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Abstract: The study of (h, g;a — m)-convex functions extends the classical concept of convexity to more
generalized forms, which provide flexible tools for analysis. The aim of this article is to yield the generalization
of the Fejér type inequalities for various classes of convex functions, such as (h, g;a — m)-convex and
(h, g; m)-convex functions.
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1 Introduction

Convex functions play a pivotal role in various fields of applied mathematics, such as optimization, economics,
and probability theory due to their desirable mathematical properties and wide applicability. First, let us
recall the definition of a convex function.

Definition 1. A function f: I CR — R is said to be convex function if
fAx+ @A -y) <Af(x)+ A -Df) ()]

holds for all points x and y in I and all A € [0, 1].

It is called strictly convex if the inequality (1.1) holds strictly whenever x and y are distinct points and
A € (0,1). If -f is convex (respectively, strictly convex), then we say that f is concave (respectively, strictly
concave). If f is both convex and concave, then f is said to be affine.

Let us recall famous Fejér inequalities for convex functions.

Theorem 1. (The Fejér inequalities) Let w : [a, b] — R be nonnegative, integrable, and symmetric about arb,

2

If f: [a,b] = R is a convex function, then
a+b
%52

If fis a concave function, then inequalities in (1.2) are reversed.

b b b
Juwooux < fwoorcoax s [2@ + 2y |fwcoax. 1)
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In mathematical analysis, Fejér-type inequalities are important, especially when studying integral
inequalities and their applications. These inequalities have been extensively studied and refined, providing
essential tools for evaluating integral expressions and establishing bounds in both pure and applied mathe-
matics. Many expansions and modifications in different directions are based on the classical Fejér inequality.
Some new inequalities of the Fejér type were obtained in [1-3].

A new class of convex functions was introduced in [4].

Definition 2. Let h: J CR — R be a nonnegative function. We say that f: [0, b] - R is a (h - m)-convex
function, if f is nonnegative and for all x,y € [0, b], m € [0, 1], and a € (0, 1), we have

flax + m(1 - a)y) < h(a)f (x) + mh(1 - a)f (y). €.3)

If the inequality (1.3) is reversed, then f is said to be (h — m)-concave function on [0, b].

Obviously, if we choose m = 1, then we have h-convex functions. If we choose h(x) = x, then we obtain

nonnegative m-convex functions. If we choose m = 1 and h(x) = x, 1 1 x5, then we obtain the following classes

) X)
of functions: nonnegative convex functions, P-functions, Godunova-Levin functions, and s-convex functions
(in the second sense), respectively.

The following new class of (h, g; m)-convex function has been introduced in [5].

Definition 3. Let h be a nonnegative function on ] CR, (0, 1) C J, h # 0, and let g be a positive function on
I C R. Furthermore, let m € (0, 1]. A function f:I— R is said to be an (h, g; m)-convex function if it is
nonnegative and if

FOX + m( = A)y) < RAFCOEK) + mh(d - Df )g) (14)

holds for all x,y € I and all A € (0, 1). If (1.4) holds in the reversed sense, then f is said to be an (h, g; m)-con-
cave function.

The second Fejér inequality has been improved for (h, g; m)-convex functions [6,7]:

Theorem 2. Let f be a nonnegative (h, g; m)-convex function on [0, ©), where h is a nonnegative function
on JCR, h#0, gis a positive function on [0,) and m € (0,1]. Let 0 <a<b < and f, g, h € Ly[a, ).

Furthermore, let w : [a, b] ~ R be a nonnegative, integrable, and symmetric about &zb Then the following
inequality holds

X-a
1.5
by~ a w(x)dx. (1.5)

F@g(@ + Fg) + mf| S &) + Mf[%]g[%]l '}h

In the article, we will use the following property of the minimum:

b
jf(x)w(x)dx < %

a+b-|a-b

min{a, b} = 5 , 1.6)
from which we have
min{a, b} < -2 A7
Power mean of two numbers a, b is
Mya,b) = |~ ; e
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Specially, for p = 1 we have arithmetic mean

+b
Mi(a,b) = =,
2
for p = -1 harmonic mean
M—l(a; b) = 1 19
— + —
a b
for p = 2 quadratic mean
2+ b2
Mya,b) = |,
2
for p = 0 geometric mean
My(a, b) = ab,

for p = —co minimum
M_(a, b) = min{a, b}
and for p = © maximum
M.(a, b) = max{a, b}.
The following inequalities are valid:
M-.(a, b) < My(a, b) < M(a, b) 1.8
and
My(a, b) < My(a,b), for p<q. 1.9)

The two means M,(a, b) and M(a, b) are equal if and only if a = b.

This article aims to present the improvement of the second Fejér inequality for (h, g; m)-convex and
(h, g; a — m)-convex functions. Likewise, we will show that these new results are generalizations of already
known results related to various classes of convex functions, such as (h — m)-convex, h-convex, m-convex,
and nonnegative convex functions.

2 Main result
Here is improvement of the second Fejér inequality for (h, g; m)-convex function obtained in [7].

Theorem 3. Let f be a nonnegative (h, g; m)-convex function on [0, ©), where h is a nonnegative function
on JCR, h#0, gis a positive function on [0,) and m € (0,1]. Let 0 <a<b < and f, g, h € Ly[a, b].

Furthermore, let w : [a, b] » R be a nonnegative, integrable, and symmetric about a,%b. Then the following
inequality holds

b
[reow(oax < min weodx. @D

' X—-a

f@g@ + w2l 2| g + mrl & s

a
m
If f is nonnegative (h, g; m)-concave function, then the following inequality holds:

w(x)dx. 2.2)

r X—-a

b
bl (b
Jrooweoax = max[f(a)g(a) + mf[;]g[;],ﬂb)g(b) el L

a
m
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Proof. Let f be a nonnegative (h, g; m)-convex function on [0, «). First, we have

e 2w e
and
f(a+b—x)=f[ub+mx_ai.
b-a b-am
From the fact that f is (h, g; m)-convex function, we have
My myam) =ty aos@ » miG= )l

and

b-x xX-aa b-x
f[b—ab+mb—aE]Shb—a][(b)g(b)+mh

x—al[
b-a

m m '

X

b b
b —_ _
[rooweoax = If[ oA m

ab
m w(x)dx

b
< j h[b ]/ ]g[ w(x)dx
- f(a)g(a)jh[u wOOdx + mf[ﬂ]g[ Ih WOdx
. b-a m
and
b by _
[rooweoax = J’f[ﬁb ¥ m;‘ . a% w(x)dx
b
<[ h[b:—x]/(b)g(b) + mh[g . Z]/ %]g % W) dx
b
a X—a
= f(b)g(b)jh[ w0 dx + mf[ ]g[a {h[m WOOdx.
Since w is symmetric, it is easy to check that
jh[ w()dx = _[h[ ]w(x)dx
Hence, we have
f b b f X-a
froomweoas < | r@g(@ + mp{2 o 2| fi 52 pocoax
and
b b X-a
J'f(x)w(x)dx < jh[m w()dx,

so the inequality (2.1) is proved.

DE GRUYTER

(2.3)

(2.4)

(2.5)

(2.6)

2.7

(2.8)
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Now, let us prove the inequality (2.2). For (h, g; m)-concave function f, the following inequality holds:
fx +m1 - A)y) 2 hDf (x)g(x) + mh(1 - Df(¥)g(y), VAE(0,1). 2.9)

Further, we use the substitutions:

= 2.10
e b—aa b—ab (2.10)
and
a+bh-x=2X,, X0, @.11)
b-a b-a '

to express f(x) and f(a + b - x) in forms suitable for applying the inequality (2.9). Hence, we obtain:

b [2
mgm

b — -
1002 Wy =% p@g@ + mifx =2

and

m

By integrating both inequalities over [a, b] and using the symmetry of w, we obtain:

}f(x)w(x)dx > | f@g@ + mi| gl 2] }h o |weoax,
}f(x)w(x)w > |rog® + mil =gl }h L Jweoax.
Therefore, inequality (2.2) follows by taking the maximum of the two lower bounds. 0
Remark 1. If we use (1.7), we obtain:
min@g@ + my| 2ol 2| rngs) + m o[ 2 -
< o222 |

so the Theorem 3 is the improvement of the Theorem 2.

Corollary 1. Let f be a nonnegative (h, g; m)-concave function on [0, ©), where h is a nonnegative function
on JCR, h#0, gis a positive function on [0,) and m € (0,1]. Let 0 <a<b < and f, g, h € Ly[a, b].

Furthermore, let w : [a, b] » R be a nonnegative, integrable, and symmetric about a%b. Then the following
inequality holds

b
[rooweoax
¢ (2.13)

1
> 2 w(x)dx.

: X—-a
'?bﬁ

f@g@ + mf 2l 2 rngmr « mpl & e

a
m
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Proof. We use inequality (1.8) with p =1 to obtain

max

4

fmmmﬁwmm+w&k&+wﬂ%H3}

m

bl (b
f@g@ + e g 2] rrg) + me| &g
(214)

1
Z_
2

Now we shall give the special cases of the Theorem 3 by using special classes of convex functions.

Corollary 2. Let f be a nonnegative (h — m)-convex function on [0, ©), where h is a nonnegative function
on JCR, h#0 and me€ (0,1]. Let 0<a<b <o and f,h € Li[a, b]. Furthermore, let w: [a,b] - R

be a nonnegative, integrable, and symmetric about a—;b Then the following inequality holds

X-a
b-a

w(x)dx. (2.15)

j’f(x)w(x)dx < min{f(a) + mf[%], Fb) + mf[%]] .j’h

If f is nonnegative (h — m)-concave function, then the following inequality holds:

w(Odx. (2.16)

}f(x)w(x)dx > max{f(a) + mf[%]’f(b) * mf[%” .Jb'h[%

Proof. We apply Theorem 3 for g(x) =1 to obtain the result. O

Corollary 3. Let f be a nonnegative h-convex function on [0, «), where h is a nonnegative function on | C R,
h#0. Let 0<a<b<w and f,h € Li[a, b]. Furthermore, let w : [a, b] ~ R be a nonnegative, integrable,

and symmetric about %b. Then the following inequality holds

b b
[rooweoax < (£ + o)) Jh[% W)X, 2.17)

If f is nonnegative h-concave, then the following inequality holds:

b b
[reoweodx < (f(@) + Fb) J’h[ﬁ wOOdx. 218)

Proof. We apply Theorem 3 for m = 1 and g = 1 to obtain the result. O

Corollary 4. Let f be a nonnegative m-convex function on [0, ®), for m € (0,1]. Let 0 < a<b < and

f € Lq[a, b]. Furthermore, let w : [a, b] -~ R be a nonnegative, integrable, and symmetric about %b Then the
following inequality holds

b b
1 . b a xX-a
J'f(x)w(x)dx < min{f(@) + mf[a], Fb) + mf[a]} -J’b — wOodx. 2.19)
If f is nonnegative m-concave function, then the following inequality holds:
r 1 b a ‘ xX-a
J'f(x)w(x)dx > - max{f(@) + mf[;], f) + mf[a]’ -jb —wO0dx. (2.20)
a a
Proof. We apply Theorem 3 for h(x) = x and g = 1 to obtain the result. O

The following corollary is the second Fejér inequality for nonnegative convex and concave functions.



DE GRUYTER Some new Fejér type inequalities for functions == 7

Corollary 5. Let f be a nonnegative convex function on [0, ©). Let0 < a < b < = and f € Lq[a, b). Furthermore,

let w: [a, b] —» R be a nonnegative, integrable, and symmetric about %b Then the following inequality holds

b b
+f(

Jrooweodx < M Jwoodsx. 2.21)
a a

If f is nonnegative concave function on [0, ), then the following inequality holds:
0 f@+fb) |
Jrooweodx > e Jweodx. 2.22)
a a

Proof. We apply Theorem 3 for m = 1, h(x) = x and g = 1 to obtain the result. O

3 Further generalization to the (h, g;a — m)-convex functions

In this section, we shall give the further generalization of the previous results to the class of the
(h, g; a — m)-convex functions (see [8], Definition 2.1. by setting ¢ = 0).

Definition 4. Let h be a nonnegative function on J CR, (0,1) CJ, h # 0 and let g be a positive function on
ICR anda, m € (0,1]. A function f: I - R is said to be (h, g; a — m)-convex if it is nonnegative and satisfies
the following inequality:

FOx + m(1 - Ay) £ hAOF G000 + mh(l - A9F)EW) (3.0)
forall A € (0,1) and all x,y € 1.

If we rewrite the aforementioned definition in the following form:

fx) < h|— y(a)g(a) +m- h[ [b X ]/ %]g[%] (3.2)
and
f00 < h[ ][(b)g(b) +m- h[l o b ]/ %]g =) 33)
then we have
| | R A
X-a x-al (a) (a
g m] ]/(b)g(b) eme -2} E]g[a]}

Theorem 4. Let f be a nonnegative (h, g; a — m)-convex function on [0, ), where h is a nonnegative function
on JCR, h#0,gis a positive function on [0, ) and a,m € (0,1]. Let 0 <a<b <o and f, g, h € Lya, b].

Furthermore, let w : [a, b] » R be a nonnegative, integrable, and symmetric about aZ;b. Then the following
inequality holds

(3.5

bl (b
f@g(@h + mf[a]g[a]lg, f(b)gb)L + mf[%]g % L,

>

If(x)w(x)dx < min
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where

w(x)dx

b b -
==

a

’ b-x)*
12=J'h1—[m

a

For a nonnegative (h, g; a — m)-concave function f, the inequality in (3.5) is reversed by using the maximum
instead of the minimum.

and

w(x)dx.

Proof. Let f be a nonnegative (h, g; a — m)-convex function on [0, «). Then we have:

f(x) <minjh %Z]ay(a)g(a) +m-hl1- I; : Z a][ %]g[%]
(3.6)
x-a) x-al (a) (a
(5= oo omofe- e W)
Now, since w is symmetric with respect to <=2 b , we have
L= jhl[ ] w(x)dx = _[h [—]a W(x)dx 3.7)
and
f b-x)* f x-a)
L= J'h 1- [m w(x)dx = jh 1- [m] wOOdx, 3.8)
so by using (3.6), we obtain
b b
) -x)* b-x\.[b) (D
_!f(x)w(x)dx < _a[mm Wi ]/(a)g(a) +m- h[l - [m Va]g[a]
x-a) ol (x-a)a) [a (3.9
h[[b - a] ][(b)g(b) Tm h[l [b - a] ][ m]g[m wOOdx

< min[f(a)g(a)ll + mf[%]g[%]lzyf(b)g(b)fl + mf[%]g[%]b],

which completes the proof of inequality (3.5).

Finally, if f is a nonnegative (h, g; a — m)-concave function, the inequality presented in (3.6) is reversed
with the maximum substituting the minimum. Consequently, the inequality in (3.5) is also reversed with the
maximum replacing the minimum. O

Remark 2. If we put a =1 in Theorem 4, then (h, g; @ - m)-convexity reduces to (h, g; m)-convexity, so the
inequality from Theorem 3 is obtained.

Corollary 6. Let f be a nonnegative (h, g; a — m)-convex function on [0, ©), where h is a nonnegative function
on JCR, h#0, gis a positive function on [0, ) and a,m € (0,1]. Let 0 <a<b <o and f, g, h € Ly[a, D).

Furthermore, let w : [a, b] ~ R be a nonnegative, integrable, and symmetric about %b Then the following
inequality holds

If(x)w(x)dx <

(f(a)g(a) + f(D)g(b)h + ml [ f[ ]g[ ]] ] (3.10)
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where

a

b
b -
L= Ih[[ﬁ w(x)dx

and
b

L= [n

a

a

w(x)dx.

b-x
1 _—
[b -a
For a nonnegative (h, g; @ — m)-concave function f, the inequality in (3.10) is reversed.

Proof. If f is nonnegative (h, g; a - m)-convex, we apply inequality (1.7) to the right-hand side of (3.5) to obtain

min

f@g@h + mf[%]g[%]lz,f(b)g(b)h : mf[%]g[%]lz]

b) (b
+fl—=lg| = |IE
f [m]g m]] ’
which concludes the proof of inequality (3.10). On the other hand, if f is nonnegative (h, g; @ — m)-concave
function, we use inequality (1.8) for p = 1 to obtain the assertion. O

>

1
< =
2

(f@g(@ + fB)g N + m[f[%]g

a
m

Remark 3. If we put a = 1 in Corollary 6, then (h, g; a — m)-convexity reduces to (h, g; m)-convexity, so the
inequality from Theorem 2 is obtained.

In the following result, we consider additional assumptions for the function h.
Theorem 5. Let f be a nonnegative (h, g; a — m)-convex function on [0, ©), where h is a nonnegative concave

function on JCR, h#0, g is a positive function on [0,) and a,m € (0,1]. Let 0<a<b< o
and f, g, h € Ly[a, b]. Furthermore, let w : [a, b] = R be a nonnegative, integrable, and symmetric about %”

Let us denote W = I:W(x)dx. Then the following inequality holds
1 r b-x
W-[[b -a
a
a) (a b)[b 1 : b-x
' ’"[f [+ [a]g[a]l h‘w J [1 5=

Iffis a nonnegative (h, g; a - m)-concave function and h is a nonnegative convex function, the inequality in (3.12)
is reversed.

(f(a)g(a) + f(D)g(b)h w(x)dx

b
Jrooweoax <=

(3.12)

a

w(x)dx

Proof. First, let us assume that f is a nonnegative (h, g; @ — m)-convex function and h is a nonnegative concave
function. After applying the integral Jensen inequality, we have the following inequalities:

b b
b-x|" 1 fb-x)"
L= {h[[m wx)dx < W- h W {[m w(x)dx (3.13)
and
b b-x)|" 1 b-x)"
L= {h[l - [m w(x)dx < W - h W : _{l;[l - [m w(x)dx |. (3.14)
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Now, after applying (3.13) and (3.14) to the inequality (3.10), we obtain

If(x)w(x)dx <

(f(@g(a) + fb)gb)L + m[ [ f[ ]g[ ]] l
=
R

Hence, the proof in this case is finished.

In the second case, we apply the Jensen’s integral inequality to the convex function h and derive the reversed
forms of inequalities in (3.13) and (3.14). Analogously, we use those bounds to the reversed version of the inequality
(3.10) to complete the proof. O

w(x)dx (3.15)

< % (f(@g(@ + fB)gD)) - h

w(x)dx ||.

In this section, we have established new Fejér-type integral inequalities for the class of (h, g; a — m)-convex
functions, thereby providing a comprehensive generalization of existing results within the framework of general-
ized convexity.

4 Conclusion

In this study, the several new Fejér-type inequalities for (h, g; m)-convex functions have been established.
In addition, the application of the new inequalities on various types of convex types of functions are shown,
such as (h - m)-convex, h-convex, m-convex, and nonnegative convex functions. Further, some new Fejér type
inequalities for (h, g; @ — m)-convex functions have been obtained. Our results generalize and extend classical
inequalities, offering broader applicability in the field of integral inequalities.

Acknowledgments: The authors sincerely thank the reviewers for their valuable comments and suggestions
that significantly enhanced this work.

Funding information: The authors state no external funding involved.

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and
consented to its submission to the journal.

Conflict of interest: The authors state no conflict of interest.

Data availability statement: Data sharing is not applicable to this article as no datasets were generated or
analyzed during this study.

References

[11 J. Bari¢, Lj. Kvesi¢, J. Pecari¢, and M. Ribici¢ Penava, Fejér type inequalities for higher order convex functions and quadrature formulae,
Aequationes Math. 96 (2022), no. 2, 417-430, DOI: https://doi.org/10.1007/s00010-021-00825-7.

[2]1 M. Jleli, Extension of Fejéras inequality to the class of sub-biharmonic functions, Open Math. 22 (2024), no. 1, 369-390, DOI: https://doi.
0rg/10.1515/math-2024-0035.


https://doi.org/10.1007/s00010-021-00825-7
https://doi.org/10.1515/math-2024-0035
https://doi.org/10.1515/math-2024-0035

DE GRUYTER Some new Fejér type inequalities for functions == 11

[3] S.S. Dragomir, M. Jleli, and B. Samet, On Fejér-type inequalities for generalized trigonometrically and hyperbolic k-convex functions,
Demonstr. Math. 57 (2024), no 1, 171-215, DOL: https://doi.org/10.1515/dema-2024-0001.

[4] M. E. Ozdemir, A. O. Akdemir, and E. Set, On (h — m)-convexity and Hadamard type inequalities, Transylv. . Math. Mech. 8 (2016), no.
1, 51-58.

[5]1 M. Andri¢ and J. Pecari¢, On (h, g; m)-convexity and the Hermite-Hadamard inequality, ). Convex Anal. 29 (2022), no. 1, 257-268.

[6] M. Andri¢, Féjer type inequalities for (h, g; m)-convex functions, TWMS J. Pure Appl. Math. 14 (2023), no. 2, 185-194, DOI: https://doi.
0rg/10.30546/2219-1259.14.2.2023.185.

[71 M. Andri¢, V. Culjak, D. Pecaric, ). Pecari¢, and ). Peri¢, New Developments for Jensen and Lah-Ribaric¢ Inequalities, Element, Zagreb, 2023.

[8] V. Liu, G. Farid, ). Pecari¢, J. Rod, M. Elamine, and S. Abdel-Khalek, Strongly (g, h; a = m)-convex functions and the consequent Hermite-
Hadamard-type inequalities, Appl. Math. Sci. Eng. 33 (2025), no. 1, 2471386, DOI: https://doi.org/10.1080/27690911.2025.2471386.


https://doi.org/10.1515/dema-2024-0001
https://doi.org/10.30546/2219-1259.14.2.2023.185
https://doi.org/10.30546/2219-1259.14.2.2023.185
https://doi.org/10.1080/27690911.2025.2471386

	1 Introduction
	2 Main result
	3 Further generalization to the (h,g;α-m)-convex functions
	4 Conclusion
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


