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Abstract: In this article, we continue the study of the nonvanishing minors property initiated by Garcia,
Karaali, and Katz, for the compressed Fourier matrix attached to a subgroup H of the multiplicative group
of a finite field F;, and a character y defined over H. Here, we provide a characterization of this aforemen-
tioned property for symmetries arising from an index-3 subgroup H and a nontrivial character y.
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1 Introduction

In discrete Fourier analysis, uncertainty principles have played an essential role due to their profound impli-
cations in signal processing. The study of these relations began in 1989 with the well-known theorem of
Donoho and Stark [1]. Before stating this result, let us remind that if G is a finite group, the group algebra
of G over C, denoted by C[G], is the C-vector space spanned by G,

clGl={2 f,g:f, €C

g€G

bl

endowed with the convolution product. In what follows, G will denote an arbitrary finite abelian group. Recall
that given f € C[G], the Fourier transform of f is the function f : G > C given by

foo= 2 fx@

g€G

where G denotes the group of characters of G. The Donoho-Stark uncertainty principle for finite abelian groups
states that if f € C[G] is nonzero, then

|supp(f)lIsupp(f)| = |G,

where supp(f) = {g € G : f, # 0} and|X]| denotes the cardinality of a set X. Various generalizations and results
emerged from this principle, for instance [2,3], but perhaps the most important of all these is due to Tao, who
in [4] proved that by considering G to be the cyclic group Z/pZ of prime order p, a substantial improvement
can be obtained: if f € C[G] is nonzero, then

|supp(f)| + [supp(f)| = p + 1. (1.1
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This remarkable result, also discovered independently by Biré [5] and Meshulam [6], led to the develop-
ments in [7] that gave rise to the field of compressed sensing and several new uncertainty relations. For more
about this, see [8], where the uncertainty result was generalized to arbitrary finite cyclic groups, or [9-11]
for relations to the performance of cyclic codes and group codes; other studies can be found in [12-14].

At the core of these improvements is Chebotarév’s theorem on roots of unity, originally proposed by
Ostrowski and proved by Chebotarév in 1926 [15]. In Tao’s article [4], it is proved that, indeed, Chebotarév’s
theorem is equivalent to (1.1). The theorem establishes that every minor of the discrete Fourier transform
matrix (DFT matrix) is nonzero if the matrix has prime order. To be accurate,

Theorem 1.1. (Chebotarév) Let p be a prime and { a primitive pth root of unity. For every pair of subsets I, ] € [F,
with the same cardinality, the matrix ({ "f)ieuej is nonsingular, i.e., it has nonvanishing determinant.

The property that every minor of a given matrix is nonzero is of particular interest in this article, so we
introduce the following definition:

Definition 1.2. (Nonvanishing minors [NVM] property) A matrix A = (a;;)1<ij<n With complex entries is said to
have the NVM property if for every I, ] € {1, ...,n} with || = |J|, the determinant of (a;);er je; iS nONzero.

The equivalence of (1.1) with Chebotarév’s theorem raises the question of whether other transformations
related to the discrete Fourier transform exhibit the NVM property in their matrix representations, and if this
leads to improved uncertainty principles. For example, if n > 1 is an odd integer, then it can be proved that

the n; ! HTH matrix attached to the discrete cosine transform (DCT) satisfies the NVM property if and only if

n is prime or n = 1; similarly, if we let n > 3 be an odd integer, in the case of the discrete sine transform (DST),

it can be proved that the ”T_l x "T_l matrix attached to this transform satisfies the NVM property if and only if

n is a prime (see [16] for more details).

Let F, denote the finite field with q elements. Garcia et al. [16] made significant improvements on (1.1) by
introducing a general notion of symmetry on elements of C[[F,] that encompasses the aforementioned DCT and
DST cases. Given a subgroup H < [F; and a complex character y : H — C*, an element f = 3 f,a € C[F,] is said
to be y-symmetric if f,, = y(h)f, for allh € H and a € [F,. When considering the Fourier transform on C[F]
restricted to the subspace of y-symmetric elements, we arrive at the compressed Fourier transform (CFT)
attached to the pair (H, y) (see Definition 2.2). For instance, if p is an odd prime, H = {-1,1} and the character y
is such that y(-1) = -1, then y-symmetric elements correspond precisely to elements f such that f, = -f,
and the CFT corresponds to the DST. The introduction of the CFT led to the study of the NVM property
for its associated matrix. For non-prime finite fields, general conditions for the NVM property to be satisfied
for the CFT matrix were not obtained; however, for certain subgroups H of a non-prime field IF;, they arrive,
for example, to the following results:

o If H = {1}, then the CFT matrix does not satisfy the NVM property; refer to [16, Corollary 6.2].

o IfH = [FZ or, in the case q is odd, if H an index-2 subgroup, and y is the trivial character, then the CFT matrix

exhibits the NVM property; for more details, see [16, Proposition 6.5 and Theorem 6.6].

If q is odd, H an index-2 subgroup, and y nontrivial, a characterization was found in terms of Gaussian sums

of character extensions [16, Theorem 6.7].

* Again, if q is odd, 3|(q - 1), H is an index-3 subgroup, and y is the trivial character, the NVM property holds
if and only if p = 1 (mod 3), where p is the characteristic of F; (see [16, Theorem 6.12]).

In this article, we pursue this approach by providing concise necessary and sufficient conditions for
the NVM property to hold in the case of index-3 subgroups H and nontrivial characters y.
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1.1 Structure of this article

In Section 2, we will review some basic notions of character theory and discrete Fourier analysis and then
introduce the necessary ideas from [16], such as y-symmetry and the CFT. In Section 3, we present our main
result, Theorem 3.2, which characterizes the NVM property of the CFT matrix for index-3 subgroups and
nontrivial characters.

2 Preliminaries

2.1 Characters and the Fourier transform

We begin by recalling the basic concepts of character theory on finite fields. For a more detailed explanation,
we refer the reader to [17].

An additive character of [F; is a group homomorphism from the additive group of [, into the group C*.
Similarly, a multiplicative character of I, is a group homomorphism now defined on the multiplicative group
Fg = F; - {0}. It is well known that one way to obtain a complete description of additive characters is by
introducing the canonical additive character: let p be the characteristic of F, so that ¢ = p™ for some m € N,

and consider the additive character € : [, — C* defined by &(x) = e?™"™/? for all x € [F,, where
Tr(x) = x + xP + ...+ x?""

is the absolute trace map from [F; to [F,. It can be shown that for every additive character ¥, there existsa € [F,
such that ¥(x) = e(ax) for all x € F;, which allows us to define the character g, :[F, -~ C* given by
£,(x) = g(ax) for all x € F,. Denote by [ﬁq the group of additive characters of I, and if S €[, define
& = {& : s € S} C Iy, as in [16], so that &, = F,.

There is a relevant connection between multiplicative and additive characters in a finite field in terms of
certain exponential sums called Gaussian sums. Let y be a multiplicative and ¢ an additive character of ;.
The Gaussian sum G(y, ¢) is defined as

GO Y) = Y x(©w(e),

x
c€F,

and we will use the notation G(y) when ¢ = ¢. Perhaps one of the most important facts about Gaussian sums,
and one that we will use later, is that if  and y are both nontrivial, then we have |G(y, ¥)| = ./q (see [17,
Theorem 5.11] for more details). The sum G(y, ¥) is closely related to the Fourier expansion of the multi-
plicative character y, as we now show. Let C% be the C-vector space of functions from [ﬁq to C (the expression
XY is interpreted similarly) endowed with pointwise multiplication, and define the Fourier transform of
f € C[F,] as the map f : F, - C given by:

f®) = 2 fp@.
a€ly;
The C-algebra isomorphism ¥ : C[F;] - CY given by F(f) = f is called the Fourier transform on C[F], and
its inverse ! is given by f ~ FX(f) = 3f,a, where
1 .
fi == 2 9@f @)
Yek,
We can extend a multiplicative character y : [Ffl — C* to a multiplicative map defined over the whole F; by
simply mapping x(0) = 0. If we use the standard identification C[[F,] = C* and the definition of the Fourier
transform, we can prove that 7(¥) = G(x, ¥) for every p € [ﬁq. Moreover, if we seek the value of y atc € [y,
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we can use the Fourier inversion formula to obtain the remarkable expression:

X(©) = é Y GO P,

yer,

in which Gaussian sums are precisely the Fourier coefficients in this expansion.

2.2 CFT

We now introduce, with some small modifications, the main definitions from [16]. Let H be a subgroup of
the multiplicative group F; and x : H ~ C* a character. Let GL(V) denote the group of automorphisms on
a C-vector space V, and define the map L(x) : H -~ GL(C[F,]) as follows:

= Y x(h)f,ha.

a€ly

2 foa

a€ly

LOOn

The map L(x) is a group homomorphism, and L(y), is a linear isomorphism of C-vector spaces for each
h € H. Intuitively, £(x), permutes each coefficient of f € C[IF;] and scales them by a root of unity.

We are interested in the elements of C[[F,] that are invariant under the action of .L(y), i.e., elements of
the set:

C[F ¥ = {f € C[Fy] : LOw(f) = f, forall h € H}.

It can be easily shown that the set C[IF;]* is a C-vector subspace of C[[F,]. This subspace is actually H-invariant,
that is to say, L(y)u(f) € C[F]* for all f € C[F;]¥ and h € H. The dependency on both the subgroup H and
the character y leads to the following definition:

Definition 2.1. (y-symmetry) Let H be a subgroup of F; and y : H ~ C* be a character. Elements of C[[F,]¥
are called y-symmetric, or equivalently, f € C[F,] is said to be y-symmetric, provided that f,, = y(h)f,
foralh € H anda € F,.

Let us recall that, given H a subgroup of Fy, the H-orbits of IF; are of the form Ha = {ha : h € H}fora € F,
and when a # 0, they correspond precisely to the cosets of H in the group F;. We say that (y, S) is an orbit-
representative pair of H if § is a complete set of representatives of the H-orbits of F; if y is trivial, or of all of IF

if y is nontrivial. If additionally, we have another set R with the same property, then (y, R, S) is called an orbit-
representative 3-tuple of H.

Definition 2.2. (CFT) Let H be a subgroup of F; and y : H ~ C* be a character. Let (x, S) be an orbit-repre-
sentative pair of H. Recall that g5 denotes the set of additive characters of the form & for s € S. The C-vector
space isomorphism
Fy: C[F]¥ - C5
fo |Es
is referred to as the (x, S)-CFT.

Remark 2.3. The fact that 7, is an isomorphism [16, Proposition 3.10] shows that a y-symmetric element f can
be reconstructed with exactly [F; : H] measurements of its Fourier transform when x is nontrivial, and with

[[F; : H] + 1 measurements when y is trivial, i.e., one measurement on each orbit is sufficient to achieve this
by the invertibility of 7.
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To obtain a matrix representation for the CFT, it is necessary to determine some basis for C[IF;]X. To this
end, in [16, Lemma 3.9], the authors attach a suitable basis {t -}, to each orbit-representative pair (x, R) of H.
Thus, if we fix an orbit-representative 3-tuple (x, R, S) of H, where R and S are endowed with some orderings, the
representation matrix in this basis of the CFT is referred to as the (y, R, S)-CFT matrix. For our purpose, it will not
be necessary to introduce this basis since, as will be seen in the next section, an explicit expression for the entries of
the (y, R, S)-CFT matrix is already known [16]. Note also that the order of this matrix is [F; : H] when y is
nontrivial, and [F; : H] + 11if y is trivial. If S = R and we impose the same ordering, then the (x, R, S)-CFT matrix
is symmetric.

Since the NVM property for CFT matrices is independent of the choice of sets of representatives and
orderings then, for simplicity, it is said that the pair (IFg, ) has or does not have the NVM property. The next
proposition, proved in [16], provides a criteria, in terms of y-symmetric functions, for a pair (F;, y) to have
the NVM property:

Proposition 2.1. [16, Proposition 4.8] Let H < [F(’; and x : H —~ C* be a character. Then, (F;, y) has the NVM
property if and only if for every nonzero y-symmetric element f € C[F,]X, we have
1) if y is nontrivial,

Isupp(f)| + Isupp(f)l = q + |H| - 1,
(2) if x is trivial,

q+2H -1, if f, = 0and f(&) = 0,
|supp(f)| + Isupp(f)l = {q + |H], if f, = 0or f(e) = 0,
q+1, otherwise.

The aforementioned proposition gives us an alternative version of the NVM property directly related to
the uncertainty principle of Bir6-Meshulam-Tao.

3 Index-3 subgroups and nontrivial characters

The NVM property of (F,;, y) when H is an index-3 subgroup and y is the trivial character is satisfied if and only
if p = 1 (mod 3), where p is the characteristic of F; [16, Theorem 6.12]. Our result completes the characterization
for nontrivial characters by giving concise necessary and sufficient conditions for the NVM property to hold.

We shall comment on character extensions. Suppose H is a subgroup of a finite abelian group G, and let
X : H— C* be a character. If we denote the set of extensions of y to G by Ext(y), it can be proved that its

cardinality is the index [G : H]. To describe this set of extensions, consider first the annihilator of H in G:
Ann(H) ={y € G : y(h) =1, forall h € H}.

It can be shown that the annihilator of H in G is a subgroup of G of order [G : H]. If we write s = [G : H] and
Ann(H) = {Jy, &4, ...,0-1} then, given an extension ¢, of y, it is clear that for every J; € Ann(H) the product
¢,Y; is an extension of y, and there are precisely s extensions, hence

Ext(y) = goAnn(H) = {99 : i =0, .., s - 1}
Given H < [F; and a character y : H — C*, the Gaussian sums (with ¢ = ¢) of the s = [F; : H] character

extensions ¢, ¢;,..., ¢,_, are denoted as G; for all i € {0, 1, ...,s - 1}. Now we are ready to state the following
technical lemma that provides the entries of the CFT matrices:

Lemma 3.1. [16, Lemma 6.4] Let [F, be a finite field, let m be a positive integer such that m|(q - 1), and H be the
unique index-m subgroup of F;. Let y : H —» C* be a character and (x, R, S) an orbit-representative 3-tuple of H.
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Then, for anyr € R and s € S, the (r, s)-entry of a (x, R, S)-CFT matrix is

|H|, ifrs=0

_ m-
Fides =11 Z ors)G,  ifrs # 0.
m i

When fixing a character y : H » C* of an index-3 subgroup H < [F;, given the notation G; for the Gaussian

sums of its character extensions, we introduce for simplicity the notation T; = ZiZ:O({iG,- for j € Z, where
(3 - eZni/S_

Theorem 3.2. Let [, be a finite field such that 3|(q - 1), let H be the unique index-3 subgroup in [Fg, and let
X : H— C* be a nontrivial character. Then, the pair (Fg, ) has the NVM property if and only if G; # G; for some
,jE{L,23and Ty # 0.

Proof. Let ¥ and K be so that {x,, k, K} is the annihilator of H, i.e, k and k are the cubic multiplicative
characters of [F;. Let a € F, be such that K(a) = . Consider R = S = {1, a, a?}; this way (y, R, S) is an orbit-
representative 3-tuple of H. Let ¢, be a character extension of y and ¢,, ¢, the other two extensions ¢k
and @K, respectively. The (y, R, S)-CFT matrix is then

T P@h 9%

3 3 3
%@L 9L .

3 3 3
WAL T g@h

3 3 3

We may scale rows and columns to obtain the matrix

I h T
L T
L'Th I

which has the NVM property if and only if the (y, R, S)-CFT matrix does. The minors of 1 x 1 submatrices are
precisely the entries Ty, T3, and T;. For the minors of 2 x 2 submatrices, one can check that these are, up to sign,
of the form T;+Tiy — Tiz for i € {0, 1, 2}, where the index j in Tj is considered mod 3. The result of this
expression can be reduced by grouping the products of Gaussian sums and using the fact that {7 + {3 - 2 = -3:

T1Tiy — T = =3({FGoGy + ( (GoG1 + G1Gy)
(3

_+ +_
Gi Gy Gy

6, 4G, G|
IGiP G |GoP

= —3606162

—BGoGlel

Since Gaussian sums all have absolute value ./q, we obtain

3GoGle 3GoGlGZ T
q

TuiTy = T2 = ————((iG1 + {£'G, + Gy) = TTL‘-

Therefore, the 2 x 2 minors can be reduced to the entries T; for j € {0, 1, 2}, so that T41T+ - T = (0 if and only
if T; = 0. Finally, the determinant of M, which is the only minor of a 3 x 3 submatrix, is -27G,G,G; and is never
zero. With these results at hand, the NVM property is satisfied if and only if Ty, 73, and T are all nonzero. First,
suppose the NVM property holds, then we just have to show that G; # G; for somei,j € {0,1, 2}. If Gy = G1 = Gy,
then T} = T, = 0 arriving at a contradiction.
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For the converse, suppose Ty is nonzero and G; # G; for some i,j € {0, 1, 2}. Assume T; = 0, then since
Gaussian sums have absolute value ,/q, it follows that {3G; = (4G, and (%G, = (fGO, for some combination
Y, B € {12} such thaty + §=3.1f y =1 and B = 2, then G; = Gy = G, which is not possible, and if y = 2 and
B =1,thenG; = {3Gyand G, = 3260, which leads to Ty = 0, again a contradiction. Following, assume T, = 0, then
again %G, = (JGo and (3G, = (£ G, for combination y, B € {1, 2} such that y + =3.Ify =1 and 8 = 2, then
G = (3260 and G; = (3G, which leads to Ty = 0, and if y = 2 and 8 = 1, then G; = Gy = G;. Thus, the result
holds. ]

An equivalent formulation of Theorem 3.2 in terms of an uncertainty principle can be achieved with
Proposition 2.1:

Corollary 3.3. Let I, be a finite field with 3|(q - 1), and let H be the unique index-3 subgroup of ;. Let y : H > C*
be a nontrivial character. For every nonzero y-symmetric element f € C[F;]X, we have

o q-1
Isupp(f)I + Isupp(f)l = q + -1,
if and only if G; # G; for somei,j € {1,2,3} and Ty # 0.
Proof. It is a direct consequence of Theorem 3.2 and Proposition 2.1. O

Remark 3.4. Before finishing, it is worth mentioning a few words about symmetric elements in the complex group
algebra of a finite field F,. In the trivial character case, the symmetric elements boil down to those elements
f € C[IF;] with constant value f, on each H-orbit Ha, for all a € F;. When y is nontrivial, the y-symmetric
elements can be described as follows: suppose d | (¢ — 1) and that H is the unique subgroup of order d, so that
H = (w) with w a primitive d th root of unity in Fy. Let y : H ~ C* be the character defined by y(w) = {4, where

{y = e?™/d_ All other characters are of the form ¢ = y* for some k € {0, 1, ...,d - 1}, consequently ¢(w) = {X.
Then, an element f € C[IF,] is ¢-symmetric if and only if f, j, = {ff; forall j € {0, ...,d - 1}.

With regard to the NVM property for CFT matrices, the question remains whether more characterizations
can be found for subgroups of larger index in terms of concise conditions, for both trivial and nontrivial
characters.
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