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Abstract: In this work, a boundary value problems for a system of nonlinear ordinary differential equations
that incorporates impulsive actions is considered. This formulation is significant for modeling real-world
phenomena in which abrupt changes occur at specific time instants. The study established sufficient condi-
tions for the existence of isolated solutions to the proposed boundary value problems. This is crucial to ensure
that the mathematical models accurately reflect the behavior of systems subject to impulsive actions.
Algorithms were developed to find solutions to the boundary value problems. These algorithms leverage
the parameterization method, which is effective in handling the discontinuities introduced by impulsive
actions. The research includes a numerical implementation of the proposed algorithms, demonstrating their
practicality and effectiveness in solving the boundary value problems with impulsive actions. The findings
have implications in various fields, including mechanics, electrical engineering, and biology, where systems
often experience sudden changes due to external influences. In general, the research contributes to the
understanding and solution of nonlinear boundary value problems affected by impulsive actions, providing
a framework for further exploration and application in scientific and engineering contexts.
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1 Introduction and problems statement

Investigating various problems in the natural sciences often involves dealing with evolutionary processes
described by differential equations and subject to short-term perturbations. When mathematically modeling
such processes, it is often convenient to neglect the duration of these perturbations, considering them to be of
an impulse (shock) nature. Such idealization leads to the need to study systems of differential equations whose
solutions undergo abrupt changes. Frequently, discontinuities in certain dependencies within the system
studied are essential characteristics. Many specific problems whose mathematical models involve differential
equations with discontinuous trajectories can be found in various areas of mathematical natural science:
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mechanics, electrical engineering, chemistry, biology and medicine, process control, dynamics of aircrafts,
economics, and other branches of science and technology.

The growing interest in systems with discontinuous trajectories is primarily associated with the demands
of modern technology, where impulse control systems, impulse computing systems, and neural networks have
taken a prominent place and are rapidly developing, expanding their application scope in diverse technical
problems varying in physical nature and functional purpose. A natural response to this has been a noticeable
increase in the number of mathematical works dedicated to the study of differential equations with impulse
effects. Classical monographs systematically addressing differential equations with impulse perturbations
include the books by Samoilenko and Perestyuk [1] and Lakshmikantam et al. [2]. The results compiled in
these monographs have served as a basis for further development of analytical and qualitative methods in the
theory of impulse-disturbed systems [3-8].

The solvability of various types of boundary value problems using operator methods has been actively
investigated by Samoilenko et al. [9], including problems with impulsive action [10].

In the work of Dzhumabaev, a parameterization method research and solving a linear two-point boundary
value problems for a system of ordinary differential equations (ODEs), was developed [11]. The Dzhumabaev’s
parameterization method provides a constructive algorithm for finding solutions, which is particularly useful
for nonlinear problems where analytical solutions may be difficult or unattainable [12]. The application of this
method allows for the development of a systematic approach to obtaining solutions, without relying solely on
existence theorems.

It is important to note that the use of the parameterization method to nonlinear simplifies the derivation
of sufficient conditions for the existence of isolated solutions, which is crucial in the context of nonlinear
problems. Furthermore, the algorithms of the method are amenable to numerical implementation. It enables
the use of computational methods to obtain approximate solutions. This feature is particularly advantageous
in practical applications where numerical solutions are often required.

The versatility of the parameterization method allows it to be applied to a wide range of boundary value
problems, including those with complex boundary conditions and multiple impulsive actions. Such broad
applicability makes it a valuable tool in mathematical modeling across various fields.

Thus, researchers obtained an effective tool for the constructive solving of boundary value problems for
various classes of differential equations [13-27], such that it stands out due to its constructive nature, flexibility
in handling discontinuities, ability to establish solvability conditions, and suitability for numerical implemen-
tation, making it a powerful tool for solving various classes of nonlinear boundary value problems for
differential equations, including those subjected to impulsive actions.

The solving and investigation of boundary value problems with impulsive action at fixed time instants by
the parameterization method are devoted to [28-38].

In these works, conditions for solvability were obtained, algorithms for finding solutions were con-
structed, and coefficient criteria for unique solvability were obtained.

We consider the boundary value problems with impulsive actions on [a, b]

% = f(t,%), tE (a b\, 0 ....0n} x ERY, §)

x(©0)-x(0;-0)=p, pERLi=1m, 2

Bx(a) + Cx(b) =d, deER" Q)

where f: ([a, b]\{6s, 02, ...,0}) x R® > R" is continuous, B and C are the given (n x n) matrices and d and p,
(i = 1, m) are the given n vectors, a = 0y < 1<...< 0, < Ops1=b, 0 = {01, 05, ...,00}.
Let PC([a, b]\®, R™) be a space of piecewise continuous functions with the norm

Ix|l; = max sup |[|x(t)]|.
=0.m¢e(9;,6:,1)
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A solution to problem (1)-(3) is a piecewise-continuously differentiable on (a, b)\@ function x*(t) €
PC([a, b]\O, R™) that satisfies
(1) differential equation (1); moreover, at the points¢ = a,t = b, equation (1) satisfies the one-sided derivatives

dx*(t) ET X*(t) - x*(a) dx*(t) ET X*(t) - x*(b)
dt =g - hmt4a+0 i-a > At o - hmt*b—O i—b )

(2) the impulsive conditions (2) at the points of the set ®, and
(3) the boundary condition (3).

2 Method for solving the problem (1)-(3)

(m+1)N

We choose a natural number N. Denote by Ay the partition [a, b)\@ = Uy=; ~ [t-1, tr), Where
es+1 - es —_— N
tr=05+(r—sN)-T, r=sN,(s+1N, s=0,m.

We introduce the space C([a, b)\O, Ay, RM™DN) consisting of all function systems x[t] = (q(t),
X(t),....Xam+1)n (1)), where functions X, : [t,_q, &) = R™ are continuous and have finite limits lim;.; —ox,(t) for

allr =1, (m + DN, with the norm |||, = maX,-1 gD SUPref,_, 1) lIXr(OIl-
Let us introduce the notations: A, = x(t,-1), u(t) = x(t) = A, t € [t,—1, t,),r =1, (m + 1)N. Then, we reduce
problem (1)—(3) to the equivalent multipoint boundary-value problem with parameters

du

d_tr = f(t: At up), tE€[t,t), T=1(m+1)N, @
ur(t-1) =0, r=1,(m+ 1N, ®)
Avs1 — Ay = lim upn() - p; =0, i=1m, 6)
t—tin—0
BA + C/l(m+1)N +C lim U(m+1)N(t) -d=0, D
t=>tm+n—0
A+ lm u(6) - A4 =0, r=iN+1,({+1DN-1,i=0,m, (8)
t-t-0

where (8) are the gluing conditions at the points of partition of the intervals (6;-1, 6;),i =1, m + 1.

The solution of problem (4)-(8) is the pair (A*, u*[t]), where A* = (A, A, ... A(nsny) € RUWDN y*[t]
= (W), U@, .. Unann () € C([a, D)\O, Ay, RMM+DN),

If (A*, u*[¢t]) is a solution problem (4)—(8), then the function

AT+ () for t € [ty t,), r=1,(m + DN,
% —
X = Ay + tE;T}O Umspn(t) for t=b
is a solution to problem (1)—(3).
If X(t) is a solution to problem (1)-(3), then, the pair (A, @[t]) with elements A = (X(to), X(t), ...,
X (tgnenn-1)) € RMMON - q[t] = (X(t) - X(to), X(t) = X(tr), .., X(t) = X(tmennv-1)) i a solution to pro-
blem (4)-(8).
For fixed values of A,, the Cauchy problem (4), (5) is equivalent to the Volterra integral equation of the
second kind

t
() = [f@ 2 + w@)dn, t€ [tat), r=1m+DN. ©)

try
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Using equality (9), we obtain the expression

t T Tv-1
up(t) = J.f T, A + J.f T A+ o J.f(Tv: A + up(5))d5, ... |d5 [dg,

trq trq trq

tet, t), r= m
Then

t 4 Ty-1
im ) = [flad+ [flod+ o+ [ @A+ u @), . |dnlds, (10)
t—t-0 ;

r-1 trq trq

r=1,(m+ 1)N.
Substituting these limits into (6)—(8), we obtain a system of nonlinear equations

] o tw 3
MN Aiva1 — A — If 4, Ay + If T, Aiv
tin-1 lin-1
an
Tv-1
+ ot [ @ 2y + un(@)ds, . fdnlds - p| =0, i=Tm,
lin-1
] o tms)N 4
% BA + CA(m+1)N +C J f Qs A(mﬂ)N * J- f £ A(m+1)N
fm+N-1 tmrv-1
12)
Tv-1
+ot _[ f (@, A + Ugnsnn(B))AT, ... [dp )7 - d| = 0,
tm+)N-1
t, T Tv-1
dot [Hais [flot st [F@ + w@Hs . jdolds - 4.0 =0, as)
teq t_q trq

r=iN+1,({+DN-1, i=0,m.

For known u,(t) (r = 1, (m + 1)N), the system of equations (11)—(13) is a system of equations with respect to
the parameters (A, Ay, ... Am+1)n). We write the system of equations (11)-(13) in the following form:

QV,AN(Ar u) = Os A= (Alx AZ: ---;A(mﬂ)N) € Rn(m+1)N' (14)

3 Algorithms of Dzhumabaev’s parameterization method and
convergence conditions

Condition A. There exists a partition Ay, a natural number v such that the system of nonlinear equations
Q,.4,(A, 0) = 0 have a solution A® = (A, A, ... Ahyy) € RM™WDN,
Let Condition A be satisfied. We assume a Cauchy problems

du,
de

ftu+29),  u(t) = 0 (15)
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having a solution u(%(t), t € [t,_1, t,), r =1, (m + DN, and the system of functions u®[t] belongs to the
space C([a, b)\, Ay, R™M+DN),

By using a pair (A, u(¥[t]), we specify a piecewise continuous function on [a, b]
A0+ Ot) for t € [t,_1, t,), r=1,(m + DN,

0
xO(t) = . 0
/l(m+1)N + tllir_lo U((m)+1)N(t) for t=b.

We take the numbers p, > 0, p, > 0, p, > 0 and define the sets
SQ©, pi) = 4= (G, dgy himeyn) ERMDV: A=AV = max |1y = A7) < .
=1,(m+1)N

SOft], p,) = {ult] € C([a, b)\8, Ay, R*™DN) : |ju - u(")llz <pyh

SxOt), p,) = {x(t) € PC([a, b]\O,RM : |Ix = xOl)y < p,},

Gr(p,) = {(t,x) : t € [a, b]\®, x € S(XO(t), p,)}.

Let Condition A hold, and let the components of the system of functions u([t] be solutions to Cauchy

problems (15).

We construct sequences {(A%, u®(t))}¢.; and {x®(t)}¢.; by performing the following sequence of steps:
Step k

(a) Solve the equation Q, , (4, u®k-D) = 0 and find A®© = AP, ...,A((,’flll)N) € RUM+DN,
(b) Solve the Cauchy problems

dur

=f(t,u + A(k ), U(t-1) =0

and find the components of the system u®[t] = (u*(t), .. u((,,lﬂl),v(t)).
(c) Construct the function

PICICIN if t €[ty t), r=1(m+DN,
X(k)(l’) =1, k) .
where k = 1,2,.... Amrpn + hm u(m+1)N(t) if t= tmeyy = b.

Condition B. The function f(t,x) in Gs(p,) is continuous, has a uniformly continuous partial derivative
f’x(t, x), and there exists a number L > 0 such that || f*x(¢, x)|| < L for all (x, t) € Gs(p,).

Theorem 1. Suppose that for some Ay with N € N, and for v € N, as well as positive constants p, > 0, p, > 0,
and p, > 0, the following conditions are satisfied:
(i) conditions A and B,

30, 4y 1)

(i) Jacobi matrix —;— : RN — RMMDN s invertible for all (A, u[t]) € S(A©, p,) x SWO[t], p,),

[aov iy >]‘1

(iv) q,(4n) <1, where

(iii)

< y,(4w), y,(4y)-const,

0is1 = 0; Ome1 — O 91+1 b (L(0j41 - 91.))]'
Ay) = v,(4y) maxil, max , C max el e
0dy) = y,dy) l max = el Z T
Y(4n)

W) l’qv(AN)“QV,AN(A(O)J Ul < py,

S By Oie16;

00 2 masgafer T - 1]10,,09, 1) <,

. 1(L(Bi+1 - 6)) LB+ - )P
(Vi) Maxp-1y{0; MAX;=gm 2j- # p, MMax;- OmW <Py
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Then, the sequence of pairs (AR, u®[t]), k €N, defined by the algorithm, belongs to the set
SO, p,) x SWO[t], p,), and converges to the pair (X*,u*(t]), which is an isolated solution of problem
(4)-(8) in the set SA©, p,) x SWO[t], p,). Moreover, the following estimates hold:

(@, )"
* - )| ¢ v © O 16
I = 20| < T2 RN, 0, U 1s)
(©) = uPO] < € = DA - 4%, an

k=0,12,.,t€E€ [t t,), r=1,(m + 1N.

Proof. By some number N, we perform a partition Ay of the interval [a, b). Let us reduce problem (1), (2) to the
equivalent multipoint boundary value problem with parameters (4)-(8).
Taking any pair (4, u[t]) € SA©, p,) x S@O[t], p,), then
14 = A2+ w(®) = w OOl < A = A9 + ([ (0) = WO < py + py < Py
te [tr—l; tr); r= 1! (m + 1)N‘

(18)

By virtue of Condition B for all r = 1, (m + 1)N, the following inequalities occur:

t
At If(Tl’ A+ u(m))dg - /1,(0) - ur(O)(t)
tr—l

t t

<A = A0+ | @2+ w@yda - [ 1@ A% + uP@)dn 1)

trq trq

t
<A+ L - 6D - 200 + [ L) - uO@)dr
tr

<A+ Lt - t-))py + p Lt — ) S p, tE [tr-1, &)
Similarly, we obtain that

t Tv-2
A [fade+ o+ [ f@e A+ w@e)dn o jdn - 22 - w00

trq trq

t Tv-2
< =201+ || [flad+ o+ [fGad + u(s))ds . i

trq trq

t Tyy 20)
- _[f 3, A0 + L+ Jf(Tv—la A9 + +u (5, ))d5, ... [dg

trq tr

WL - toy))
Z(( .! 1)

o J

t Ty-2
e = 200+ [ Lo [ L@ - u@@)lds-s .. dg
tr tr—y
P GRS S
= Jii A -1

N

pu s px) te [tr—b tr)

In view of (18)-(20) and inequality (vii) of the theorem, the pairs

t

2+ u ), |64+ [£@ A+ w(@)da)...,

trq
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t Tv-2
a4 [fa e+ ot [f@a A + w(s)ds . |dg),
trq tr—q

where (4, u[t]) € SA©, p,) x S®[t], p,) with t € [ty_1, t;) for all 7 = 1, (m + 1N belong to the set G¢(p, ).

We will search for the solution of problem (4)-(8) using the proposed algorithm. Taking the pair
(A©, uO[t]) from Condition A as the initial approximation, we find the next approximation with respect to
the parameter from the equation

Qs A u®) =0, A€ RN, o

By virtue of the conditions of the theorem, the operator Q, , (A, u”) in S(A®, p,) satisfies all the assumptions
of Theorem A [12, p. 345]. Taking a number &, > 0, satisfying the inequalities
1 Y(dn)
)<=, —T YORTONPEN
&0y, (4n) 2 1= e dw) 10y 4, (AP, U < py

. . L . . 0Q, A U®
and using uniform continuity in S(A, p,) Jacobi matrices Quax® U e find 8o € (0,0.5p,] such that for any

A, A € S(A, p,), satisfying inequality ||A - A|| < & is true such that

0Q, 4, (A, u®) ) 0Q, 4, (A, u®)
oA oA

< &.

A . . .
Let us choose a > ag = max[l, %{:")HQ‘,’,I(A(O), u®)||i, build an iterative process: A9 = A©),

-1

3Q, , (A4, Oy
O UT) “Qya, A U@y m=0,1,2,.... 22)

A(l,m+1) = A(l,m) - l
oA

a

The iterative process (22) converges to AV € S(A©), p,)-isolated solution of equation (21) and
1AV = 2ON| < p(A)N1Qy 4, A, uUD)|| < p;. 23)

Under our assumptions, the Cauchy problem (4), (5) for A, = A" on [¢t,_y, t,) has a unique solution u(t) and
for it holds the following inequality:

t
) - u@@) < [ LR - 49 + [uD(T) - uO(D)]dr.

tr—y
Using the Gronwall-Bellman lemma, we obtain
P - uO@)| < (Xt - DAL - A9, t€E€ [ty t), r=1,(m + )N. (249

From (23) and (24) we obtain u®[¢] = W(0), w(t), ....uP(t) € SWO[t], P
From the structure of the operator Q, , (4, u) and the equality Q, , (A", u®) = 0, it follows that

10y 4y AL, UM = []Q, 5, AV, u®) = Q, 5, AV, UM

6i+1 - 9i 9m+1 - em ’
< max{l, max , C
[ max = Nl

Ty-1
ILllur“)(rv) - u%z)||dg, ... dg.

tr

&
X max IL
r=1,(m+1)N
tr

Substituting instead of ||u"(z,) - u{(z)|| the right-hand side of (24) and computing the repeated integrals,
we have

Y WIIQ, 4,47, uD)]| < q,(4n) AV = 2. 25)
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Let us take p; = y,(4n)[|Q, 4, A, uM)||. If A € SAD, p,), then, due to the inequalities (iv), (v) of the theorem
and (23), (25), the following estimate holds

1A = AO| < [|A = AV + []AD = A0 <y, (A)]IQy, 4, AP, uD) | + A = 2

yv (AN )

<@ By) + DAY - 20 < W)
(qv( N) )“ ” 1- qV(AN)

110y, 4, A, u®)|| < pj,
that is, SA®, p)) € SA©, p,).
The operator Q, , (4, uV) in S(AW, p,) satisfies all conditions of Theorem A [12]. Therefore, the iterative
process: A0 = A
-1

1
Qs A%, u®),  m=0,1,2,.,

A(Z,m+1) - A(Z,m) I
a

90, 5, (A%, u)
oA

converges to A® = A2 A2, AP € SO, py-isolated solution of the equation Q, , (4, u¥) = 0 and
[A® = A0 < y,(AW)1Qy 4, AV, uD)]]. (26)
From (26) and (25), it follows that
1A® = 2D < gAY - A9|.
Assuming that the pair (A%, u®=D[t]) € SQA©, p,) x SW[t], p,) defined and established estimates
A*D = 2®D)| < g2 (A IAD - 2O, @7
Po@1Qy 4, A, ukD)|| < g, (An)]A*D - A%=2), (28)

kth approximation with respect to the parameter A*) can be found from the equation Q, , (4, u*?) = 0. Using
(27), (28), and equality Q, ,(A*™D, uk=2) = 0, similar to (25), we establish the validity of the inequality

Vo)IQy, 4, A%, utD)|| < g @)IIAD = A9, (29)
Let us take p;_; = y,(4y)]|Q, 5, A%V, u*D)|| and show that SA*Y, p, ) € S(A?, p)). Indeed, in view of
(27)-(29) and inequalities (v)
A = A9 <]IA = A& + []A%D = 28D+ L+ 2D - A0
<Pt + A THANIAY = A0+ + A - 29
%(@y)
1-q,(4n)

Since Q,, A, u*™) in SQA*D, p, ) satisfies all the conditions of Theorem A [12], there exists A®)
€ S(A*Y, p,_,) — solution of the equation Q, , (A, u®™D) = 0 and the following estimate is valid

1A% = 2D < g,(Bw)IIQy 4, A<D, uDY]. (30)

<[]A® = A9 < 110, ,(A®, uD)| < .

Solving the Cauchy problems (4) and (5) for A, = A%, we find functions u*(t), t € [t,-1, t.), r = 1, (m + DN.
If oy = y,(4)11Q, 4, A%, u®)|| = 0, then Q, , (A%, u®) = 0. Hence, taking into account that uM(t) is a solution
to the Cauchy problem (4), (5) at A, = A% on [t,_1, t,), r = 1, (m + 1)N, we obtain the equalities

k k s k .
S = A - tlimouig\,)(t) -p,=0, i=Tm,
—UNT

BMO + Oy + € lim ulqn(® - d =0,

t=>tn+n—0

A0+ 1im u®@) -2 =0, r=iN+L,(i+DN-1, i=0,m,
t-t—0

i.e., the pair (A%, u®)[t]) is a solution of problem (4)-(8).
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Using (29), (30), and the Gronwall-Bellman inequality, we set estimates
A% = DY < g (@) [IAKD - 20D, Q)
[LP) - u*F V)| < (et = DAL = A&D| ¢ € [ty ), r =1, (m + DN. (32)

From inequalities (31), (32), and ¢,(4y) < 1, it follows that the sequence of pairs (A%, u®[t]) for k — e con-
verges to (A", u'[t]) is a solution to problem (4)—(8). Moreover, due to inequalities (v) and (vi) of the theorem
AW, u®[t]), k € N, and (A, u*[t]) belong to SA©, p,) x S[t], p,)- In inequalities

(q,(4n))"
1- qv(AN)

O = uOO < (eHv0 = DIAKD = AW, t € [tr-y, t;), 7 =T, (m + DN,

|Ake) = 200]| < Vo BNQ,, 4, AQ, U,

passing to the limit as £ — «, we obtain estimates (16) and (17).
Note that

1-(q,(4n))
1-q,(4y)

1-(q,(4v))’
1-q,(4v)

t € [tr-y, t), r =1,(m + 1)N. Let us move on to the limit as £ — o and obtain the estimates

q,(4y)
1-q,(4y)

q,(4v)
wX(t) - uP)|| < (el - 1)————
lJuy"(t) Ol < ( )1‘%(1\1\/)

A% - 29 < 4, A% = 267V,

14870 - w0 < Mt - 1) 4,0 - 24D,

% = 209 < A% - 26, 53)

A% = A&V, t € [y, ), T =1,(m + DN.

Let us show the isolation of the solution. Let the pair (4, @i[t]) be a solution of problem (4)-(8) belonging to
SO, p) x SO[t], p,). Then, there are numbers &> 0,8, > 0 such that

A =29 + 8 <p, max (eLttD - DX - AO|| + &, < p,.
r=1,(m+1)N

Considering that the functions iI,(t), u”(t) are solutions of the Cauchy problem (4), (5) for A, = A, A, = A%,
respectively, and again using the Gronwall-Bellman inequality we have

IT-(t) = w0 < (X0 = DA = AQ||, ¢ € [ty t), r =T, (m + DN.
If A € S, &), ult] € S(@[t], &), then due to the inequalities
A =20 < A = X|| + A = 2O < & + []A = 2O < p,

[ur(®) = OOl < lwr(® = TOI + [T = OO < & + [T - w O < p,

t€ [t1,t), =T, (m+ DN, A € SO, p)), ult] € S@[t], p,), that is SA,8) € SAV, p,), S(@lt], &) C
SOrt], p,-
Let us take a number ¢ > 0 such that
Eyv(AN) < 15 qv(AN) <1- SVV(AN)- (34)

30, 4y (A u)

From a uniform continuity f”,(t, x) in G¢(p,) and structure of the Jacobi matrix follows from its

uniform continuity in S(A, &) x S(iI[t], 5,). Therefore, there is § € (0, min{&;, 5,}], for which

aQV,AN()ly u) _ an’AN(FX, LT)
oA oA

<E&
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for all (A, u) € S(A, 8) x S(i[t], §). Note that if (4, @i[t]) is the solution of problem (4)—(8), QV,AN(/T , ) = 0 for
anyv eEN,
Let (A ,Q[t]) € S(A, 8) = S(iI[t], §) be another solution to problem (4)-(8). Since QV’AN(X ,0)=0 and

QV,AN(/T , 1) = 0, from the equalities

~ )1
(20,0, @ D
oA

~
0Q, 4,4, T) ~
T] Qy s, (A, 1),

Qua, A, M), A =17 -

it follows that

- - [e0 a, o) Yao ,1+9(,1 ), o) _Q a,m| - .
T-7= “‘N J’ vy Vv do@ - 1)
. oA
00, 4,(A, ) ~ ~
{—Lﬁ——<@MLw—@m@m»
then
=~ =~ Vv(AN) ~ o N
A-A|s——————= A, 1) - A,
K= Al =g a1 D = 03, D
VV(AN) 9i+1 - ei 9m+1 B em
S———— 1, ,
- ly) R N Nl (35)
tr Ty-1
x max {[L.. [LIZ) - a@)lds .. dgf.
r=1,(m+1)N - .
Since
t
I3 - @@l < [LO& - A1 + 5 - 2@z,
trq
by the Gronwall-Bellman lemma
1) = @ O] < (25D = DI, = Al (36)
Substituting (36) to the right part of (35), we have
~ ~ qv(AN) ~ ~
A=Al S ————|A - 1] (37)
IR =20 < =g - Al
Thus, due to inequalities (34), (36), and (37), we have the equalities A= )At,, ih(t) = Uy(t), t € [t-1, t;),
r=1,(m + 1)N. Theorem 1 is proved. O

Comments on the theorem:

(1) Theorem 1 provides sufficient conditions for the feasibility and convergence of the proposed algorithm to
solve problem (4)—(8). Furthermore, Theorem 1 establishes sufficient conditions for the existence of an
isolated solution to problem (4)-(8).

(2) The fulfillment of conditions (i), (ii), and (v) ensures the applicability of Theorem A [12] to find the solution
of equation (14) with a given u[t].

(3) The fulfillment of condition (iv) guarantees the convergence of the proposed algorithm.

(4) The fulfillment of conditions (v)-(vii) is required to ensure isolation of the solution.

The choice of numbers N, v depends on the properties of the initial data of the problem (1)—(3). If the data
of the problems allow, it is possible to do so without dividing the interval and using substitutions.



DE GRUYTER On a nonlinear boundary value problems with impulse action = 11

Since problem (4)-(8) and problem (1)-(3) are equivalent, the following assertion holds.

Corollary. Let the conditions (i)-(vii) of Theorem 1 hold for certain values of Ay (N € N),v (v €N), p, > 0,p, > 0,
and p, > 0. Then, the sequence {x")(t)}¢., belongs to the ball S(x°)(t), p,) and converges to an isolated solution
x*(t) of problem (D-(3) in S(xO(t), p,).

4 Illustrative examples
To demonstrate the accuracy and efficiency of the proposed algorithm, this section examines two numerical
examples of solving the boundary-value problem of type (1)-(3). The method described in Section 2 is applied

to both cases, and all computations are carried out using the MathCAD system.

Example 1. Find the numerical solution of the boundary value problem (38)-(40) with an accuracy of € = 107*

d(x) _ X
o) = Ao lelb e @95 1100, (38)
X1
oo -lla-0=p, )
[ |10 = (40)

x)| X -1 0 _|0 for <0, _[05
where f t, X -x - X22 + ln(t) + ’1(1 t)[z/t + 1] + ’7(t 1)[05]1 rl(t) - [1 for t> 0’ pl - [_1]’
0.5 0.75 0 0375) , (15
B= [—1 02 €= |02 0.125’d'[0.2]'

< We will formulate equation

QA u) =0, AERY,

where Q, 5, (A, u) = ((Q14,(A, W, (Q1 4,(A, W)z, (Qy 4,4, W))3, (Qy AZ(A, u))y)" is an operator with components

0.975 Aoy + p(E) -
(@l 10 = [)l ] I [Az1]
S fos |~ — un(®) = (g + upp(0))? +In(e) +1+ — o)
1 |[%] _ [A]_ (05
[IA:z] -1
1 Ay + uzz(l’) -
2 (dt,
023[75 Ao = Un(t) = (A + up(0))* +In(t) + 1+ — g
e Asy + uzy(t)
(s _ (A
(Ql,Az(A; u))3 - [ASZ] + 1_[(; _ASI - Ilgl(t) - (A32 + u32(t))2 + ln(t) + % dt [)(42]’

(Q1 AZ(A u))4

sl . o.M [1.5]
B e Aol lo2
11 Ay + Ugy(E)

o 1 dt
' 1'([5 —Ag1 — un(t) - (Agz + ugp(0))® + In(0) + -
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0
Aiﬁ]

0
2

]] with a precision of 107, since there is an inequality

M| (2] |20
Conditon A s  satisfied  for Q= Q7,47 4" A7) = || | , ,
) 2] 128

-0.057146| [-0.040953| (0.475469| |0.508709
1.647708 J' | 1.657188 )’ (0.664826/ | 0.645427

[1Q1,4,A@, 0)]| < 0.000009 < 107.

Solutions to the Cauchy problems of kind (15) were found using the Runge-Kutta method of the fourth
order of accuracy. We have listed the values of the components of the functions system

u(0) 12({”(0’ uéi”(t)] ul(t)
(0) ’
Uy, (1)

u(t)| uP(O) (u )
q,(42) = y,(42) max{1,0.025,0.05,0.05*||C]|} - max{e®9%L — 1 - 0.025L, e®%L - 1 - 0.05L}
= 68.142*{1,0.025,0.05,0.05*0.375}
X max{e°‘°25*4-33 -1 - 0.025%4.33, e0-05%433 _ 1 — 0.05*4.33} = 1.72 > 1.

uOe] = @), w0, W), u@)) = n Table 1.

Note that

0.95 + r/80, if r=0,4,
1.00 + (r - 4)/40, if r=358.

Q14,1 W) =0, 2 € RS, where Q, ,, (A, u) = ((Qy4,A, W), (@1 4,A, U))2, (@1 4,(A, W)g) is an operator with
components

So, let us take N = 4 and introduce the notationt, = ‘ We will construct equation

A i1 b Az + Upp(t) = 1
A, = - + 2 |dt, =123,
Qb [Arz] [ r+12] I At = Ua(®) = G+ UpOF + @) + 1+ 5[

1 (2 A
Qs )a =55 [[Ai] [Az] [05]

_ijf A + ugp(t) -1 e
80 i A~ ug(t) - Agg + ugg(t))* + In(t) + 1 + 7 '
Arg + Upp()

r+11
Qualdh 0= [ ] mz I [—Aﬂ un(®) = G+ OF + Iy + 210 77O

) -3

ty Agy + Ugy(t)

A
(Q14, (A, W)s = 410 .|IB- [AE] +

1

+ —

¢ 1)de
40 ‘t[ ~Ag1 = ugi(t) = (Agz + ugy(t))? + In(t) + 2

0

||

3 eeey 0 -
A

[—0.040705] [—0.032488] [0.475773] [0.492390] [0.508756] [0.524884]]

Condition A is satisfied for

(0) (0)
20 =00, 20, 20y = [[/1 ] ‘ﬂzl

/11(20) Az‘é’) 1.648151 )’ | 1.652971 )

(1 (2

1.657316 ) | 1.661212 )’ (0.664690)" 10.654637) (0.645109)" (0.636074

with a precision of 107: |Q, ,,(A®, 0)|| < 0.000007 < 107
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Table 1: Values of the components of the functions system u©[t] (Ex. 1, N = 2)

t ui(t) t us(t) t us(t) t ug’(t)
0.950 [o,oooooo] 0.975 [0.000000] 1.000 0.000000] 1.050 [0.000000]
0.000000 0.000000 0.000000 0.000000
0.955 [0.003244 0.980 [0.003290 1.010 [ 0.006628 1.060 [ 0.006436
0.001941 0.001568 -0.004131 -0.003726
0.960 0.006497 0.985 0.006588 1.020 0.013215 1.070 0.012835
0.003806 0.003067 -0.008175 -0.007375
0.965 [0.009759] 0.990 [0.009893] 1.030 [ 0.019762 ] 1.080 [ 0.019198 ]
0.005597 0.004499 -0.012134 -0.010947
0.970 [0.013030] 0.995 [0.013205] 1.040 [ 0.026270 ] 1.090 [ 0.025525 ]
0.007314 0.005866 -0.016010 -0.014446
0.975 [0.016310] 1.000 [0.016524 1.050 [ 0.032739 1.100 [ 0.031818
0.008960 0.007169 -0.019805 -0.017873

Solutions to the Cauchy problems of kind (15) were found using the Runge-Kutta method of the fourth
order of accuracy. We have listed the wvalues of the components of the function system
uO[t] = @), W), ....us”(t)) in Tables 2-9.

Note that [|Q; ,,(A?, u®)]| = 0.000336.

For N = 4,v =1, A9, uO[t]), p, = 0.2976, p, = 0.03403, p, = 0.33163 we have that y,(4,) < 138.82,

4,(44) = y,(4y) Max{1,0.0125,0.025,0.025 * ||C||} max{e®OL — 1 - 0,0125L, e®5L — 1 - 0.025L}
<138.82 * max{1,0.0125,0.025,0.025 * 0.375}
x max{etV125*433 — 1 - 00125 * 4.33, e20%5*433 — 1 — 0,025 * 4.33} = 0.843511 < 1,

and

(q1(44))47

-y, (Ay) - A0, @) < 0.000099998 < &. (4D
gy 00 10, G0

From inequality (41), it follows that to obtain an approximate solution of problem (38)-(40) with the required
accuracy of € = 1074, no more than 47 steps of the proposed algorithm are needed.
Next, we will find the solution to equation Q, »,(4, u®) = 0. To do this, we use the iterative process:

1 ‘ 601,44(/1(1”"), u©®)

-1
200 = 1O, Am+D = Aam) - 3 5 ’ Q0 04™, U®), m = 0,1,2,...

Table 2: Values of the components u¥(¢) of the functions system u®)[t] for k = 0,1,2,3 (Ex. 1, N = 4)

t ui®(t) ui(t) u?(t) ()
0.950000 [o.oooooooo [o.oooooooo 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000 0.00000000
0.953125 [0.00202738] [0.00202859] [0.00202861] [0.00202863]
0.00121777 0.00121332 0.00121322 0.00121315
0.956250 0.00405852 0.00406092 0.00406097 0.00406101
0.00240555 0.00239669 0.00239648 0.00239635
0.959375 [0.00609333] [0.00609690] [0.00609699] [0.00609703]
0.00356373 0.00355049 0.00355018 0.00355000
0.962500 [ 0.00813171 ] [0.00813645] [0.00813656] [0.00813662]
0.00469270 0.00467513 0.00467471 0.00467447
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Table 3: Values of the components uz(k)(t) of the functions system u®)[t] for k = 0,1,2,3 (Ex. 1, N = 4)

t u”(t) us"(t) u?(t) uz(t)
0.962500 [o.ooooooo] [o,ooooooo] o.ooooooo] [o,ooooooo]
0.0000000 0.0000000 0.0000000 0.0000000
0.965625 [0.0020423 [0.0020430 [0.0020430 [0.0020430
0.0010990 0.0010961 0.0010960 0.0010959
0.968750 0.0040879 0.0040893 0.0040893 0.0040894
0.0021695 0.0021637 0.0021635 0.0021634
0.971875 [0.0061369] [0.0061389] [0.0061390] [0.0061390]
0.0032119 0.0032033 0.0032030 0.0032029
0.975000 [0.0081890] [0.0081917] [0.0081918] [0.0081919]
0.0042267 0.0042153 0.0042149 0.0042147

We will take A%% as AD to an accuracy of 107, since [|Q; ,,(A*9, u@)|| < 0.000005. Thus,

A0 =020, A0y = [[—0.056809]’ [—0.048673]’ [—0.040481]’

1.648539 1.653194 1.657390
-0.032240| (0.476045| [0.492532| |0.508772| (0.524779
1.661150 )’ (0.664499)" 10.654409)" (0.644840) 10.635762))

Let us find numerical solutions of Cauchy problems of the form (4) with A, = AY, r = 1,8. We have listed the
values of the components of the functions system u®[¢] = (w"(t), us(t), ...,us’(t)) in Tables 2-9.
t +j/640, if r=0,4,

6+ /320, if r =58, j =0, 8. The following inequalities hold:

Let us introduce the notation t.; =

169(1, 4, 8)|| < 0.00004, 16591, 4, 8)|| < 0.00002, ||65°(1L, 4, 8)|| < 0.000044.

¢(44)
1-q(4)

equation @, ,,(A, u®) = 0. We will use the iterative the process

However, since there is an inequality [|AD = 2O = 0.004654 > &, we will look for A® by solving the

601,44(/1(2’"[), u(l))

1
220 = A pemiD = jem - =
2 oA

-1
] ) 01,44(/1(2’"1)’ u®), m=0,12,...

Table 4: Values of the components u3“(t) of the functions system u®J[t] for k = 0,1,2,3 (Ex. 1, N = 4)

t us(t) ui(t) us(t) ug(t)
0.975000 [o.ooooooo [o.ooooooo [o.ooooooo [o,ooooooo
0.0000000 0.0000000 0.0000000 0.0000000
0.978125 [0.0020557] [0.0020559] [0.0020559] [0.0020559]
0.0009863 0.0009849 0.0009848 0.0009847
0.981250 [0.0041144] [0.0041148] [0.0041148] [0.0041149]
0.0019457 0.0019428 0.0019426 0.0019426
0.984375 [0.0061760] [0.0061767] [0.0061767] [0.0061768]
0.0028785 0.0028742 0.0028739 0.0028738
0.987500 0.0082406 0.0082414 0.0082415 0.0082416
0.0037851 0.0037793 0.0037790 0.0037788
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Table 5: Values of the components u§(t) of the functions system u®)[t] for k = 0,1,2,3 (Ex. 1, N = 4)

On a nonlinear boundary value problems with impulse action == 15

t u(t) u(t) u(t) ut)
0.987500 [o.ooooooo [0.0000000 [0.0000000 [o.ooooooo
0.0000000 0.0000000 0.0000000 0.0000000
0.990625 0.0020677 0.0020675 0.0020675 0.0020675
0.0008796 0.0008795 0.0008794 0.0008794
0.993750 [0.0041380] [0.0041377] [0.0041377] [0.0041377
0.0017337 0.0017335 0.0017333 0.0017333
0.996875 [ 0.0062111 ] [0.0062105] [0.0062105] [0.0062105]
0.0025627 0.0025623 0.0025621 0.0025620
1.000000 [0.0082866] [0.0082858] [0.0082859 [0.0082859
0.0033668 0.0033663 0.0033660 0.0033658

We will take A% as A? to an accuracy of 1075, since [|Q; ,,(A%V, u®)|| < 0.000002 < 107. So A® is

-

|

0.654412

e

1.653201

0.492537] [0.508776

0.644842

] [—0.032234]

1.661155

0.524783
0.635764 )/

Let us find numerical solutions of Cauchy problems of the form (4) with 4, = Ar(z), r = 1,8 (see Tables 2-9).
The following inequalities hold:

1621, 4, 8)|| < 0.00004, [|5:2(1, 4, 8)|| < 0.00002, 16521, 4, 8)|| < 0.000038.

Since there is an inequality %HA@) - AD|| = 0.000113 > &, we will look for A® by solving the equation

Q14,(A, u®) = 0. We will use the iterative process:

00,,,,05™, u®)

1
AGO = 1@, AGmD = J6m) _ =
2 oA

-1
] ’ 01,44(7‘(3"”)’ u®), m=0,12,.

Since ||Q; ,,(A®Y, u®)|| < 0.000001, we will take A®V as A®) to an accuracy of 107

1.648553 1.653206 1.657399 1.661158

0.476055| (0.492540| [0.508779| (0.524785
0.664504) (0.654414) 10.644844) (0.635765))

A(3)=[[—0.056801] [—0.048664] [—0.040472 [—0.032231]

Table 6: The values of the components u$(t) of the functions system u®[t] for k = 0,1,2,3 (Ex. 1, N = 4)

t () us"(t) ui(t) u(t)
1.00000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000
1.00625 0.0041462 0.0041450 0.0041450 0.0041450
-0.0025926 -0.0025927 -0.0025928 -0.0025928
1.01250 [ 0.0082763 0.0082739 [ 0.0082739 [ 0.0082740
-0.0051509 -0.0051512 -0.0051513 -0.0051514
1.01875 0.0123905 0.0123869 0.0123870 0.0123870
-0.0076755 -0.0076758 -0.0076760 -0.0076762
1.02500 0.0164890 0.0164843 0.0164843 [ 0.0164844
-0.0101668 -0.0101672 -0.0101675 -0.0101677
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Table 7: The values of the components uék)(t) of the functions system u®)[t] for k = 0,1,2,3 (Ex. 1, N = 4)

t ug(t) ug(t) ug(t) ug(t)
1.02500 [o.ooooooo] o.ooooooo] [0,0000000] [o.ooooooo]
0.0000000 0.0000000 0.0000000 0.0000000
1.03125 [ 0.0040838 [ 0.0040824 [ 0.0040824 [ 0.0040824
-0.0024602 -0.0024592 -0.0024593 -0.0024593
1.03750 0.0081523 0.0081494 0.0081495 0.0081495
-0.0048881 -0.0048862 -0.0048863 -0.0048864
1.04375 [ 0.0122057 ] I 0.0122015 ] [ 0.0122015 ] [ 0.0122015 ]
-0.0072842 -0.0072812 -0.0072814 -0.0072815
1.05000 0.0162443 0.0162386 0.0162387 0.0162387
-0.0096488 -0.0096449 -0.0096451 -0.0096453

Let us find numerical solutions of Cauchy problems of the form (4) with A, = A%, r = T8. We have listed the

values of the components of the function system u®[t] = W (t), us(t), ...,us>(t)) Tables 2-9.
Note that there are estimates

A
%”N) - A@|| < 0.00007 < ¢,
- q,(A,
A
%max{eomzs*ws — 1, 0025433 _ 1}”;((3) _ ;((2)” < 0.000008 < e.
- q,(4y

1621, 4, 8)|| < 0.000038 < &, [16:2(1, 4, 8)|| < 0.00002 <&, 16521, 4, 8)|| < 0.0000333 < &.

As can be seen from these inequalities, only three steps of the algorithm were needed to obtain the approx-
imate solution of problem (38)—(40)

A2 +ul), ifteta,t), r=18,

x*(t) = xO(t) =
A2+ uts), if t =t

The graph of the approximate solution to problem (38)-(40) is shown in Figure 1. »

Table 8: The values of the components u7(k)(t) of the functions system u®[t] for k = 0,1,2,3 (Ex. 1, N = 4)

t ui?(t) ui'(t) uf?(t) u(t)
1.05000 o.ooooooo] o.ooooooo] [o.ooooooo] [o.ooooooo]
0.0000000 0.0000000 0.0000000 0.0000000
1.05625 [ 0.0040246 0.0040229 0.0040230 0.0040230
-0.0023354 -0.0023334 -0.0023334 -0.0023334
1.06250 [ 0.0080347 ] [ 0.0080314 ] [ 0.0080314 ] [ 0.0080314 ]
-0.0046403 -0.0046362 -0.0046363 -0.0046364
1.06875 0.0120305 0.0120256 0.0120256 0.0120256
-0.0069151 -0.0069090 -0.0069091 -0.0069092
1.07500 [ 0.0160122 ] [ 0.0160056 ] [ 0.0160057 ] [ 0.0160057 ]
-0.0091603 -0.0091521 -0.0091523 -0.0091525
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Table 9: The values of the components ug )(t) of the functions system u®)[t] for k = 0,1,2,3 (Ex. 1, N = 4)
t ug(t) ug(t) ug(t) ug(t)
1.07500 0.0000000] o.ooooooo] [o 0000000] [0 ooooooo]
0.0000000 0.0000000 0.0000000 0.0000000
1.08125 0.0039685 0.0039666 [ 0.0039666 [ 0.0039666
-0.0022177 -0.0022145 0.0022146 0.0022146
1.08750 0.0079233 ] 0.0079194 ] [ 0.0079194 ] [ 0.0079194 ]
-0.0044065 -0.0044003 0.0044003 0.0044004
1.09375 0.0118644 ] 0.0118587 ] [ 0.0118587 ] [ 0.0118587 ]
-0.0065669 -0.0065576 0.0065577 0.0065578
1.10000 0.0157922 ] 0.0157845 ] [ 0.0157846 ] [ 0.0157846 ]
-0.0086993 -0.0086870 0.0086871 0.0086872
Remarks.

(1) The parameters A® = A0 € R2N were determined using an iterative process

0Q; 4,(A®™, 0)

)((0’0) - /10’ /1(0’"”1) = /1(0 m) —
2[ oA

’ QLAN(A(O’m): 0, m=0,12,..,

[l
where A [0 o

, [g] RN (N = 2, 4).

N
(2) The fourth order Runge-Kutta method is used to solve the Cauchy problems for ODEs, and the Simpson
rules (ship stability) are used to calculate definite integrals.
(3) To compute the derivatives, we used the following formulas:
(a) at the point ¢ o:

k k k k k
AP +urol 1 | o w?®| [wPo
k k - k k k
(3P +uP©, i)l o), lw o) G
0 0
() at the point ¢, j for j=1,K - 1:
k k k k
d [P+ uPeo 1 ‘u,%)(r) i ‘u,%)(t)
k (k — k k
e[ 29 + uP o) JECTRE) | 0 t w2 O],
(c) at the point & g:
k k k k k
d (2% + uBr) 1w u P ()
k (k - k k k '
L ) I CT TN (L0 w0}, PO,

(4) In Example 1, the following designations were used:

K K K
(k) AI(V*-)l,l ( ) + ul(\l'l)(t )
6 MmN K =1y [~ Lo, a0 = P
A1z Az + unz (bt k)
(k) (k)
AP Agnsnn 1 + Ugmenn 1 (Eanrn,x)
k 11 m+1)N,1 (m+DN, 1\t (m+DN,
889m, N, Ky =B-| "o |+ €| o - d,
Az Amrnnz + U 2(Eam+1n,x)
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Figure 1: Approximate solution x®(t) of the problem (38)-(40): (a) first component x(t); (b) second component x{>(t).

k
- d 7‘1(1) + u11 )(tlo)
k 103
e\ 2 + u(t0)

forjel1..K

(

Z « stack|Z, — d A

88(m, N, K) =

forre2.(m+1)N
forj€0..K

Z < stack |Z, —

k k
) + ul(l )(tlj)

dt A(k) + u(k)(tlj)

d [ + u Pt
k (k
dt A( ) + urz)(tr])

(k) + u11 (t1 0)

A+ iy (60)

A+ )

K (k
AR+ ul) )(t11)

(k) + u(k)(t,«/)
k (k
1S+ uP)

Here, k is the algorithm step number, m is the count of impulse action points, N is the count of subdivisions of
the intervals between the impulse action points, K is the count of nodes in solving the Cauchy problems,

andr=1,N.
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Example 2. Consider a two-point boundary value problems for a system of two nonlinear differential equa-
tions subjected to impulsive action at one point

d X1 _ X
e = flt, XZ], t € (0.5, 1.5)\{1}, (42)
X1 X1 _
X (1) - X, (1 - 0) - pl, (43)
X1 X1 _
B|,,|(05) + C[ X5 = d, (44
x| X2 -1 0 |0 for <0, {05
where  fL )| = |-y - x2 + (| T 14 t)[2/t+1]+ n(t 1)[0.5]’ (o) ‘[1 for t>0, P17 [—1]’
B=[‘0-5 0.75 C=[ 0 0.375] = 0.5In2 + 2.5
-1 02) -02 -0125) 1.2In2 - 0.21In3 + 5/12)

Find the numerical solution of the boundary value problem (42)-(44) with an accuracy of € = 1075,

X(t
and compare the results with the exact solution x*(t) = xl*Et; , Where
2
. Int for t € [0.5,1), . 1+1/t for t €[05,1),
X () = x'(t) =
0.5 +Int for t € [1.0,15], 1/t for t € [1.0,15].
<« We will use the notations
(g (W)
Su(k) = —2 : ORTON
w (k) 1- qav) 1(aw) - [1Q, 6, ( u||
|05+ r/(2N), if r=0,N,
" 1100 + (r - N)/@2N), if r=N+12N,

‘U(N) = (X*(to)’ X*(tl)’ '-':X*(tZN—l))a

and choose the number N based on the data from Table 10.

From Table 10, it is evident that the number N > 52 can be chosen. The conditions of Theorem 1 are
satisfied for N = 64, v = 1, p, = 1.63234, p, = 0.0918, p, = 1.72414, y,(4ss) = 526.715, q,(des) = 0.8022 < 1.

From these estimates (Table 11), it follows that the approximate solution at the 6th step (Figures 2 and 3)
is found with an accuracy not exceeding & = 0.001 1073. The third column of Table 11 is based on the equation (33)
inequality.

Table 10: Selection of the number of partitions for the intervals [0.5, 1.0) and (1.0, 1.5] (Ex. 2)

N Yly) = 9(ly) = 1Q1.0yA@, u®)]|,, = k: ay(k) < £ =103
51 419.3803 1.0106 > 1

52 427.64 0.991 < 1 0.0009362 1,184

64 526.715 0.8022 <1 0.000613 34

128 1055.11 0.3981 < 1 0.0009432 9
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Table 11: Selection of the number of partitions for the intervals [0.5, 1.0) and (1.0, 1.5] (Ex. 2)

k 64) - AN = 91(864) _ - ~
llu(64) II 1—41(As4)”/1(k) A=
0 0.009825
1 0.004 0.026
2 0.0022 0.0055
3 0.00141 0.0033
4 0.0009724 < ¢ 0.002 > ¢
5 0.000744 < ¢ 0.0012003 > ¢
6 0.00063 < € 0.0007112015 < ¢
6
afg >(L)
31 }
| |
| |
| |
| |
! !
| |
21 !
| |
| |
| |
| |
: :
1] l
| /
| |
| |
| |
| r
f — f
'to _— tea 1 t128
| |
_— |
(a)
.(6)
x5 (t)
31 ;
| |
| |
| |
| |
! !
| |
21 ‘
| |
| |
| |
| |
: :
o —
| |
| |
| |
| |
| ¥
T T
o t6a ' t128
| |
l l
(b)

Figure 2: Approximate solution x©(t) of the problem (42)-(44): (a) first component x®(t); (b) second component x{%(t).
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1073
4
| ORI HO RO
| vr(t) — M (t
| (1) — 237 (1)

3 |

- ;
8 2 ! .
B ; |
= | I
1 | I
O,
t
(a)
1073
4
| st -2 @) - ant) -2 )
L () 1.(2]')(7‘)
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s 2 .

e ]

- :
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(b)

Figure 3: Error rectangles for the numerical solution of the problem (42)-(44): (a) plot of absolute errors in the numerical approximation
x(t); (b) plot of absolute errors in the numerical approximation of x,(t).

5 Conclusion

This work was devoted to obtaining sufficient conditions for the existence of an isolated solution within
a certain ball for a two-point boundary value problems of a system of nonlinear ODEs subjected to impulsive
actions. The ideas of the parameterization method were employed to determine the discontinuous trajectory.
By leveraging the concepts of the parameterization method, the authors managed to develop an algorithm for
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finding a solution to the given problems. The authors plan to consider most of the problems from studies
[28-38] for nonlinear systems of differential equations, as well as apply the parametrization method to the
problems from study [39].
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