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Abstract: We define the weighted Orlicz-Lorentz-Morrey and weak weighted Orlicz-Lorentz-Morrey spaces to
generalize the Orlicz spaces, the weighted Lorentz spaces, the Orlicz-Lorentz spaces, and the Orlicz-Morrey
spaces. Furthermore, necessary and sufficient conditions for the boundedness of the Hardy-Littlewood max-
imal operator, generalized fractional integral, and maximal operators on the weighted Orlicz-Lorentz-Morrey
and weak Orlicz-Lorentz-Morrey spaces are given, based on the exploration of properties of Young functions,
B, weights, and B, .. weights. Specifying the weights and the Young functions, we recover the existing results
and we obtain new results in the new and old settings.
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1 Introduction

For a function p : (0, ©) — (0, ), the generalized fractional integral operator I, is defined by

If(0) = I” (i yf,)ll)f(y)dy, xR, (1)
where we suppose that
1
j@dt <o, 12)

0

and there exist 0 < C < o, 0 < K; < K, < o, such that

sup p(t) < C_[ &dt r>o0, (1.3)

r<t<2r Kir

where (1.2) is necessary for the integral in (1.1) to converge for bounded functions with compact support and
condition (1.3) was taken into account in [1]. The operator I, was studied in [2,3] to extend the Hardy-Little-
wood-Sobolev theorem to Orlicz spaces, and the boundedness of the operator I, on Orlicz-Morrey spaces was
considered in [4]. If p(r) = r% 0 < a < o, then I, is the usual fractional integral operator I,. Particularly, (1.3)
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holds if p satisfies the following doubling condition (2.15). I, was studied in [5] on the Orlicz-Lorentz spaces.
For instance, the operator I, is bounded from expL? to expL?, where expL? is the Orlicz space L® with

_ 1/exp(1/tP), if 0<t<1,
® = [exp(tl’), if t>1, 14
and
a+1 3
) = 1/(10g(1_/r)) , %f 0<t<l, a0, (15)
(logr)«1, if t>1,

0<p,q<o,-1/p +a=-1/q (see also [6]).
We also investigate the generalized fractional maximal operator M,. For a positive function p on (0, »),
the operator M, is defined by

p(r)
M,f(x) = su
b/ () XEB(E,r) |B(a, ’”)lB

[ 1reonax, (1.6)

(a,r)

where the supremum is taken over all balls B(a,r) containing x. The operator M, was studied in [7]
on generalized Morrey spaces, and the boundedness of M, on Orlicz-Morrey spaces was investigated in [4].
If p(r) = |B(0, r)|¥", a > 0, then M, is the fractional maximal operator M,. M, has been investigated in [5] on
the Orlicz-Lorentz spaces. Specially, M, is the Hardy-Littlewood maximal operator M for p =1, and M was
studied in [8] on the weighted Lorentz spaces. Although it is well known that

Mo(f)(x) = CL(1fDO

and the boundedness of M, can be obtained from one of I,, we have a better estimate of M, than I,.
In this article, we consider the generalized fractional integral operator I, and the generalized fractional

maximal operator M, on weighted Orlicz-Lorentz-Morrey spaces A>(w) and weak weighted Orlicz-Lorentz-
Morrey spaces A*?=(w). We give necessary and sufficient conditions for the boundedness of I, and M, on

A>%(w) and A»®>(w). The Orlicz-Lorentz-Morrey spaces contain LP spaces, Orlicz spaces, weighted Lorentz
spaces, generalized Morrey spaces, and Orlicz-Morrey spaces as special cases. The weak-type spaces have also
similar properties.

We organize this article as follows. In Section 2, we give some necessary definitions of the related func-
tions and function spaces. The main results, Theorems 3.1-3.3, are shown in Section 3. In Section 4, the
properties of Young functions, weighted Orlicz-Lorentz-Morrey, and weak weighted Orlicz-Lorentz-Morrey
spaces are given. The proof of the main results is stated in the Section 5.

Throughout this article, we agree on the convention that the expressions of the form 0 - «, and %, ; are

equal to zero. Given 1 < p < «, denote by p’ its conjugate index that is % + % = 1. The symbol f! (resp. 1)

indicates that f is a non-negative non-increasing (resp. non-decreasing) function in R ;. Note that the constant
C, unless otherwise specified, may differ from one occurrence to another.

2 Preliminaries

Let (X, 1) be a o-finite measure space and M (X, 1) be the space of all y-measurable real-valued functions
on X. The decreasing rearrangement f: of f€ M(X, u) is defined by equality [9]

f:(t) = inf{s : )l}’(s) <t}, t=0,
where

AS)=x €X:|f(0)]>s}, s20
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is a distribution function of f. The function w : R" - R, orw : R, - R, is called a weight function, or simply
a weight, whenever w is Lebesgue measurable, not identically equal to zero, and integrable on sets of finite
measure. If w is a weight on R, then we denote W(t) = J';w(s) ds, and we always have that W(t) < o, t > 0.
If (X, 1) = (R", udx) or (X, u) = (R+, udx), where u is a weight on R" or R, then we denote Af = A}‘,f: =fr
and u(E) = u(E) for every Lebesgue measurable subset E of R" or R.. Particularly, if X = (R", dx), we denote
fi =f*and A = A

Let L5, .(w) be the cone of all non-increasing functions in LP(w) = LP(R, wdx), 0 < p < . For the Hardy
operator A defined by

A0 = < froat
0

Arifio and Muckenhoupt [10] gave a characterization of the boundedness of A : L{,.(w) - LP(w) in terms of
the inequality on w called condition B,. Recall that w € B, whenever there exists C > 0 such that

L) r
w(x)
rPIde < CJW(X)dX, r>0.
r 0

Carro and Soria [11] obtained similar characterization of boundedness of A : LY..(w) - LP*(w) showing
that A is bounded whenever w € B, , i.e., there exists C > 0 such that if p > 1, then

-’ 1y’ r 1/p
w()dx Iw(x)dx
0

r

J

0

<Cr, r>0,

X
1
;{W(t)dt
and if p < 1, then
17 Cy
ﬁ‘(l;w(x)dx < ;{W(X)dX, 0<s<r.

It is worth indicating that B, = B, » if p > 1. Soria [12] found a characterization of the boundedness of
A LEZ(w) - LP>(w) on w called condition By ., that

Boc

oo =B,, p>0.

For other characterizations of By, B, ., we refer to [8,13,14].
Let 0 < p, q < ». We say that f € M(X, u) belongs to the Lorentz space LP4(X) [9,15] if
1/q

< o0,

I fllzracx) =

K de
Jarr o
0
For 0 < p < =, the space LP-*(X) is defined as a class of M (X, i) such that
1 fllpexy = sup tVPf 7 (1) < oo,
>0

where we agree on the convention that t/7 = 1 for p = . If (X, g) = (R, u(x)dx) or (X, &) = (R, u(x)dx),
we use the notation LP9(X) = LP9(u).

0 1/q
Let w be a weight on R.. Using the notation ||g||Lq[dy] = [Io g dyy] , following [8] or [16], define for
5
0 < p, q < o the weighted Lorentz space AY%(w) as a class of f € M(X, u) such that

Ao v
1fllgson = I lrsenr = || 3] [ weorae <o,
0

s
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and the weighted Lorentz space AY”(w) consisting of f € M(X, u) with

¥ ’
fllgeany = I llrey = supy| [ wiodt| < oo,
y>0 0

Denote Ab(w) = ARP(w). Note that if 0 < p, g < o, then AY%w) = AL(W), where w = W»~w. We know [8, The-
orem 2.2.5] that A%(w) is normable, i.e., there exists a norm in A%(w) equivalent to the expression I a2
if and only if p 21 and w € B, and A%”(w) is normable if and only if w € By. If (X, w) = (R", u(x)dx),
we denote AR(w) = AP(w) and Af(w) = AP(w).
For an increasing function @ : [0, ] — [0, ], let

a(®) =sup{t=0:®(t) =0}, b(®) =inf{t=0:d(t) = oo}, 2.1)

with convention inf@ = o and sup@ = 0. Then,
0 < a(®) < b(D).

Let ® be the set of all increasing functions @ : [0, ©] — [0, «] such that

0<a(®) <o 0<h®)< oo, 2.2)
lir(r)1 @(t) = ®(0) = 0, 2.3)
t_’ +
@ is left continuous in [0, b(®)), 2.9
if b(®) = oo, then lim ®(t) = ®() = oo, 2.5)
t—o0
if b(®) < o, then lim ®(t) = ®(b(D)). 2.6)
t=b(®) .

In the following, if an increasing and left continuous function @ : [0, ©) — [0, ) satisfies (2.3) and lim;_,®(t) = o,
then we always regard that ®(«) = « and that ® € ® (see also [4]).

Definition 2.1. For ® € & and u € [0, «], let

inf{t 2 0: &) > u}, u€ [0,),

o, u= o,

>l(u) = @7

Suppose ® € ®. Then, ® is finite, increasing, and right continuous on [0, ©) and positive on (0, «).
If @ is bijective from [0, ] to itself, then &' is the usual inverse function of ®. Moreover, if ® € ®, then

O(dY(u)) < u < dYd(u)), VYueE o, 2.8
For its proof, see [17, Proposition 2.2].

The notation ® ~ ¥, for ®, ¥ € @, indicates the existence of a universal constant C > 0 independent of all
parameters involved, so that

ClP(t) < ®(t) < C¥(t), VteE|0,x].
We write ® = ¥, for @, ¥ € @, if there exists a positive constant C such that
®(Ct) < B(t) < d(Ct), VteE 0, ]
Then,
O=Y o yl.yl 2.9
(see [17, Lemma 2.8].)
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Now, we recall the definition of the Young function and give its generalization.

Definition 2.2. A function ® € ® is called a Young function (or sometimes also called an Orlicz function) if ®
is convex on [0, b(®)). Let @y be the set of all Young functions. Let ®y be the set of all ® € ® such that ® = ¥
for some ¥ € ®y.

The classes @y and ®y\®y are nonempty. For instance, let

t, if0<t<a,

= 3 - > 2.10
o ift>a ®,(t) = max(0,t3-8), t=0, (2.10)

D4(t) = [

and

et ifo<t<,

®y(t) =
(0 e if > 1,

(211)

where @3 is not convex near t = 1. Then, ®; and ®; given by (2.10) are in ®y, but ®; given by (2.11) is in ®y\®y.

Orlicz and weak Orlicz spaces on a measure spaces (Q, 4) are defined as follows: for ® € ®y, let L*(Q, u)
and wL®(Q, u) be the set of all measurable functions f such that the following functionals are finite,
respectively:

”f”L‘D(Q’y) = lnf[)t >0 I@l@]dy(x) < 1],
Q

| fllwzece, = infis > 0 sup DO (1) <1
te(0,e)

Then, ||*[l;2@ and ||-[lye@,) are quasi Banach spaces. If ® € dy, then L*(Q, 1) is a Banach space. For
O, ¥ e Dy, ifd =V, then
L¥(Q, u) = L¥(Q, 1)
and
WLP(Q, u) = wL¥(Q, w),

with equivalent quasi norms, respectively.
For a Young function @, its complementary function is defined by

_ sup{tu - ®(u) : u € [0, »]}, t € [0, ),
®(t) = o,

t= oo,

Then, @ is also a Young function, and (®, ®) is called a complementary pair. The following inequality holds:

t< oD () <2, t>0, 2.12)
which is [18, (1.3)]. We indicate that for ® € ®y, the function & is defined to be the function ¥, where ¥ € @y
and ¥ = @,

Definition 2.3.
(i) A function G : [0, »] — [0, o] is said to satisfy the A4,-condition, denoted by G € 4,, if there exists
a constant C such that

G(2t) < CG(t), ¥t > 0. (2.13)

(i) A function G : [0, ) — [0, ) is said to satisfy the V,-condition, if there exists a constant k > 1 such that

D(t) < %(D(kt), vt > 0. 2.14)
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(iii) A function G : [0, ©) — [0, ) is said to satisfy the doubling condition if there exists a positive constant C
such that for allr,s > 0,

160

<—72<

cSoe =C

<

w | =

<2 (2.15)

[NCHI

for

(iv) A function G : [0, @) — [0, ©) is said to be almost increasing (resp. almost decreasing) if there exists
a positive constant C such that for allr, s > 0,

0(r) < CO(s) (resp. B(s) < COH(r)), forr<s. (2.16)

In this article, we take into account the following class.

Definition 2.4. [4] Let G%¢ be the set of all functions ¢ : (0, ©) — (0, ®) such that ¢ is almost decreasing and
that r » ¢(r)r" is almost increasing, i.e., there exists a positive constant C such that, for all r, s € (0, ),

Co(r) =2 ¢(s), o(r)r < Co(s)s”, ifr<s.

Remark 2.1. [6, Proposition 3.4] Let ¢ € G, Thus, there exists ¢ € G9€¢ such that ¢ ~ ¢ and ¢ is continuous
and strictly decreasing. Furthermore, if

lri§g¢(r) = o, }gg ¢(r) =0, (2.17)

then @ is bijective from (0, «) to itself.
Given ® € ®y and a weight w on R, the Orlicz-Lorentz space AS(w) (resp. Aﬁ‘“’(w)) [19-25] is the set of
f € M(X, u) such that for some A > 0, we have I)((;’W()lf ) < o (resp. I;?j;';(/lf ) < o), where

19,(f) = [GUFrOm@Od,  (resp. I{(f) = sup GUFOW (D)),
0

>0
and we let

f

I

We will assume further, without loss of generality, that the weight w vanishes on the interval [u(X), ) if
u(X) <. When w i and @ € ®y, ||*||s5) is @ norm [26] and when W € Ay, ||*[|xgqyy and ||[,g=, are quasi-
norms. If (X, u) = (R, dx), we denote AG(w) = AS(w), A7"(w) = AS*(w), and if w = 1and (X, u) = (R™, u(x)dx),
then AS(w) = L6(u), which are Orlicz spaces.

For a measurable set G € R", we denote by |G| its Lebesgue measure. B(a, r) is the open ball centered at
a € R" and of radius r. In the following, we give the definitions of the Orlicz-Lorentz-Morrey spaces and the
weak Orlicz-Lorentz-Morrey spaces.

, f , w
||f||A§{(W) = 1nf[£ >0: I)?,W <1t |resp. ||f||A§,w(W) = infje > 0 : I)?jw

£

Definition 2.5. For @ € ®y, a function ¢ : (0, ©) - (0, «), a weight function w on R ., a function f: R* — (0, «),
and a ball B = B(a, r), let

1 fllo,6,w,p = infid >0 : @[%] <1
A gy(W)
and
: X
||f||d>,¢,w,B,weak =infiA>0: (I)[TB <1y,
1,00
gy w)

where the weight ¢; on R" is equal to Let the weighted Orlicz-Lorentz-Morrey spaces A>%(w) and the

_1
Bl
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weak weighted Orlicz-Lorentz-Morrey spaces A>%“(w) be the set of all measurable functions f on R" such that

1flls240wy = SUpl|flle,o,w,5
B
and

1f1l 002wy = SUPI|fllo.p,w,B,weak
B
is finite, respectively, where the supremum is taken over all balls B in R".

Clearly, we have

(o] * B
1l = ind > 0 : I‘D[%W]W(t)dt <1 19)
0
and
A/ﬁ(}g(f)
I f1l®,6,w,5,wear = inf{s >0 : st1>1§)<13(t)W 5013 <1}, (2.19)

where r is the radius of the ball B and y; is the characteristic function of B.
Obviously, A>%(w) and A>?*(w) are quasi-Banach spaces if W € A,. Furthermore, we indicated that, for
O, ¥ e Py, if®=Y and ¢ = ¢, then

I(w) = APV(w), A»P<(w) = APV=(w),

with equivalent quasi-norms.

If w=1, then A%w) = L>? and A>%“(w) = wL>?, which are Orlicz-Morrey and weak Orlicz-Morrey
spaces in [4]. If ¢(r) = 1/r", then A>?(w) = A%(w) and A>?*(w) = A>*(w), which represent the Orlicz-Lorentz
and weak Orlicz-Lorentz spaces. If ¢(r) = rA/4"VP @(t) = t?and w(t) = t4/P~1, then A»?(w) = M, 5 ,, which are
Morrey-Lorentz spaces in [27] and [28]. If ¢(r) = 1/r", ®(t) = tP, then A>#(w) = AP(w) and A>H=(w) = AP=(w),
which take the weighted Lorentz and weak weighted Lorentz spaces. If w=1 and ¢(r) = 1/r", then
A29(w) = L* and A>?=(w) = wL®, which stand for usual Orlicz and weak Orlicz spaces. If ®(t) = tP, w =1,
1 < p < «, then the spaces A»%(w) and A»®>(w) are reduced to the spaces LP? and wLP%, which are general-
ized Morrey and weak Morrey spaces, respectively. Orlicz spaces were investigated in [29,30]. Weak Orlicz
spaces were studied by, for example, [31-33]. Morrey spaces were introduced by [34] and were generalized in,
i.e., [35-38]. Morrrey-Lorentz spaces were studied in [27] and [28]. Orlicz-Morrey and weak Orlicz-Morrey
spaces were explored in [6,39-42]. For other kinds of Orlicz-Morrey spaces, see, e.g., [7,43-46]. Recently, a kind
of generalized Orlicz-Morrey space Mg, was defined in [47] and when w = 1, v(x, r) = 1 and u(x, r) = ¢(r)r",
then A®9(w) = M§,. Weighted Lorentz spaces and weak weighted Lorentz spaces were studied in, e.g.,
[10,11,14,16,48].

3 Main results

We first consider boundedness of the Hardy-Littlewood maximal operator on weighted Orlicz-Lorentz-Morrey
spaces and weak weighted Orlicz-Lorentz-Morrey spaces.

Theorem 3.1. Let ® € @y, ¢ € G, andw € Bj «, W(0) < . Then, the Hardy-Littlewood maximal operator M
is bounded from A>®(w) to A>%“(w). Moreover, if ® € V, and

{ [W(t)]w(t)dt jcb[ T )]W(t)dt < CW(s), s>0, 3.1)
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then the Hardy-Littlewood maximal operator M is bounded from A>%(w) to itself and if ® € Vs,

1 r
-I.W 1[%](.“ < Cm, 0<r<oo 3.2)

and

J=supW- 1(r)W[l] (3.3

r>0

then M is bounded from A>%=(w) to itself.

Remark 3.1. (1) Since Theorem 3.1 shows a sufficient condition of the boundedness of M on the weighted
Orlicz-Lorentz-Morrey spaces, it can be considered a kind of generalization of [10, Theorem 1.7], where
a characterization of the boundedness of the operator M on the weighted Lorentz spaces AP(w) is given.

(2 Ifw=1and ® € 4,, then w € By and (3.1) hold. Indeed, (3.1) establishes from the fact that deV,
which implies that there exists a p; > 1 such that tP1/®(t) is almost decreasing and the following estimate:

[@
N
It can also be explained by [49, Theorem 2.1]. If w = 1 and ® € V,, then (3.2) and (3.3) hold. Indeed, for the same

reason, in light of the fact that ® € V, which yields that there exists a p, > 1 such that ¢P/®(t) is almost
decreasing, it follows that

1~
@(h) <I>(h)

= P1=2dh <
% dh = W ——hP1"%dh Cp1 1

ORI R
b -

w(t)dt = s

_S
w(o)

© ) 1 © tp2

J; w 1[%]‘“ -[ (1) t2 e
P th 1

S*Id’(t) Edt

CI@(r) tP2

r
*Com ~ Wy’

which implies (3.2). Thus, Theorem 3.1 extends [4, Theorem 3.3] from Orlicz-Morrey spaces and weak Orlicz-
Morrey spaces to weighted Orlicz-Lorentz-Morrey spaces and weak weighted Orlicz-Lorentz-Morrey spaces,
respectively. The aforementioned theorem is also an extension of [6, Theorem 6.1].

The next theorem discusses sufficient and necessary conditions of the boundedness of the operator I,
on weighted Orlicz-Lorentz-Morrey spaces and weak weighted Orlicz-Lorentz-Morrey spaces.

Theorem 3.2. Let ®, ¥ € Oy, ¢ € G, Assume that p : (0, ©) — (0, «) satisfy (1.2) and (1.3).
() If w € By, w(0) < o and there exists a positive constant A such that, for allr € (0, «),

P(t) 3.4)

B qrort o P(t)q,(t)wlﬁ]qu % dt < AP % ,
e o) (vl

then for any positive constant C, there exists a positive constant C, such that, for all f€ A>%(w) with
1 f1l 22wy # O,

L)
Gl flls2w)

Mf(x)

, X€ERM (3.5)
Coll f1l 29w
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Thus, 1, is bounded from A29(w) to A$=(w). Moreover, if ® € V, and there exists a positive constant B such
that, for allr € (0, »),

r 0
t t
[2ater|—1 |+ 20w ipumar < Be|—— | (35)
1 1
0 W[W] W[W]
then for all f € K**(w) with || f||po=(y) # 0,
I
oSO | | MO | g 37
Cill fll 0= Coll f 1l

Hence, if ® € V, and (3.1) holds, then the operator I, is bounded from A*%(w) to A*#(w) by (3.5), and if ® € V,,
(3.2) and (3.3) hold, then I, is bounded from A*%“(w) to A”¢*(w) by (3.7).

(ii) If W € A, and I, is bounded from A29(w) to A¥$>(w), then there exists a positive constant C such that,
forallr € (0, ),

r
t 1 1
j@dtqﬂ < cw|———| 3.8)
1 1
: W[%] W[%]
Furthermore, under the assumption that there exists a positive constant C such that, for all r € (0, ),

[ 1) | 1 s
Je ¢(s)W[¢(s)]¢> WGn) W[¢>(r)r”

if I, is bounded from A>#(w) to A*%*(w), then (3.6) holds.

s ds < Co(ryrn, (3.9)

Remark 3.2. The aforementioned theorem is an extension of [4, Theorem 3.4], which is corresponding to the
case of w = 1. It is also generalization of [6, Theorem 7.3].

The following theorem shows sufficient and necessary conditions of the boundedness of the operator M,
on weighted Orlicz-Lorentz-Morrey spaces and weak weighted Orlicz-Lorentz-Morrey spaces.

Theorem 3.3. Let ®, ¥ € Oy, ¢ € G4, p : (0, ©) -~ (0, »).

(i) Assume that w € By ., w(0) < o, and lim,,¢(r) = 0, or that LMO)

w(t)

is almost decreasing on (0, «). If there

exists a constant C > 0 such that, for allr € (0, »),

1 1

sup p()®|————| < CV Y| ———|, (3.10)
o<tsr 1 1

w ¢(r)] W[¢(r)]

then, for any C, > 0, there exists C; > 0 such that for all f € A>®(w) with f# 0,
M, f(x

ﬁ < M’ X €RM (3.11)
Gllf ||A‘1’-¢(W) Gl f ”A(M(w)

Hence, M, is bounded from A29(w) to A»9=(w). If, moreover, ® € V, and for allr € (0, ),

sup p(O)P (W (P(r)) < CY YW p())), (3.12)

0<t<r



10 =— Hongliang Li DE GRUYTER

then for all f € A>%>(w) with f # 0,

My f 00 Mf(x)
GllF Lo Coll fll o=

Consequently, if ® € V, and (3.1) holds, then the operator M, is bounded from A*%(w) to A*#(w) by (3.11), and if
® € V,, (3.2) and (3.3) hold, then the operator M, is bounded from A>*=(w) to A**“(w) by (3.13).
(i0) If M,, is bounded from A*?(w) to A**=(w), then (3.10) holds.

, XER™ (3.13)

Remark 3.3. (1) According to (1.3) and (3.4), we have that

Kzr
1 t 1 1
sup p()@! < _[?dtcp-l <cyl|—|,
o<tsr L L L
W[¢<r>] ° W[¢(r>] W[¢(r>]

which yields (3.10). If p(t) = (In(1/r))™® for smallr > 0 or p(r) = (Inr)* witha = 0, then (3.10) is strictly weaker
than (3.4).

(2) The aforementioned theorem is an extension from Orlicz-Morrey spaces [4, Theorem 3.5] to weighted
Orlicz-Lorentz-Morrey spaces. It generalizes the results in [17,50,51] as well.

4 Some properties of the Orlicz-Lorentz-Morrey spaces

In this section, we give some properties of weighted Orlicz-Lorentz-Morrey and weak weighted Orlicz-Lorentz-
Morrey spaces.

Lemma 4.1. Let ® € &y and ¢ € GY. Then, for any ball B = B(a, ),

||XB(a,r)||A“"v¢’(w) ~ HXB(a,r)”A(D"p’m(W) ~

1|

Wl
Proof. First, we claim that if B N B(a,r) # @ and B N B(a, r)¢ # &, then

”XB(a,r) lle.p.w.p < max : 41)

sup HXB(a,r)”‘P,(P,W,B’ sup HXB(a,r)”‘I’,QW,B
BCB(a,r) BDB(a,r)

Indeed, let B = B(x,R) with BN B(a,r) # @ and B N B(a,r)t # &. Let B; = B(a,R), and thus, |B| = |By|.
If R < r, then by (2.18),

(XB(a,r)nB)*(¢(r)|B|t)
A

”XB(a,r) ”dn,qﬁ,W’B = inf

/1>O:].;CD
0

w(t)dt < 1]

<inf

w(t)dt <1

A>0: ]i(p[ (XB(a,r)ﬂB1);(¢(’")|Bl|t)
0

s ||XB(a,r)||CD,¢,W,B1-
Analogously, if R > r, we also have

||)(B(a,r) | |d>,¢,w,B < ||X3(a,r) ||<1>,¢,W,Bl .
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So (4.1) follows. According to the definition of ||-||,»¢,, and (4.1), we have

HXB(a,r)”Aq""’(w) = Sup”f”fb,aﬁ,W,B
B

= max; Ssup HXB(a,r)”‘D,(b,W,B’ sup ”XB(a,r)“‘P;QWvB]
) BDB(a,r)

BCB(a,r
X

=max] sup {infjA: H@[M] < 1y,

BCB(a,r) A A})B(W)

X
x sup {infjA : thlm] <1
BDB(a,r) A A;)B(W)
1

= maxj sup p

~ 1T ,»Su
R<r @ 1{[W(w)] 1} R>r o1

1
| B(a,r) |
W(¢(R) | B(a,R) I)]
Note that ¢ € G%°, which implies
o(r)rt < Co(s)s", r<s.

Hence, for R > r,

1 < 1 1
1 1
o TBO.01 Q™ — 5o |
WGwm Ban] W) ® 1
B 1B@R W[%]
Therefore,
1
“XB(a,r)”Ad"‘D(w) ~
o1
1
W[¢(V)]
In view of (2.19), by the same token,
1
||XB(a,r)||A®’¢'°°(w) ~ .
! O

o)
If ||-]] : M(X, 1) — [0,+>] is a positively homogeneous functional and E = {f€ (M, ) : ||f|| < =},
we define the associate norm by

, fEMEX, .

11l = sup[jv(x)g(xndu gl sLg€E
X
The associate space of E is then E’ = {f € M(X, p) : ||fllg < } (see [8, Definition 2.4.1]).

Lemma 4.2. Let ¢ : (0, ©) — (0, ) and (3.1) hold. Then, there exists a positive constant C such that for all
f € A>%w) and for all B = B(a, ),

1
|B|

1

1]
;_[lf(x)ldx < C¢(")W[M]‘D 1 ﬁ I f1lo,6,5,w-

o)
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Proof. By [52, Theorem 3.1], we know
(W)Y = Mz,
where |||l is defined as

”f“Miw = ||S(f:)“L5(W);

where for a weight w in R., the operator S is defined on the nonnegative measurable functions on R.
as follows:

SN = g Jros
0

If letting (X, u) = (B, ¢(r) I 5 Idx) we obtain
B(?.[r)lf(X)ldX o(r )If(x) ¢(r)|B|dX < Ol | N, - 2
Note that
1, i0<s<——,
(XB)Z(S) = o(r)

0, otherwise.

Thus, by (3.1),
Jasemamead < c[agomwoa,
0 0

for all balls B C R". Since the modular inequality is stronger than the norm inequality, we obtain that
sl < ClICG YLy
for all balls B C R". And thus by the fact that || f||x2u) = I flle,¢,5w, We obtain that
RHS of (4.2) < CONOtp Nl l 3y |1/ sty

1
< Cor)——F— 1f 1w

1

~ ¢(")W[¢( )]q)— ] I fllo,g.w, by (212).

Wl 90

Lemma4.3. Letd € Oy, ¢ : (0, ®) — (0, ©) and w satisfy (3.2). Then, there exists a positive constant C such that,
for all f€ A>$>(w) and for all B = B(a, ),

ﬁf £ 00lax < COUW @M Slho, g, weak
B

Proof. First, let ® € Y U Y®. Assume that || f|lo,g,w,pweax = 1. If b(®) < @ and t € [b(P), ®), then A¢(t) = 0
For a ball B(a, r), let

= O (W HP(r))).
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Then, ®(ty) = W (¢(r)) € (0, ). Thus, t; € (a(P), b(P)). Hence,
b(®) b(D)

j| FOOldx = J—Afj@(t)dt < tlBl + [ 2g,0dt.

0}
But

b(®) b(®)

J Agy, (DAt < I w- [@2 )]¢(r)|B|dt since || f]lgs=qy =1

ty to

< CBlo(r) v
< C|B|to.

W<c1><r y By G2

Combining this and (4.3) yields that

[1reolax < 3.
B

Second, let ® € Y®. By [4, Remark 4.2 (ii)], for any 0 < § < 1, there exists ®; € Y® such that
Dy(8t) < O(t) < Oy(t), t € [0, ).
Therefore,
5O (w) < &' (w) < ¢ (w),
and according to the definition of ||-||o,¢,w,8, weak, W€ Know
6||f||<1>1,¢,w,3,weak < ||f||d>,¢,w,B,weak < ||f||<1>1,q>,w,B, weak *

By the first case, we obtain

ﬁ_}[lf 0Oldx < COT WP fllw 60,8, weake < CO W US| fllo 60,8, weak /6,

which induces the conclusion by letting § — 1.

Lemma 4.4. Let ¢ € G¥, w € By, and (3.1) hold. If f € AO(w), suppf N 2B = &, and B = B(a, ), then

1
Mf(x) < Cop(r)w ] Iflloany, for x € B,

i
o(r)
W[%

where C only depends on ®, ¢, and w.

Proof. Let x € B’ with a radius r’. If r’ < - then WJ— Jf()|dy = 0. Since w € By, the function

tW(1/t)d?

t

is almost increasing and satisfies the doubling condition. Thus, if r > r/2, by Lemma 4.2 and ¢ € G%,

1 -1
IBI |f(Y)Idy<C¢(r)||f||¢¢Bw [¢(r,)]q’ [W(ﬁg)

13

4.3
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C¢(Y’)W[ ¢( )](I’_ ] ||f||<13,¢,B’,W-

W[¢(r>

Hence,

o1
Mf(x) < C¢(r)W[ pr= )]cp

If ||Aq”¢(w)'
¢(r>]

W)
The lemma is proved. O
Lemma 4.5. Let ® € @y, € G, and w satisfy (3.2) and f € A>%*(w). For aball B = B(a, 1), if supp f N 2B = &,
then
Mf(x) < COY WSSl @e=w), for x € B,

where the constant C; depends only on @, ¢, and w.
Proof. For any ball B’ € x whose radius is s, if s < r/2, then IB,|f(x)|dx = 0.If s > r/2, then by Lemma 4.3 and
¢ e gdec’

Ilf Wldy < CO WIS fllpo=awy S COWHAEM fllsoo =)

B

since @ Y(W(¢(r))) is almost decreasing and satisfies the doubling condition. O

5 Proofs of main results

5.1 Proof of Theorem 3.1

Without loss of generality, we may assume that ® € ®y. Let f€ A>%(w) and ||f]| wouy = 1. Let B = B(a, 1),
f=f +fy h = fop and

1
|kB|§(r)’

axg =

For the weak case, we need to prove that
IMf | o=y < C,
i.e,, for any ball B = B(a, r),
1M llo,6,w, B, weak < C.
First, prove that
|Mf; llo,p,w,B, weak < C. (5.1
Since @ is convex, by Jensen’s inequality, we have

S(Mf, (X)) < M(D(f))(0),
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and thus,

9 ]

IPMF) b=y < IM@UDNatew < € H[A@(ﬁ))*][ai]

LM (w)
The condition w € B; . implies that

A Lig(w) - LV,
and we have

ap

< C ||(@(f )

H[A@(ﬁ”*][;]

LY(w) L'(w)

=C (¢(ﬁ(w))*[a48]
L' (w)

< C (@St fllo,g,,28)*

o)

<C (@(ﬁ(w||f||@,¢,w,w>>*[g]

L'(w)

, since w € By yieldsthat W € 4,

L'(w)
< C |[((@( S| —
azp L'w)
<C.
Thus, by convexity of @ for C > 1,
H@[@] < g <1,
¢ o €
if
C=z¢C,
which deduces (5.1). Let
1 1
A = o(r)W|——|o7! .
o(r) wl
(]
Next, prove that
”Mfé”@,(b,w,B,weak <C. (52)
Since w € B; . and w(0) < o, we obtain
wr) C,0<r1<oo, (5.3)

Thus,

al e G o W[L]
o)

"5
o(r)
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1
1
W[%]
1 [ 1
< W|——|, by (2.8)
1 o)
W[%]

=1.

" L]
<P W[q&(r) , by (5.3)

(5.4)

Then, by Lemma 4.4, the fact ||f, ||»,,, < 1 and (5.4),

e

o CArxp ]

G Agrw) H [ G

Agy (W)
Adryp (t)

= sup B(t)W|——
P OWN Bl

“of et
G o(r)

<1

Thus, by (5.1) and (5.2),
IMf llo,0,,8, weak < CUIMS, ||o,p,w,8,weak + IMF; |lo,,w,B,weak ) < C.

For the strong case, let f € A>®(w) and ||f]| 9w = 1. We need to prove that

|Mf | oy < C,
i.e, for any ball B = B(a, ),

1M lo,6wp < C. (5.5)
First, prove

1M llo,p,w,8 < C. (5.6)

Indeed, since ® € V,, by [53, Theorem 1.2.1], there exists 0 < a < 1 such that ®* is quasi-convex. Thus,
1
NIPMFXEaL o) = 1R (Mfixp))" AL )

1
= |PUMfi )l
A

) 5.7)
< CIM@ ) yec)

1/a
<C

[A(¢“(ﬁ))*][a43]
Ll/a(w)

Noting that w € B; . which implies w € By;,, we obtain
A LY%(w) - LYo w).
Thus, we have

1/a

RHS of (5.7)<C H(qaa( fl))*[4]

ag IR
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<C (q>(]g>)*[a43]
L'(w)

=C (d>(ﬁ(w)>*[a43]
LY(w)

<C (q’(ﬁ(23)||f||¢,¢:w’23)*[a43]

L'(w)

< C ||(@(fall fllw,g,w,28))*

, since w € By yieldsthat W € 4,

Qp

L'(w)
<C ((I)(fj(ZB))*[_]
Do)

<C.

Thus,
H [M@XB] sgsl,
€ Mg €
if
C=cC,

which deduces (5.6). Similarly, to prove (5.2), we may verify
Mfy]lo,6w.8 < C.
Hence, by (5.6) and (5.9),
IMfllo.pw.p < CUIMS llogws * IMfllo.gws) < C,

which implies (5.5).

-_— 17

(5.8)

(5.9)

Next, assume that f € A»®>(w) and ||f]| o=y = 1. Subsequently, we verify that the the norm inequality

|Mf| .0y < C,

ie., for any ball B = B(a, r),
||Mf||¢,¢,w,B,weak <C.

Let f=f, +f,, fi = ftop- Since @ € V,, there exists 0 < a < 1 such that ®* is quasi-convex. Thus,

1
120 = (@O,

1
= 19" I,
Agyon

1
S CMQ@ I,
¢p W

1/a

<C H[A(CD“(fi))*][—]
ap Ll/n,m(w)
Noting that w € By », which implies w € By},  [12], we obtain

A LIS (w) - LVax(w),

*
[aB

Thus, similar to the estimate of (5.8), we have

RHSof (511) < C

Co

[fl

LM (w)

(5.10)

(5.11)
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which implies that

IMF;|1,9,,8, weak < C. (5.12)
Next, consider Mf,. Let

Dy = oW H($(M)).
By Lemma 4.5,

ixs

H [ CDrXB
A (w)

A;;(m

Dr
-4 7] W[%]

- 1 1 1 ]
@(wwmmﬂﬂw

NH

-

~ 1
—1mmﬂﬂJ

<

, by (33)

~ I ~.

IA
=

if I 2 J. Thus,
”MféH@,Qw,B,weak < CS];

which combining (5.12) concludes the proof. O

5.2 Proof of Theorem 3.2

We need the following lemmas to prove Theorem 3.2 (i).

Lemma 5.1. [43, Proposition 1] Let p, 7 : (0, ©) — (0, ). Assume that p satisfies (1.3) and 7 satisfies the doubling
condition (2.15). Define

A(r) = J'&dt r € (0, ®),

Kr

Then, there exists a positive constant C such that, for allr € (0, ©),

Z F(2ir) < C_[ LOPY (513)
Jj=-o
Y p@ine@in <c| w. (5.14)
j=0 Kr

Proof of Theorem 3.2. (i) By assumption (2.17), we may assume that ¢ is bijective from (0, «) to itself. By (3.4)
and the fact that lim,....¢(t) = 0, there holds that

0< ‘[@dtqﬂm) < w0, (5.15)
0
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Let || fllg¢y = 1 and x € R™. We assume that
0 M

0

M)

0

and 0<®

Otherwise, there is nothing to prove. If (=~ M (X)

Mf(x)
Co

) = 0, then by (2.8) it follows that
< &0) = sup{u = 0 : ®(u) = 0}.

Then, taking use of (5.13), (5.14), and (5.15), we obtain

s Y [ 2D

n
]:'°°21<|x y|<21+1 | y|

2
<25 [ oy

J==|x-y|s2i1

< c{@dth(x)
< c_[@dtqu@ < CU(0) < cw—l[cp M”
t Go
which yields (3.5). If CD(Mf (X)) > 0, we can choose 0 < r < o such that
1 _[ww)
1 C (5.16)
wl-L 0
o)
Let
< AQIr)
5= ]_Z_m oy | o,
x-yl<2/*tr
p2r)
Z oy | o,
[x-yl<2/*lr
Then,
|Ipf(x)| 5]1 +]2-
By (5.16) and (2.8), we have that
Mf(x) < Co®™
1
W[%]
Then, using (5.13), we have
], < _[p(t)dth( ) < jp( 1| — L
1
W[%]
Thus, by Lemma 4.2,
<C 21 2 I W
]go r)¢( r) [¢(2]+1r)]
¢(2’*1r)
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In view of ¢ € G%°, w € By, and ® € dy, it follows that the function

1 1
F(t) = ¢(t)W[—]6D‘1
o(t) 1
W[%]

satisfies

1  F()

CFs =C
if

1/2<r/s<2.

Thus, by (5.14),

[ P® 1), o 1
J S ng(p(t)Wl%]@ : [—

dt.
1
woi]

1
1
W[%]

1
w 1
Cagn) 1

1
L e W[W]
W (g

and &1

Therefore, by (3.4), the doubling condition of ¥

and (5.16),

1
1
W[%]

<Ccy!

<CY 9

and

10! 1) | 1
JZSCITMW[%]@ =l
far W50

1

<yl ——
w( ¢(K1r))

< Clp—l L
1
W[W

Mf(x)

<Ccy e
Go

Combining the estimate of J; and J, with (2.8), we have (3.5).
The proof of (3.7) is similar to the one of (3.5) except that we use Lemma 4.3 instead of Lemma 4.2 to
the evaluation of J,. We omit the details. O
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To prove Theorem 3.2 (ii), we need the following three lemmas.

Lemma 5.2. [54, Lemma 2.1] There exists a positive constant C such that, for all R > 0,

p(t)

I 7 WaornX) < Chltpop)(0,  x €R™
0

Lemma 5.3. For ® € @y, ¢ € G%, and W € Ay, let

1

1 b
o)

1
= W|——|o7 > 0.
g(r) = ¢(r) [ W)] r
If (3.9) holds, then
g(') € A¥(w).
Remark 5.1. When w =1, (3.9) reduces to

r

[olopesnlsmds < corm, 0 <r <.
0

Since ®(d7'(s)) < s, for s > 0,Lemma 5.3 improves [4, Lemma 5.4].

Proof. For any bhall B = B(a, r),

T q)[ (g<|'|)x3)*(¢(r)|B|t>]
S
0

(& (o, (P(r)|BID)
é

w(t)dt < jcp w(t)dt
0

o
0

< %I@(g(s))w[
0

EO) Mo, (G
é

w(t)dt

st | ns"1 ds
ot jo(ryr"
sn

o(r)rt

n
Sop(ryr"
e}

6

< ]s"‘lds

ch(g(s»w[
0

<<,

if
§ > nC,.
Thus,

g(h € A>%(w).
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(517

(5.18)

O

Lemma5.4. Let ® € dy, ¢ € G¥, and g be defined as in (5.17). Then, there exists a positive constant C such that,

for allR > 0,

T (gt
J’P( )f( )thBw,R)(X) < CLg(NMx), xERM
2R
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Proof. Note that g(2-) ~ g() and if x € B(0, R), then |x - y| ~ y| with y & B(0,2R). Therefore,
X —_—
LEw= | AUx = yDeD

_ n
R™MB(x,2R) x =yl

_ I P8 (Ix -y ay

R™B(0,2R) |y|"
(gD

o Y

R™MB(0,2R)

e
tn

dt,
2R

which completes the proof. O
We continue to prove Theorem 3.2 (ii). On the one hand, by Lemma 5.2 and the boundedness of I,,

we obtain

r
p(t)
J 57 a0 50y S Wiz 422y S Wz sy

By Lemma 4.1 and the doubling condition of ! , we obtain

1
1
W[%]

;
t 1 1
I@dtqﬂ <oyl ——
1
W[W] W[¢(r>]
On the other hand, by Lemma 5.4, the boundedness of I,, and Lemma 5.3, we achieve that

oDt
tn

At|Xp(o,ryzllaro= < [Ta8llaro < Cliglles < C.

Taking into account Lemma 4.1, the doubling condition of & [11 ] and (3.9), we have
()

@qb() [W)] A cwf 1
’ W[w] W[%]

We complete the proof. O

5.3 Proof of Theorem 3.3

() Let || fllpr¢qyy = 1 and 0 < Mf(x) < e. To prove (3.11), we only need to show
Mfx)

, X €B(a,r).

p(r) |B(a 1 j If(Y)Idy<C1‘P‘[

We consider two cases:

(5.19)

oot

T
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or

Mf(x)
Go

1
< —yl
A

‘P‘lld)

e

For (5.19), by Lemma 4.2, || f||s#¢.,, = 1, and condition (3.11), we obtain

(r)®1

_[ |f()’)|dy<||f||¢¢BW¢(r)W[¢( )]

p(r)
|B(a r)| 1
Wit

1 -1
_¢(r)W[¢( )]‘P

W)

A G

1 _[
<=yl

For (5.20), since w(0) < « and w € By «, we know W(t)/t < C. Thus,

Mf(x)
Go

‘I"l[CD <yl

ie,

L] ' (5.21)

If lim,_o¢(r) = 0, then since
1}1—1

1
W[%]

is almost decreasing with respect to r € (0, ®), by (5.21), there exists ¢y € (r, ©) such that

Mf(x 1
‘P‘l[CD % =yl —) (5.22)
° W)
Hence,
4 1
— 1 - Mf(x) — Mf(x)
Wi WHRCER)  wi@h)

0<ssto ol DH(D( Mf(x))) G

p(r) < sup p(s) <A =A <A Mﬂx)
W5
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If gf((:)) is almost decreasing, then by (3.10),
g1t
_ M) _ M
)] wi@dl)  wiedl)
pry <A = YD Mf(x) < Mf(x)
o CIGED) A
1
W[¢<r>]
Thus,
1 Sl M)
B

To verify (3.13), it is enough to use Lemma 4.3 instead of Lemma 4.2 since other parts are similar to the
proof of (3.11).
To prove Theorem 3.3 (ii), we state the following lemma.

Lemma 5.5. [17, Lemma 5.1] Let p : (0, ©) — (0, ). Then,

sup p(t)XB(o,r)(X) s Mp(XB(o,r))(X)) x€RY,r>0.

o<tsr

Proof of Theorem 3.3 (ii). By Lemma 5.5 and the boundedness of M, from A2¢(w) to AP=(w), we obtain

sup P(t)]||)(3(o,r)||/\““¢v°“(w) < [|MoXpo,m 1a29=wy < 1Xaco,r lla»4w) -

0<t<r

Thus, Lemma 4.1 yields (3.10). |
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