a b aS bS a b S aS S bS, , ,

1 1 1 1 1 1 1 1

where S1 is the monoid obtained from S by adjoining an identity if necessary. Let H L R= ∩ and
D L R= ∨ , where L R∨ denote the minimum equivalence relation containing L and R. Clearly, for all

∈a b S, ,

L ⇔ = = ∈a b a xb b ya x y Sand for some , .

1

The relations R and J can be characterized similarly. Let La, Ra, and J
a
denote the L-class, R-class, and

J-class containing a, respectively.
It is worth noting that Green’s relations also play an important role in the study of the graph theory related

to semigroups. In 2014, Gharibkhajeh and Doostie [28] introduced the Green graphs of a finite semigroup S by
generalizing the notion of conjugacy graphs of groups. The left Green graph of S is an undirected graph whose
vertices are theL-classes of S , and two vertices Li and Lj are adjacent if and only if (∣ ∣ ∣ ∣) >L Lgcd , 1i j . The other
Green graphs are defined in a similar way. They gave a necessary condition for the Green graphs related toL,
R, J, and H of S to coincide. Moreover, Sorouhesh et al. [29] obtained a sufficient condition on non-group
semigroups that implies the coinciding of these Green graphs. In 2023, Nupo and Chaiya [15] investigated the
Cayley digraphs of full transformation semigroups with respect to Green’s equivalence classes, and presented
structural properties and isomorphism theorems of these digraphs. Recently, Ashegh Bonabi and Khosravi [23]
gave a characterization of a completely simple semigroup in terms of its power graph and Green’s relations.
Cheng et al. [22] explored the power graphs of certain completely 0-simple semigroups, and they showed that
a G0-normal completely 0-simple orthodox semigroup with abelian group H-classes is characterized by its
power graph.

Recall that the power graphP( )S of a semigroup S is an undirected graph whose vertex set is S such that
two vertices ∈a b S, are adjacent if and only if ≠a b and =a bm or =b am for some positive integer m. This
means that ⊆S a S b1 1 or ⊆S b S a1 1 (resp. ⊆aS bS1 1 or ⊆bS aS1 1, ⊆S aS S bS1 1 1 1 or ⊆S bS S aS1 1 1 1). That is, =a xb

or =b ya (resp. =a bx or =b ay, =a xby or =b xay) for some ∈x y S,

1. As a generalization of power graphs of
semigroups, we introduce new types of graphs on semigroups called Green’s digraphs and Green’s graphs.

As usual, a graphmeans an undirected simple graph, and a digraphmeans a directed graph without loops.
Given a graph (resp. digraph) Γ , we always use ( )V Γ and ( )E Γ to denote the vertex set and the edge set (resp. the
arc set), respectively. The digraph � is an orientation for Γ if �( ) ( )=V V Γ and �∣{( ) ( )} ( )∣∩ =u v v u E, , , 1 for
all { } ( )∈u v E, Γ . A transitive orientation for Γ is an orientation � such that �{( ) ( )} ( )⊆u v v w E, , , implies

�( ) ( )∈u w E, . A comparability graph is a graph that admits a transitive orientation. It has been characterized
in [30,31].

The study is structured as follows. In Section 2, we first give the definitions of Green’s digraphs and Green’s
graphs of a semigroup. We then characterize the connected components of the Green’s graphs and the class of
semigroups for which Green’s graphs are complete. For a finite semigroup S , we construct transitive orienta-
tions for the Green’s graphs of S . Moreover, we prove that the Green’s graphs are perfect graphs. In Section 3,
we use the generalized lexicographic product to characterize the structures of the Green’s graphs of a finite
semigroup.

For other notations and terminologies not given in this article, the reader is referred to the books [32]
and [33].

2 Green’s graphs of a semigroup

The aim of this section is to give the definitions of Green’s digraphs and Green’s graphs of a semigroup related
to Green’s relations L, R, and J. Further, we shall discuss some graph-theoretic properties of the Green’s
graphs.
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Definition 2.1. Let S be a semigroup. The Green’s L-digraph (resp. R-digraph, J-digraph) of S , denoted by
L( )D S (resp. R( )D S , J( )D S ), is a directed graph with vertex set S such that there is an arc from a to b if and only

if ≠a b and ∈b Sa (resp. ∈b aS , ∈b S aS1 1).

It is easy to see that L( )D S and R( )D S are two distinct subdigraphs of J( )D S , and the directed power graph

P( )
→

S of S is a subdigraph of each of the Green’s digraphs of S . Obviously, the Green’sL-digraph L( )D S and the
Cayley graph ( )Cay S S, are the same, and the divisibility graph ( )Div S and Green’s � -digraph are the same.

In the following, we shall give the definitions of Green’s graphs of a semigroup.

Definition 2.2. Let S be a semigroup. The Green’s L-graph of S , denoted by L( )SΓ , is an undirected graph
whose vertex set is S such that two vertices ∈a b S, are adjacent if and only if ≠a b and ∈b Sa or ∈a Sb, i.e.,

L L( ( )) ( ( )) {{ } ∣ }= = ⊆ ≠ ∈ ∈V S S E S a b S a b b aΓ , Γ , , and Sa or Sb .

The other Green’s graphs R( )SΓ and J( )SΓ are defined in a similar way: � �( ( )) ( ( ))= =V S V S SΓ Γ and

R

J

( ( )) {{ } ∣ }

( ( )) {{ } ∣ }

= ⊆ ≠ ∈ ∈
= ⊆ ≠ ∈ ∈

E S a b S a b b aS a bS

E S a b S a b b S aS a S bS

Γ , and or ,

Γ , and or .

1 1 1 1

For a semigroup S , it is clear that both L( )SΓ and R( )SΓ are obtained by deleting some of the edges from
J( ( ))E SΓ . Hence, L( )SΓ and R( )SΓ are two spanning subgraphs of J( )SΓ . It is easy to check that the power graph

P( )S of S is a spanning subgraph of each of the Green’s graphs. The principal left ideal graph of S is the graph
SG with ( ) =V S SG such that two vertices a and ( )≠b a b are adjacent in SG if and only if ∩ ≠ ∅S a S b1 1 .
The principal right ideal graph is defined similarly. Moreover, it is clear that L( )SΓ (resp. R( )SΓ ) is a spanning
subgraph of the principal left (resp. right) ideal graph of S .

Now, we shall discuss some graph-theoretic properties of the Green’s graphs for a semigroup S . We only
consider the Green’sL-graph L( )SΓ . There are analogous results for R( )SΓ and J( )SΓ . We define two binary
relations τ

1
and τ

2
on S by

⇔ ∩ ≠ ∅
⇔ ∪ ⊆ ∈

aτ b S a S b

aτ b S a S b S c c S

,

for some .

1

1 1

2

1 1 1

Clearly, ∪τ τ
1 2

is also a binary relation. Let τ denote the equivalence relation on S generated by ∪τ τ
1 2

, i.e., the
minimum equivalence relation on S containing ∪τ τ

1 2
. By [33, Proposition 4.25], we have the following lemma.

Lemma 2.3. Let S be a semigroup. Then, ( )= ∪ ∞τ τ τ .
1 2

Moreover, we have the following result.

Theorem 2.4. Let S be a semigroup, and let ∈a b S, with ≠a b. Then, a and b are connected in L( )SΓ if and only
if aτb.

Proof. Suppose that a and b are connected by a path, say ( )a c c c b, , , …, ,k1 2
in L( )SΓ , where ∈c c c S, ,…, k1 2

.
Letting =a c

0
and = +b ck 1

, for each { }∈i k0, …, , we have ∈ +c Sci i 1
or ∈+c Sci i1

, and hence +c τci i 1
. It follows

by transitivity that aτb.
Conversely, let aτb. By Lemma 2.3, we have ( ) ( )∈ ∪ ∞a b τ τ, .

1 2
That is, ( ) ( )∈ ∪a b τ τ,

n
1 2

for some positive
integer n. Hence, there exist ∈−c c c S, ,…, n1 2 1

such that ( ) ( ) ( )∈ ∪ ∈ ∪ ∈ ∪−a c τ τ c c τ τ c b τ τ, , , ,…, ,n1 1 2 1 2 1 2 1 1 2
.

Let =a c
0
and =b cn, and consider { }∈ −i n0, …, 1 . If ( ) ∈+c c τ,i i 1 1

, then there exists some ∈ ∩ +d S c S ci i
1 1

1
.

If ( ) ∈+c c τ,i i 1 2
, then there exists some ∈d S such that ∩ ⊆+S c S c S di i

1 1

1

1 . In either case, we have
L{ } { } ( ( ))∈+c d d c E S, , , Γi i 1

, and hence ci and +ci 1
are connected by the path ( )+c d c, ,i i 1

. It follows that a and b

are connected. □

The following corollary is immediate.
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Corollary 2.5. Suppose that S is a semigroup. Then, the connected components of L( )SΓ are precisely { ∣ }∈τ a S ,a

where τa is the equivalence class containing a.

It follows from Corollary 2.5 that L( )SΓ is a connected graph (resp. a null graph) if and only if τ is the
universal relation (resp. the equality relation) on S .

Recall that a partially ordered set, or simply poset, P is an ordered pair ( ( ) )≤V P , P , where ( )V P is called the
vertex set of P, and≤P is a partial order on ( )V P . As usual, we write <x yP if ≤x yP and ≠x y. For two elements

( )∈x y V P, , x and y are comparable in P if ≤x yP or ≤y xP ; otherwise, x and y are incomparable. A chain
(resp. antichain) is a partially ordered set such that all elements are pairwise comparable (resp. incomparable).

Recall that a graph is complete if any two vertices are adjacent. The next result characterizes the class of
semigroups S for which L( )SΓ is complete.

Proposition 2.6. Let S be a semigroup. Then, L( )SΓ is complete if and only if the principal left ideals of S form
a chain with respect to the usual inclusion.

Proof. L( )SΓ is complete if and only if for any ∈a b S, with ≠a b either ∈a bS or ∈b aS if and only if
the principal left ideals of S form a chain. □

Example. For a monogenic semigroup ⟨ ⟩=S a , every principal (left) ideal of S is of the form Sat for some
positive integer t or S a1 . It is easy to check that the principal left (resp. right, two-sided) ideals of S form a chain
under usual inclusion. Hence, by Proposition 2.6, L( )SΓ , R( )SΓ , and J( )SΓ are complete.

Note that if S is a left simple (resp. right simple, simple) semigroup, i.e., L = ×S S (resp. R = ×S S ,
J = ×S S), then L( )SΓ (resp. R( )SΓ , J( )SΓ ) is a complete graph. In particular, if S is a left zero semigroup, then
L( )SΓ is complete and R( )SΓ is a null graph. Dually, for a right zero semigroup S , R( )SΓ is complete and L( )SΓ

is a null graph.
Now, let S be a finite semigroup. As usual, for each ∈a S , L{ ∣( ) }= ∈ ∈L b S a b,a . Write

( ) { ∣ } { }≔ ∈ =L S L a S L L L, , …, ,a a a am11 21 1

(2.1)

where m is the number ofL-classes of S , and let { }=L a a a, , …,a i i is1 2i i1

for each [ ]∈i m (= { }m1,2, …, ), where si

denote the cardinality of theL-class containing ai1.

Definition 2.7. Let S be a finite semigroup and let ∈a b S, with ≠a b. Define ≺a b if one of the following
conditions holds.
(1) <L La b, i.e., ⊊S a S b1 1 .
(2) For some [ ]∈i m , ℓ= =a a b a,i ik , and ℓ < k .
Define ≼a b if ≺a b or =a b.

The proof of the following lemma is obvious.

Lemma 2.8. Suppose that S is a finite semigroup. With reference to (2.1), if there exist [ ]∈i j m, and ≠i j such
that ℓ ≺a ai jk

0 0

for some ℓ [ ]∈ si0
and [ ]∈k sj0

, then ℓ ≺a ai jk for each ℓ [ ]∈ si and each [ ]∈k sj .

Now, we define �S as the digraph with vertex set S such that there is an arc from b to a if ≺a b. It is easy
to see that �S is an orientation of L( )SΓ . Moreover, we have the following result.

Theorem 2.9. Let S be a finite semigroup. Then, the following statements hold.
(i) �S is a transitive orientation of L( )SΓ and a subdigraph of L( )D S .
(ii) If � is a transitive orientation of L( )SΓ and a subdigraph of L( )D S , then the graphs � and �S are isomorphic.

4  Yanliang Cheng et al.



Proof. ( )i . Assume that �{( ) ( )} ( )⊆a b b c E, , , S for distinct ∈a b c S, , . Then ≺b a and ≺c b. This implies
that ≤L Lb a and ≤L Lc b. First, suppose that L( ) ∉a c, in S . Then, <L Lc a, and so ≺c a. It follows
that �( ) ( )∈a c E, S . Now, suppose that L( ) ∈a c, , i.e., =L La c. Then, by ( )2.1 , there exists an index [ ]∈i m

such that ℓ= =a a b a,i ir, and =c aik for some ℓ [ ]∈r k s, , i and ℓ< <k r . Thus, ≺c a, and so �( ) ( )∈a c E, S .
This shows that �S is a transitive orientation of L( )SΓ . Clearly, �S is a subdigraph of L( )D S .

( )ii . Suppose that a subdigraph � of L( )D S is another transitive orientation of L( )SΓ . Since the induced
subgraph on Lai1

of L( )SΓ is a complete graph and all transitive orientations of a fixed completed graph
are isomorphic, we need only to show that �( ) ( )∈a a E,i j S1 1

if and only if �( ) ( )∈a a E,i j1 1
for any [ ]∈i j m,

and ≠i j.

If �( ) ( )∈a a E, ,i j S1 1
that is, <L La aj i1 1

, then =a xaj i1 1
for some ∈x S , and so L{ } ( ( ))∈a a E S, Γi j1 1

,

L( ) ( ( ))∈a a E D S,i j1 1
and L( ) ( ( ))∉a a E D S,j i1 1

. Since � is a subdigraph of L( )D S , we have �( ) ( )∈a a E,i j1 1
.

Conversely, if �( ) ( )∈a a E,i j1 1
, then L( ) ( )∈a a D S,i j1 1

. That is, =a xaj i1 1
for some ∈x S , and so <L La aj i1 1

.
It follows that ≺a aj i1 1

, and so �( ) ( )∈a a E,i j S1 1
. This shows that � and �S are isomorphic. □

The following result is an immediate consequence of Theorem 2.9.

Corollary 2.10. The Green’sL-graph L( )SΓ of a finite semigroup S is a comparability graph.

A graph Γ is perfect if for each induced subgraph Λ of Γ, the chromatic number and the clique number
of Λ are equal. It is well known that comparability graphs are perfect [34, Chapter V, Theorem 17]. Therefore,
we have the following corollary.

Corollary 2.11. The Green’sL-graph L( )SΓ of a finite semigroup S is perfect.

3 Structure of Green’s graphs for a finite semigroup

In this section, by means of the generalized lexicographic product of certain graphs, we characterize the
structures of Green’s graphs for a finite semigroup S . We shall only characterize the Green’sL-graph L( )SΓ ;
analogous results hold for R( )SΓ and J( )SΓ .

Let P be a poset. For any subset ( )⊆U V P , the subposet of P induced by U , denoted by ( )P U , is a poset
( )( )≤U , P U , where for any ∈x y U, , ( )≤x yP U if and only if ≤x yP . It follows from Definition 2.7 that ( )≼S ,

is a poset. In the remainder of this study, we use LS to denote this poset.
The comparability graph of P, denoted by CP, is the graph with the vertex set ( )V P , where two distinct

vertices are adjacent if and only if they are comparable.

Lemma 3.1. Let S be a finite semigroup. Then, C L( )= SΓLS
.

Proof. Clearly, C L( ) ( ( ))= =V V S SΓLS
. For any ∈a b S, , we have C{ } ( )∈a b E, LS

if and only if ≤L La b or ≤L Lb a

if and only if L{ } ( ( ))∈a b E S, Γ . Thus, C L( ) ( ( ))=E E SΓLS
. □

From [6], let P be a poset. A subset Q of P is homogeneous if for any ∈y P Q\ , one of the following holds:
(1) For all ∈x Q, ≤x y.P

(2) For all ∈x Q, ≤y x.P

(3) For all ∈x Q, x and y are incomparable.

A homogeneous chain (resp. antichain) in P is a chain (resp. an antichain) that is homogeneous. An
equivalence relation ρ of P is homogeneous if all its equivalence classes are homogeneous in P, and the
partition Ω corresponding to ρ is called a homogeneous partition of P. The quotient ∕P ρ is the poset

Green’s graphs of a semigroup  5



( )≤ ∕Ω, P ρ such that two subsets ∈Ω , Ω Ω
1 2

satisfy ≤ ∕Ω ΩP ρ1 2
if and only if =Ω Ω

1 2
or <x yP for each ∈x Ω

1

and each ∈y Ω
2
.

LS is defined in the second paragraph of Section 3. The following lemma is an immediate consequence
of Lemma 2.8.

Lemma 3.2. Let S be a finite semigroup. Any element in ( )L S is a homogeneous chain in LS .Moreover, ( )L S andL
are a homogeneous partition and a homogeneous equivalence relation of LS , respectively.

Recall that the lexicographical sum [35] is defined as follows. Let P be a poset and � { ∣ ( )}= ∈Q x V P
x

be
a family of posets indexed by ( )V P . The lexicographical sum of � over P, denoted by �[ ]P , is the poset with
the vertex set �( [ ]) {( )∣ ( ) ( )}= ∈ ∈V P x y x V P y V Q, ,

x
, where �( ) ( )[ ]≤x y x y, ,P1

1
2

2

, provided that either =x x
1 2

and ≤y yQ
1 2x

1

or <x xP1 2
.

Let ρ be a homogeneous equivalence relation of a poset P, and let = ∕R P ρ and � { ( )∣ }= ∈P Q Q R . Then, P

is isomorphic to �[ ]R [6, Lemma 2.8]. Hence, the following result is an immediate consequence of Lemma 3.2.

Theorem 3.3. Let S be a finite semigroup and let � { ( )∣ ( )}= ∈L L L L SS a a . Then, L �( )[ ]≅ ∕L L .S S

Now, in order to characterize the structure of Green’s L-graph L( )SΓ of a finite semigroup S , we need
the definition of the generalized lexicographic product [36]. Given a graph Γ and a family of graphs

F� { ∣ ( )}= ∈v V Γv , indexed by ( )V Γ , their generalized lexicographic product, denoted by �[ ]Γ , is defined as
the graph with vertex set

F�( [ ]) {( )∣ ( ) ( )}= ∈ ∈V v w v V w VΓ , Γ , v

and edge set

F�( [ ]) {{( ) ( )}∣{ } ( ) { } ( )}= ∈ = ∈E v w v w v v E v v w w EΓ , , , , Γ , or and , .v1 1 2 2 1 2 1 2 1 2
1

Given a poset P, let � be a family of posets indexed by ( )V P . Suppose that �� consists of all comparability
graphs of posets in � . Then, C C �� �[ ][ ] =P P [6, Lemma 2.12].

Lemma 3.4. Given a finite semigroup S, let � { ( )∣ ( )}= ∈L L L L SS a a and C� �� { ∣ ( ) }( )= ∈L LL L S aS a
. Then,

C CL L �� �[ ]( )[ ] ( )=∕ ∕ .L LS S

Now, for a finite semigroup S and ∈a S , let Ka denote the complete graph of order ∣ ∣La , and write
� { ∣ ( )}= ∈K L L SS a a . Thus, we have the following result.

Theorem 3.5. Let S be a finite semigroup. Then, the Green’s L-graph L( )SΓ is isomorphic to the generalized
lexicographic product C L �[ ]( )∕L SS

.

Proof. It follows from Lemma 3.1 that C L( )= SΓLS
. Hence, we only need to show that C C L �[ ]( )≅ ∕ .L L SS S

By (2.1) and Definition 2.7, for each ∈a S , the subposet ( )L LS a is a chain, i.e., every pair of distinct elements
in La are comparable. Hence, the comparability graph C ( )L LS a

is the complete graph of order ∣ ∣La . That is,
C ( ) ≅ KL L aS a

for each ∈a S . Moreover,

C C CL L �[{ ∣ ( )}] [ ]( ) ( ) ( )∈ ≅∕ ∕L L S .L L L a L SS S a S

It follows from Theorem 3.3 that

L L�( )[ ] ( )[{ ( )∣ ( )}]≅ ∕ = ∕ ∈L L L L L L L S .S S S S a a

Therefore, by Lemma 3.4,

C C C C CL L L �[{ ∣ ( )}] [ ]( )[{ ( ) ( )}] ( ) ( ) ( )≅ ≅ ∈ ≅∕ ∣ ∈ ∕ ∕L L S .L L L L L L S L L L a L SS S S a a S S a S

Thus, CL L �( ) [ ]( )≅ ∕SΓ .L SS
This completes the proof. □

6  Yanliang Cheng et al.
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