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Abstract: In this article, we consider a class of Kirchhoff-type equations:

-la + bI|Vu|2dx Au = f(x,u), x€Q,
Q

u=0, X € 0Q.

It is a generalization of the classical wave equation and is often used to model wave propagation in various
physical media. The nonlocal term b(fQ|Vu|2dx)Au in the equation causes the variational functional of
the equation to have fundamentally different properties from the case of b = 0. As far as we know, there
are relatively few conclusions regarding infinitely many solutions of this equation. Under weaker assumptions,
we obtain that the equation has infinitely many high-energy solutions. And our results extend the conclusions
of Mao-Zhang (2009) and Zhang-Perera (2006).
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1 Introduction and main results

This article is related to a class of Kirchhoff-type equations:

-la + bI|Vu|2dx Au = f(x,u), x€Q, @
2

u=0, X € 0Q,

where Q is a smooth bounded domain in R¥ (N = 1, 2, or 3),a, b > 0 are constants, and f(x,u) : @ x R - R is
a continuous function. The equation is a generalization of the classical wave equation, capturing more com-
plex wave phenomena such as dispersion and dissipation. It was initially formulated by Kirchhoff to address
the limitations of the simple wave equation in describing wave propagation in acoustics [1]. It is connected
with the stationary analogue of the equation:
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where p denotes the mass density, u is the displacement, Py is the tension at the initial moment, h represents
the cross-sectional area of the elastic string, and E and L denote Young’s modulus for the material and the
length of the string, respectively [2]. Equation (1) is particularly important for understanding waves in media
with varying properties, such as density and elasticity, which are common in seismic wave propagation and
the vibration analysis of structures.

In physics, Kirchhoff-type equations find applications in various fields. In solid mechanics, they model the
vibrations of elastic bodies, considering both the material’s inertia and its elastic properties. In fluid dynamics,
they describe the behavior of surface waves under the influence of gravity and surface tension. In addition,
these equations are integral to the theory of general relativity, where they predict the propagation of gravita-
tional waves. By accounting for additional physical effects, Kirchhoff-type equations enhance our predictive
capabilities for wave phenomena across different physical contexts [3].

It was not until Lions [4] proposed the following: Kirchhoff equation:

a2 )

o a+bj|Vu|dxAu=f(x,u), XEQ
Q

u=0, X € 0Q

that equation (1) received increasing attention in mathematics, where a, b > 0 are constants and f(x, u)
describes the external force. For nontrivial solutions, Pei and Zhang [5] obtained a nontrivial solution by
combining a variant version of the mountain pass theorem with the moser-trudinger inequality fora = b = 1.
Song et al. [6] derived a nontrivial solution by applying the classical linking theorem and the G-linking
theorem. By the morse theory and the minimax method, Sun et al. [7] computed the critical groups including
the cases where zero is a mountain pass solution and the nonlinearity is resonant at zero. As an application,
they demonstrated the multiplicity of nontrivial solutions for (1) when f(x,u) = g(x, u) + |ul* "2, where
g(x, u), an additional critical nonlinear term, satisfies certain conditions. Some results about nontrivial solu-
tions of (1) can be found in [8-10] and the references therein.

Cheng and Wu [11] used the variational method to prove the existence of two positive solutions of (1), one
dealing with the asymptotic behaviors of f(x,u) near zero and infinity, and the other addressing the 4-
superlinear of f(x,u) at infinity. Yang and Zhang [12] used invariant sets of descent flow to obtain two
solutions of (1), a positive one and a negative one. Zhang and Perera [13] assumed

VE(x,t) < tf(x,t), for x€Q, [t| =L >0, v>4 )

and obtained a positive, a negative and a sign-changing solution of (1) by invariant sets of descent flow. Later,
Mao and Zhang [14] assumed F(x, t) = %f(x, t)t - F(x,t) —» +o, as [t| » +oo uniformly in x € Q, |f(x, t)|° <

CE(x, t)|t|°, for |t| large, o > max{l, %}, and obtained at least one positive, one negative, and one sign-changing

solution of (1).
Moreover, Shuai [15] combined the constrained variational method with the deformation lemma to obtain
a least energy sign-changing solution, whose energy is strictly larger than the ground state energy. By using
analytical skills and a non-Nehari manifold method, Tang and Cheng [16] proved that (1) has a ground state
sign-changing solution, whose energy is strictly larger than twice the ground state solutions. Liu et al. [17]
discussed the existence of a positive and a negative solution by using an iterative technique and the mountain
pass theorem, and a sign-changing solution by combining the iterative technique and the Nehari method.
In the present article, we assume:
(f) fx, £) = o(|t]), as |t| — 0 uniformly for any x € Q.
(f;) There exist constants C > 0 and p € (4, 2) such that

IfO, O < CQA + e,
where 2* = +o0 for N=1,2, and 2* = % for N > 3.
() f(x,-t) = -f(x, 1), for (x, £) € Q xR.

(f) F(Z;’ 2N +oo, as [t| = +oo uniformly for x € Q, where F(x, t) = _[;f(x, s)ds.




DE GRUYTER Infinitely many solutions for a class of Kirchhoff-type equations = 3

() E(x,t) = }j(x, )t — F(x,t) > +, as |t| - +o uniformly in x € Q, and there exists C > 0, ¢ > max{l, %},

such that |f(x, t)|° < CE(x, t)|t|°, for |t| large.
(D tf (x, t) 2 4F(x, t), for (x,t) € Q x R.
Our main results are as follows.

Theorem 1.1. If the assumptions (f;,)-(f;) hold, then equation (1) admits infinitely many high-energy solutions.

Remark 1.2. Assuming uf(x, u) = 0, conditions (f,) and (f;) are weaker than those in [13] (specifically com-
pared to (2)). Examples of functions satisfying (f,) and (f;) but not (2) include
E]
8 b

fOGw) = wdIn(d + Jul)or F(x, u) = [ul* + (u - 4)|ul*~¢ sin®

u
where4<y<2*,0<£<3—5.

Corollary 1.3. Under the assumption of (2) and infyeg jy-1F (X, w) > 0, we can certify that (1) has infinitely many
high-energy solutions.

Remark 1.4. Our results generalize the results of [13] and [14]. Our assumptions are weaker than those of [13],
but the number of solutions we obtained is greater than those in [13]. In [14], Mao-Zhang obtained three
solutions of (1), and we have infinitely many high-energy solutions.

Theorem 1.2. If assumptions (f})-(f,), and (f;) hold, then equation (1) has infinitely many high-energy solutions.

The article is organized as follows. Section 2 gives some lemmas to prove the theorems. Lemmas 2.1 and 2.2
are devoted to proving the functional corresponding to (1) satisfies the (PS), condition. Section 3 proves
Theorems 1.1 and 1.2.

2 Variational framework and lemmas

Let H = H}(®Q) be a Hilbert space equipped with the inner product and norm

1

2

(u,v) = _[Vu -dx, |yl =
Q

[wupax
Q

1
P

LP(Q) (1 < p < =) be the normal Banach space with the norm |u|, = [fg|u|l’dx . Since Q is a bounded domain,

according to the Sobolev embedding theorem, H = L(Q) continuously for s € [1, 2*], compactly for s € [1, 2*).
Moreover, for any u € H, there exists a constant 7, > 0 such that

[uls = ngllul]. ®

We choose a countable orthogonal basis {e;} of H with||e]| =1,i=1,2,.... Set

k )
X; = spanfe}, Vi = ©X;, 2k = ©X;. @
i=1 i=k

Meanwhile, a weak solution is the critical point of the functional
2

a b

d(u) = — | |Vuffdx + —

o) ZQ uftdx +

[1wupax
Q

- jp(x, wydx,
Q
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and for anyu,v € H,

(@), v) = (a + b||u||2)IVqudx - If(x, wyvdx.
Q Q

In this article, C and C; in different positions denote different positive constants.

Theorem 2.1. ([18], Fountain theorem) Let X be a Banach space, and let {X;} be a sequence of subspaces of X with
dimX; <  for all i € N. Moreover, let X = ®2.X;, Y = ®,X; and 7, = @2, X;. Consider an even functional
I € CY(X,R), ie, I(w) = I(-u). Assume for every k € N, there exist p, >y, > 0 such that

(ID ay = maxyey, juj=p, (W) < 0,

(I) by = infyez u|j=y, [(W) = +o, ask = =,

(I3) 1 satisfies (PS), condition for every ¢ > 0.

Then I has an unbounded sequence of critical values.

Lemma 2.1. Assume that (f)), (f;), (f), and (f;) hold, then ®(u) satisfies the (PS). condition for ¢ > 0. That s,
any sequence {u,} C H satisfying ®(u,) — ¢ > 0 and ®'(u,) — 0 as n — +oo, has a convergent subsequence.

Proof. Following the standard approach, we need to prove that {u,} is bounded and that it contains a con-
vergent subsequence.
If {up} is unbounded, assume ||u,|| = +%, as n - +o. We have

1
c+1+ ||un” 2 q)(un) - Z(q)/(un); un)

_a 2 1 -
- 4 _g[lvunl dx + E[ 4f(X: un)un F(X; un)]dx

a ~
= P + [FCx uax.
Q

Then

a ~ ~
¢+ 12 il =l + JEo, wax > [Ex, upax. 5)
Q Q

Letv, = then ||vy|| = 1, meanwhile by (3), |vnls < nl|val| = n,, for any s € [1, 2*). Note that

Iu Il

@) ) _ a o ff O uundx

[|ull* [lunl[? lual*
then asn — +o,

F O, up)up

noved [l

=b. (6)

Next we certify that b = 0, which will lead to a contradiction. For 0 < a < f§ < +oo, let
On(a,B) ={x € Q:a < |u(x)| < B}
For large n and a < 8, we have

J’f(x un)un .[ F O, un)un un)un J’ &, un)un un)un .[ F O, un)un un)un

dx. 7
li* Tl N Tl @

0n(0,0) On(a,B) On(B,+)

. FOx, up)un FOx, up)un O upun
Subsequently we will prove J 0u0.) [l dx - 0, »[On(aﬁ) T dx - 0, and 0B +) ] dx —

as n — +o, respectively.
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F& up)un
On(B,*%0)  |ux|l* dx =

an integer Ny > 0 such that ||u,|| 2 1 if n > N,. For o > max({l, g}, let 7=

First, we prove J -0, as n— +oo. ||[uy|| = + as n — +o shows that there exists

then 7 € (2, Z)anda-—

o
By (f;) and B — +,
.[ FO wUn J' |f O un)| V2
gy | < IVASSIL Y
On(B,+) [[unll OB, ) |unl|[tn]| [tn]|
} :
1 X, Up)|° 1
S I |f(|u |Gn)| dx T I |Vn|TdX @)
|| n” On(ﬁ,+°°) n || n” On(ﬁ,'*'w)
3 1
¢ y 1
< F(x, uy)dx v [Tdx
T R i

On(B,+e) On(B,+)

1 2

For (8), we will certify [ ¢ F(x, un)dx] is bounded and [ )|vn|de] -0, as f§ — +oo,

llunl? -[On(ﬁ'ﬁm) llunl? IOn(/-‘? +oo

By (5), then

c+1
F dx
an|mWI“””
1 1 ) ) 9)
>—— [ Fooupdx+ —— [ Fooupde+ —— [ Fooudx.
T T T
0y(0,a) On(a,p) On(B,+*)

By (9), T ||Zj'l-"(x up)dx is bounded. To establish that F(x, up)dx is bounded, we must prove

[[un IIZIO (B, +o)
1
T2 Ion(o a)F(x up)dx and ||un\\2-[0 @ ﬁ)F(x, uy)dx are bounded.
By (), for all € > 0, there exists § > 0 such that

|f(Xs un)| < 5|un|; (10)

as |uy| < 8. By (fy),

If O u)| < C+ CluglP™t < [C + Cap 7| P, (11)
as |up| = 6. By combining (10) with (11), we obtain
|f (X, un)| < €lun| + [W + C] [unlP™ = eluy| + Gy [unlP?, (12)
where C; = = + C. Then
£ C
FOt un)l < 2 Tl + =~ P (13)
p
Therefore, for [u,| € [0, a),
. 1
[F(X, up)| < Zlf(x, Un)|tn| + [F(X, Un)|
G & G
<7 |unf* + 1 [UnlP + 2 [unf* + D |UnlP (14)
<G lunl* + Gy Jugf?
< Gy |unl,

where C, = max

8, ap C1], G =GO+ a).
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By (14) and (3),

Lo ] B uax

- [ mwpax=c | i
Tl
0n(0,0)

2
H "” 0n(0,0) 0x(0,0)

<G fIviax < il = Con?,
Q

then

F(x, u,)dx is bounded. The boundedness of

o IIZIO ©.a) F(x, u)dx can be proved in the same

llun ||ZIO (a,B)

way. Therefore F(x, up)dx is bounded.

> |[unl IIZIO (B, +)

2
In the following, we will prove [ +w)|Vn|TdX] - 0,as f — +o,

1
llunl? -[On(ﬁ,

According to the Holder inequality, for any 7 € (2, 2*), § — +, letq > 0 be a constant such that% €(0,1),
by (3), then

T T
q q

1 q
] mrers el [ guna | [
M 0u(B,+) M\ 0u(8,+) On(B,+%)
—: T
< [[unl[ g 1[vl[*1On(B, +e0)I 7
E
On(ﬁ’+oo) 1

[l

(15)

20
¥ unfe

Letr =0,
g(r) =inf{F(x,u) : x € Q,u € R, |u| > 1},

o EOw)
SB = inf]—=—2~
P = in P

:er,ue[R,as|u|<B].

(f;) implies that g(r) —» +o asr - +, and g(a) > 0, SE > 0 for large a > 0. Moreover, for any x € O,(a, B),

F(x, un) 2 SE [unl?. (16)

Meantime, Io 5, +m)1-"(x Uy)dx = g(ﬁ)M g(B) » +o as B — +x and the proven boundedness

llunl?
| On(B, +
IIMnII2

llunl?

F(x, up)dx, imply

of Wjon(ﬁ,+w) - 0 as f — +o. By (15),

— J [vp|fdx —» 0, as B — +oo,
[|unll
On(B,+)

F& up)un

then Jo g ey fult

dx in (8) converges to 0, as n — +o,

fx, un)undx

llunf*

Second, we will prove I ouap) - 0, as n — +o, By (12), for |uy| € [a, B), |f (X, uy)||un] < € |unf?> +

Ci(&)|unlP < Cy |unf?. By (16),

fx, un)undx < I Cy |unf?

F(x, up)dx.
(] lJunll* ||un||4s”’ I "

On(a,B) On(a,B) @ Ona,p)

As the estimation of (14), for |u,| € [a, B), F(x, u) < Cs |uy/?, then

[y apfO0 s [ G lmPaxs [csuapx < G,
o On(@,) °
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: = . 1 -
that is, Ion(a,B)F(X’ u,)dx is bounded. Then mo (_!;B)F (X, u)dx - 0, as n— +w. So as n — +o,
O up)un N
-[On(a,ﬁ) [l dx 0.
Finally, we will demonstrate [, a)f (l’l‘l’l"‘"‘zu"dx -0, as n —~ +o. By (f)), |f(x, u)| < G/|ul, and by (3),
FO upug

J' |f O, un)l g < J’ Gy |up? C7'722

1 4 4 s X =,
[|tn]] [ ttnl| [lunll* lunll

On(0,a) On(0,a) On(0,a)

asn — +o, Hence, by (6) and (7), we have b = 0. This is a contradiction with b > 0. Therefore, the assumption
[|lup|| = +oo is invalid, {u,} is bounded.

Subsequently, we will prove {u,} has a convergent subsequence. Taking a subsequence of {u,}, as well
called {u,}, such that u, = u in H, u, —» u in L3(Q) for s € [1,27), u,(x) - u(x) ae. x €ERN, as n - +»,
According to (®(u,) - ®(u), u, - u) » 0 and

(®w0—®ﬁ&un-w=k+bIWWﬁh
Q

IVunV(un - w)dx -
Q

a+ b [[Vupdx
Q

IVuV(u,, - w)dx
Q

- Jrocw) - o6 W), - wax
Q

= (@ + blfun|P)llun = ul = b

[wupax - [vu,ax
Q Q

IVuV(un - u)dx
Q

- Jroow) - o6 W) - wax,
Q

then

(a + bl|un|P)|[un = ul* = (@(up) ~ (W), uy — u) + b

Iqulzdx - I|Vun|2dx
Q

IVuV(un - w)dx
Q

Q a7
+ (Pon ) = £O6 W)y - wx.
Since {u,} is bounded and u, — u, t;:en
b [1vuP ax ~ [ vunPax| [ vuviun — wax = blulP - )W, - w =0, a®)
2 2 2
for n — +oo, In addition, by (12),
J(roc u) = £06 w)a - wx
o
< JaFoo unl + 106 WDy - uldx
2
< I(s(lunl + Jul) + G ((unlP™ + [ulP~))lun ~ uldx
) ! (19)

IA

: !
{ﬁwﬁhl IMM4[ﬁw—uWM'

Q Q Q
p-1 1 p-1 1

llunlpdxr _g[lun ~ ufPdx _J;Iull’dxr[imn - u|1’dx]

e([Unly + [ul)lun = uly + Ci(E)(Unlp™ + [ufh™)un =~ ulp.

2
Ilu,, - u|2dx] +e
2

12

p

+ Cy(e) + Cy(¢)
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Since H = L5(Q) is compact for s € [1, 2%), then |u, — ul; > 0, [u, — ul, — 0 in L5(Q), as n —» +o. Therefore,
IQ( fx, up) = f(x, w)(u, — w)dx - 0 as n — +o. By combining (17), (18), and (19), we conclude that

|lun = u|| = 0 as n — . This implies that {u,} contains a convergent subsequence. ]
Lemma 2.2. Assume that (f}), (f}), (f,), and (f) hold, then ®(u) satisfies the (PS). condition for ¢ > 0.
Proof. By (f;),
¢+ 1+ ]2 ) = (@), )
=+ 5 Jor0c e = 476x e
2 P
Since a > 0, then {u,} is bounded in H.

Next we will prove {u,} has a convergent subsequence. Taking a subsequence of {u,}, as well called {u,},
such that u, = uinH, u, » u in L5(Q) for s € [1,2"), u, » u a.e. x € RY, as n - +. By computation,

(a + b”un”Z)((un: u) - (un: un))
= (@ + bljual) [ V¥ = uax = [F06 un(u - wdx + [F0x, ) - up)dx
Q Q Q

(20)
= (@), (- ) + [£O6 U - up)dx.
Q
For {u,} is bounded in H and ®’(u,) — 0, then
(@ (un), (u — up)) < (| @ (unlll[u = Unl| < [P (ul] + [luall) = O, @)
asn — +o, Due to (12) and u, — u in L3(Q) for s € [1, 2*), we know that
Ilf (06 Un)(u = up)ldx < I(elunl + C(O)unlH)lu = up|dx
Q Q
1 1 1 1
2 2 p p (22)
<l flunfax| | [lu - wpdx| + e [lunpax| |- uadx
Q Q Q Q

=€ |Unl2|U — Uply + Cl(g)lunlg_llu = Unlp ~ 0,

as n — +o. By combining (20), (21), and (22), we obtain (un, u) — (up, ) — 0. Meanwhile by u, = u in H and
(Up, u) = (U, Up) = (Up — u, w) + (U, w) = (U, up), then (uy, u,) ~ (U, w), asn - +o. In summary, u, > u in H,
n — +oo. Therefore, ®(u) satisfies the (PS). condition. O

Remark 2.2. The method of proving that {u,} has a convergent subsequence in Lemma 2.2 can be applied to
prove Lemma 2.1.

3 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Firstly, we prove ax = maXyey,|ju|=p, W) < 0, where ¥ is defined in (4). According to
(f}), for any M > 0, there exist § > 0, such that, for |u,| = 6,

F(x, up) = M |uy|*. (23)
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fOun) (X Un)

(f,) implies that there exists § > 0 such that <1 for 0 < |uy| < 8. By (fy), for & < |u,| < 8, there exists

M, > 0 such that
o CA+ jun” D,
|Un|

1.

‘f(x Un)

Then f(x, up) 2 —(M; + D)|uy|, for 0 < |u,| < 6. By the definition of F(x, u,) = I(;l"f(x, s)ds,

F(x, up) 2 =Cg |unf, (24)
for 0 < |u,| < 8, where Gg = %(Ml + 1). By combining (23) with (24), we obtain F(x, u) = M |u|* - Cg |u/?. Since
all norms are equivalent in Y, a finite-dimensional space, there exist constants dj, d; > 0 such that in Y;:

a . b 4 )
@) < 5l + 7l = M Jul} + G |uf

a b
= Ellull2 + leull4 - Mdj|[ul[* + Cydy|ulP

b a
== - ‘= + Z.
(3 - mai e + (2 + e
As——Md1<0 that is, M > —- 4d,
In fact, p, >y, > 0, where ), will be defined in (25).

Next, we will prove by = infuezk,“uH:yk(D(u) — +oo as k — o, where Z; is defined in (4).

By the conclusion of Lemma 3.8 in [18], we have By = Sup,cy, -1 IUls = 0, as k = oo, for s € [2,27).

by the aforementioned inequality, let p, > 0 is big enough such that a; < 0.

Lete € [0, ﬂikz] for u € Z, [[ull = y;, by B — 0 as k — o, we can see that B = sSUP,cy =y, ”u” . Therefore,
|uls < Billull. By (3) and (13),
a b £ G
S 2 o+ Znagnd — £ 2dy — —L D
0 2 gl + gl = 5 frubax - = flupax
Q 2
. a £ C
had 2+_ 4 _ Ep22 — ZLopgp
2 Sl + it = S Allul pﬁkllull
ﬁfiﬂk—]&nnpﬂ|w
- 2
Let
2 2
e
2 P 4 "’
then
1
(a-eBp|™
i = llull = < (25)
ACB}
Therefore,
2
a - epl((a- epp )™
K 2
4 acpp

According to p € (4,2") and B, — 0 as k —» », then by — +® as k — ». Lemma 2.1 establishes that ®(u)
satisfies the (PS), condition. Furthermore, from (f}), it is immediate that ®(u) = ®(-u).

Hence, by Theorem 2.1, ®(u) has an unbounded sequence of critical values. Therefore, (1) has infinitely
many high-energy solutions. O
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Proof of Theorem 1.2. The proofs that ax < 0 and by — +% ask — o follow the same method as in Theorem 1.1.
Lemma 2.2 proves that ®(u) satisfies the (PS), condition; moreover, ®(u) = ®(-u), and hence, ®(u) has an
unbounded sequence of critical values. Therefore, (1) has infinitely many high-energy solutions. O

Acknowledgments: Jing Zeng was supported by the National Science Foundation of China (Grant No. 11501110)
and Fujian Natural Science Foundation (Grant No. 2018J01656). The authors sincerely thank the anonymous
reviewers for their constructive feedback and valuable insights, which have significantly improved the rigor
and clarity of this manuscript. We also appreciate the editorial team’s professional handling of the submission
process.

Funding information: Jing Zeng was supported by the National Science Foundation of China (Grant No.
11501110) and Fujian Natural Science Foundation (Grant No. 2018]01656).

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and
consented to its submission to the journal, reviewed all the results, and approved the final version of the
manuscript. QZ: methodology (equal); writing — original draft (equal). JZ: methodology (equal); writing —
original draft (equal); writing — review and editing.

Conflict of interest: The authors have no conflicts to disclose.

Data availability statement: Data sharing is not applicable to this article as no new data were created or
analyzed in this study.

References

[11  G. Kirchhoff, Mechannik, Teubner, Leipzig, 1883.

[2] M. E. O. EI Mokhtar, Multiple solutions to the problem of Kirchhoff type involving the critical Caffareli-Kohn-Niremberg exponent, concave
term and sign-changing weights, Appl. Math. 8 (2017), 1703-1714, DOL: https://doi.org/10.4236/am.2017.811123.

[31 M. L. Boas, Mathematical Methods in the Physical Sciences, John Wiley & Sons, Hoboken, 2005.

[4] ). L. Lions, On some questions in boundary value problems of mathematical physics, Contemporary Developments in Continuum
Mechanics and Partial Differential Equations, in North-Holland Mathematics Studies, vol. 30, North-Holland, 1978, pp. 284-346.

[51 R.Peiand ). Zhang, Nontrivial solutions for asymmetric Kirchhoff type problems, Abstr. Appl. Anal. 2014 (2014), 163645,
DOI: http://dx.doi.org/10.1155/2014/163645.

[6] S.Z.Song,S.].Chen,and C. L. Tang, Existence of solutions for Kirchhoff type problems with resonance at higher eigenvalues, Discrete
Contin. Dyn. Syst. 36 (2016), no. 11, 6453-6473, DOI: https://doi.org/10.3934/dcds.2016078.

[71 M. Sun, . Su, and B. Zhang, Critical groups and multiple solutions for Kirchhoff type equations with critical exponents, Commun.
Contemp. Math. 23 (2021), no. 7, 2050031, DOI: https://doi.org/10.1142/50219199720500315.

[8] K.PereraandZ.Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, ). Differential Equations 221 (2006), 246-255,
DOLI: https://doi.org/10.1016/j.jde.2005.03.006.

[9]1 J. Sun and S. Ma, Nontrivial solutions for Kirchhoff type equations via Morse theory, Commun. Pure Appl. Anal. 13 (2014), no. 2,
483-494, DOL: https://doi.org/10.3934/cpaa.2014.13.483.

[10] Y.Y. Lan, Existence of solutions to a class of Kirchhoff-Type equation with a general subcritical nonlinearity, Mediterr. ). Math. 12 (2015),
851-861, DOI: https://doi.org/10.1007/s00009-014-0453-7.

[111 B. Cheng and X. Wu, Existence results of positive solutions of Kirchhoff type problems, Nonlinear Anal. 71 (2009), 4883-4892,
DOL: https://doi.org/10.1016/j.na.2009.03.065.

[12] Y. Yang and ). Zhang, Positive and negative solutions of a class of nonlocal problems, Nonlinear Anal. 73 (2010), 25-30,
DOL: https://doi.org/10.1016/j.na.2010.02.008.

[13]1 Z.Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, ). Math. Anal. Appl. 317
(2006), 456-463.

[14]1 A. Mao and Z. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal. 70
(2009), 1275-1287, DOL: https://doi.org/10.1016/j.na.2008.02.011.

[15] W. Shuai, Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains, |. Differential Equations 259 (2015),
1256-1274, DOI: http://dx.doi.org/10.1016/j.jde.2015.02.040.


https://doi.org/10.4236/am.2017.811123
http://dx.doi.org/10.1155/2014/163645
https://doi.org/10.3934/dcds.2016078
https://doi.org/10.1142/S0219199720500315
https://doi.org/10.1016/j.jde.2005.03.006
https://doi.org/10.3934/cpaa.2014.13.483
https://doi.org/10.1007/s00009-014-0453-7
https://doi.org/10.1016/j.na.2009.03.065
https://doi.org/10.1016/j.na.2010.02.008
https://doi.org/10.1016/j.na.2008.02.011
http://dx.doi.org/10.1016/j.jde.2015.02.040

DE GRUYTER Infinitely many solutions for a class of Kirchhoff-type equations = 11

[16] X.H.Tang and B. Cheng, Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, ). Differential Equations
261 (2016), 2384-2402, DOI: http://dx.doi.org/10.1016/j.jde.2016.04.032.

[171 G.Liu, S. Shi, and Y. Wei, Multiplicity of solutions for Kirchhoff-Type problem with two-superlinear potentials, Bull. Malays. Math. Sci. Soc.
42 (2019), 1657-1673, DOL: https://doi.org/10.1007/s40840-017-0571-z.

[18] M. Willem, Minimax Theorems, Birkhauser, Boston-Basel-Berlin, 1996.


http://dx.doi.org/10.1016/j.jde.2016.04.032
https://doi.org/10.1007/s40840-017-0571-z

	1 Introduction and main results
	2 Variational framework and lemmas
	3 Proof of Theorems 1.1 and 1.2
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


