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Abstract: For subharmonic functions s in R, n > 2, there is an associated Radon measure u that is used to
represent s locally as an integral up to an additive harmonic function. We prove that the total measure u(R?)
is finite if and only if the subharmonic function s has harmonic majorant outside a compact set. However,
this relationship does not hold in higher dimensions.
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1 Introduction

Potential theory is primarily concerned with the investigation of subharmonic functions. Notable examples of
subharmonic functions are as follows:
Logarithmic potential: The function log|f(z)|, where f(z) is an analytic function in the complex plane.
Absolute potential: The function |f(z)|, where f(z) is an analytic function in the complex plane.
Newtonian potential: The function u(x) = -G,(x), where

1
Ix =yl
is the Newtonian potential with a singularity at the point y in three-dimensional space.

While the transition from the two-dimensional space R? to a higher-dimensional space R®, n > 3, might
seem logical, it introduces significant complexities. In particular, the existence of Green functions in R*, n > 3
but not in R? fundamentally alters the nature of potential theory. This distinction leads to substantial differ-
ences in the techniques and results employed in the study of potential theory in these two settings.

This note explores the relationship between Radon measures and subharmonic functions in R*, n > 2.
We prove the following: Two-dimensional case R% For a Radon measure y associated with a subharmonic
function s,

Gy(X) =

[ duey)
[RZ

is finite if and only if s has a harmonic majorant outside a compact set.
Higher-dimensional case R", n > 3: if

Indu(y)

is finite, then s has a harmonic majorant outside a compact set. However, we provide a counterexample to
show that the converse is not always true.
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2 Preliminaries

Let s(x) be a subharmonic function on an open, bounded neighborhood w of x in R% Then,

s() = [ Toglx - yldu(y) + hoo),

where h(x) is a harmonic function on w and u is the associated Radon measure to As(x) in the sense of
distributions. For n = 3, inR", the logarithmic kernel is replaced by the kernel -|x - y[**. When the neighbor-
hood w is extended to the entire R", the integral in the representation converges if and only if

[ 10gly1ducy)
1
is finite if n = 2; and if and only if

[yPrducy)
1

is finite when n > 3.

2.1 Harmonic measure of the point at infinity 2

What makes potential theory on R? differ so much from potential theory on R", n = 3?

The study of subharmonic functions on a bounded domain Q in R*, n > 2, has no bearingonn = 2orn = 3.
The problems are the same and methods of solutions are same whethern = 2 or n > 3. However the difference
comes to the fore when Q is unbounded; that is the point at infinity 20 belongs to Q when the topological

properties are considered on R™ = R™ U {2(}. Consider the Dirichlet solution on the unbounded domain |x| > 1

1

with boundary values 0 on |[x| =1 and 1 at 2. The solution is 1 - Xz if n 2 3; however, the situation is

different when n = 2. Here, log|x| is an unbounded positive harmonic function on |x| > 1. Consequently, if we
seek a bounded harmonic solution that is 0 on |x| = 1, the only such solution is 0. This is due to the maximum
principle applied to bounded harmonic functions on unbounded domains. We term this Dirichlet solution the
harmonic measure of the point at infinity 2. Thus, the harmonic measure of 2 is 0 if n = 2 and positive if n > 3.

The difference reflects greatly when we study the properties of subharmonic functions defined outside
compact sets in R" depending on n = 2 or n > 3. For example, if Q is a bounded domain in R*, n > 2, and if
$(x) is an upper-bounded subharmonic function on @ such that

limsups(x) < 0,
X—>YyE0Q

thens < 0 onQ ifn = 2 (aresult that can be used to deduce the Liouville theorem for analytic functions); not so

1

if n > 3 (example: consider the Dirichlet solution 1 - Xz in |x| > 1 mentioned above).

2.2 Riesz representation for superharmonic functions

Let Q be an open set in R", n > 2, and w be a relatively compact open set @ C Q. A lower semi-continuous
function s(x) on @, - < s(x) < o, s # o is superharmonic on Q if it has the mean value property for such
a function —As(x) = 0 in the sense if distributions. The fundamental solution F,(x, y) of the Laplacian in Q
is —~AF,(x,y) = 8y(x) where

F(x,y) = ¢log Xyl
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and

E(xX,y)=¢————n =3,
(X, y) nlx Zypt
where ¢, are constants.
For a superharmonic function s(x) on , since —As(x) = 0 in the sense of distributions, —As(x) represents
a Radon measure on Q. Therefore,

v00) = [RGy)due).

Then, Av(x) = As(x) on w so that A[v(x) — s(x)] = 0 on w, which gives

500 = [F0e.y)du(y) + hoo),

where h(x) is harmonic on w. This representation of s(x) on w as the sum of an integral using the fundamental
solution F,(x,y) and a harmonic function h(x) on w is known as the Riesz representation of the super-
harmonic function on w.

This representation is unique and h(x) is the greatest harmonic minorant of s(x); that is, if h(x) is
a harmonic function on w such that hy(x) < s(x), then hy(x) < h(x) on w.

For more details on the Riesz representation, refer [1,2].

The Weierstrass Theorem: The theorem states that there exists an entire function with arbitrarily pre-
scribed zeros a,, provided that in the case of infinitely many zeros, a, — « and no other zeros [3, p. 195].

Analogous theorem for subharmonic functions on R n > 2, can be proved.

Theorem 1. If 1 is a Radon measure onR™, n = 2, then there exists a subharmonic function s(x) on R" such that
As = u in the sense of distributions.

Proof. For the proof, we use a Runge-type approximation theorem for harmonic functions: Let u(x) : B,(0) - R
be a harmonic function, where B(0) = {x € R": |x| < r}. For any compact set K C B,(0) and any € > 0, there
exists an entire harmonic function v(x) : R® — R such that |u(x) - v(x)| < € on K.

Consider a random measure u on R", and for each integer m > 3, let u,, be the restriction to the annulus
m-1<|x|<m

Then,

tin () = [F6Y)d,()

is harmonic outside m - 1 < |[x| < m, where F, is the fundamental solution of the Laplacian in R™. It is known
that up(x) is harmonic for all x outside the support of u,,. Now, for each m > 3, we are given the existence of
a harmonic function vy, (x) defined on the entire space R" such that

[Un(X) = vm(X)| < 27"

on x| < m - 2. Therefore,

00

FOO = Y [um(x) = V()]

3
Each [u,(x) = vr(x)] is harmonic on |x| < M and
[Um(X) = vp(X)] < 27

on K. The absolute and uniform convergence ensures that

Z [Um(x) = v(x)]

m>M
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represents a harmonic function on K; and
M

2 [tn(x) = V(0]
3
represents a subharmonic function on K with associated measure p.
Thus, on K, f(x) is a subharmonic function with associated measure y. This means that on any bounded
open set w in R", f(x) represents a subharmonic function such that As = y on w. Since

| o yduey)

Lyl<2

is a subharmonic function on R", with associated measure inside |x| < 2, we obtain

S0 =0+ [ R y)due)
lyl<2

is a subharmonic function on R" for which As = u in the sense of distributions. O

Theorem 2. For any non-negative Radon measure | on an open set Q in R", n = 2, there exists a subharmonic
function s(x) on Q such that As = u in the sense of distributions.

Proof. By giving values 0 outside Q, the measure u can be considered as one defined on R". Then, apply the
proof of the above Theorem to conclude. ]

This result is often referred to as the converse of Riesz decomposition theorem. This converse has been
established in various settings: Brelot [4] originally proved the converse of the Riesz decomposition theorem
for mass distributions defined by continuous density functions, Arsove [5], (page 329) extended the proof to
cover the case of general Radon measures in open sets of R2. The theorem has also been shown to hold in the
more abstract setting of a Brelot harmonic space (locally compact spaces equipped with a sheaf of harmonic
functions satisfying specific axioms) ([6], page 75).

3 Finite total associated measures in R?

When studying harmonic functions near infinity (i.e., outside a compact set), a powerful technique is the use of
inversion. This transformation maps neighborhoods of infinity to neighborhoods of the origin, excluding the
origin itself.

3.1 Inversion

Consider the one-point compactification of n-dimensional Euclidean space, denoted as R™ Inversion is

a transformation defined within R™ (n = 2). For a point x, where x is neither 0 nor e, the inverse point x*

X

is given by x* = TXE" The inversion maps 0 to ® and ® to 0, see for example, Axler et al. [7], (pages 59-61).

A key property of inversion is that
* It preserves subharmonicity and harmonicity. If u(x) is a subharmonic (or harmonic) function defined

X

—2] is also subharmonic (or harmonic) in

outside a compact set in R" then the function v(x*) = u ]

a neighborhood of the origin, excluding the origin itself.
« It preserves monotonicity, that is, if f(x) and g(x) are functions on N\{0}, such that f(x) = g(x), then
() = f(x™) 2 g(x*) = g*(x*). Hence, the monotonicity: f > g implies that f* > g*.

For a set E in R", the set E* denotes the set of all inverses of points in E.
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3.2 Total associated measure

Consider a subharmonic function s(x) defined on R? with associated measure . If the logarithmic potential

[ 10g1x - ylduey)
[RZ

is finite at even one point, then s(x) can be decomposed into the sum of a logarithmic potential and a harmonic
function on R?. Additionally, the total associated measure u(R?) is finite. In particular, this occurs when the
integral

[1ogly1ducy)
1

is finite.

In this section, we will investigate the following: For a subharmonic function s(x) in R% under what
additional conditions, beyond the known sufficient condition above, is the associated Radon measure u(R?)
finite? The following lemma provides an answer to this question.

Lemma 1. For a subharmonic function u(x) defined outside a compact set K in R?, the total associated measure
p(R¥K) is finite if and only if u(x) has a harmonic function that dominates it outside a compact set.

Proof. Let u be a subharmonic function defined outside the compact set K in R2 Let p be the associated
measure of u such that p(R%/K) < o, Then, the inversion u* of u is a subharmonic function on N\{0}, where N
is a bounded neighborhood of 0. Moreover, the associated measure p* of u* is given by p*(4) = p(4") for any
compact set A in N\{0}.

Define the Radon measure o on R? by a(4) = p*[(N\{0}) N A] for any compact set A. Then, the measure
o has compact support and o({0}) = 0. Moreover, the function

s(x) = [ loglx - yldo(y)
IRZ

is subharmonic on R2 Consequently, there exists a harmonic function h(x) = s(x) on N. Note that s(x) =
u*(x) + v(x) on N\{0} for some harmonic function v(x) (locally the associated measures of the subharmonic
functions s(x) and u* are the same, which implies that v is harmonic). Therefore, h(x) > u*(x) + v(x) on N\{0}.
By inversion, we have u(x) = u™(x) < h*(x) - v*(x) in a neighborhood of infinity, proving that u(x) has
a harmonic majorant near infinity.

Conversely, given a positive real number r, define u*(x) as the inversion of u(x), where u(x) is subhar-

monic on the punctured disk w = {x : 0 < |x| < %}. Since u*(x) - h*(x) < 0 on w, there exists a subharmonic

extension s(x) to {x : |x| < %} with associated measure p*. Note that p*(E) = p(E*) for any compact set E in w,

and p*

1], .
x| < ;] is finite.

Applying the inversion process once more, we find that

pOx: X > 1) < pr

1
X:|x] <=
r

Since p*

[x] < %] is finite, it follows that p(x : |x| > r) is also finite. This completes the proof. O

Theorem 3. For the subharmonic function s on R? with associated measure u, the total measure u(R?) is finite
if and only if s has a harmonic majorant outside a compact set.

Proof. Since u is a Radon measure, the theorem follows from the previous lemma. O
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Corollary 1. Let s be subharmonic on R? with a finite total associated measure. If u is any subharmonic function
on R? such that u(x) < s(x) outside a compact set, then the total associated measure of u is finite.

Remark 1.

(1) A related study can be found in Arsove’s work [8], where he conducts a comprehensive investigation of
subharmonic functions of potential-type on R2 by utilizing the characteristic function and associated order
of such functions. Additionally, Brelot [9] has achieved similar results using series expansions.

(2) In the context of a Brelot harmonic space Q without positive potentials, Bajunaid et al. [10] explored the
properties of superharmonic functions that possess a harmonic minorant outside a compact set within Q,
without relying on the concept of associated measures. Their research culminates in a Riesz-type decom-
position theorem for these superharmonic functions.

4 Study inR",n >3

In R®, n 2 3, the condition
Jye-duy)
1

being finite is sufficient but not necessary for y(R" to be finite. To illustrate this, we consider a specific
example in three dimensions, using the terminology of superharmonic functions instead of subharmonic
functions for convenience.

A non-negative superharmonic function s(x) in R? can be expressed as

1
—d h(x),
in—y|”@)+(”

where h(x) is a non-negative harmonic function and y is a Radon measure proportional to —As(x) in the sense
of distributions. The term
1

|x =yl

P = [ ———du@)

[RB

is referred to as the potential part of the superharmonic function s. The integral is well-defined (not identically
equal to infinity) for any Radon measure p if and only if

IM

ppr D1

is finite. To show that the mentioned theorem in R2 does not hold in R3, it suffices to construct a Radon
measure g on R3 such that

dp(y)
Wl

is finite and [ du(y) = .
lyl>1 R?
Construction: Let i be the Radon measure on R", n > 3, defined as follows:
M u(x: |xl < 1) =0,
(2) for x with x| =r > 1, let
1
uix: 1 =rh = o,

where 0 < a < 1 and the total measure — is uniformly distributed on |x| = r.

rita
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(3) Let S, be the surface area of the unit ball in R™.

Then,
duy) _ (11
I |y|n—2 = S"Irn—z ri+a riidr < oo,
ly>1 1
Therefore, Rnﬁdu(y) is a positive superharmonic function on R". However,

0

1
URM) = SnI 2 r-ldr = oo,
1
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