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Abstract: In the article, we obtain that, for algebraically independent over � parameters α α,…, r1
, there

are infinitely many shifts ( ( ) ( ))+ +ζ s iτ α ζ s iτ α, , …, , r1
of Hurwitz zeta-functions with [ ]∈ +τ T T H, ,

⩽ ⩽∕ ∕
T H T

27 82 1 2, that approximate any r-tuple of analytic functions on the strip �{ }∈ ∕ < <s σ: 1 2 1 . More
precisely, the latter set of shifts has a positive density. For the proof, a probabilistic approach is applied.
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1 Introduction

Denote, as usual, by � , �, �
0
, � , �, � , and � the sets of all prime, positive integer, non-negative integer,

integer, rational, real and complex numbers, respectively. Let = +s σ it, �∈σ t, , = −i 1

2 , be a complex
variable, and < ⩽α0 1 be a fixed parameter. The Hurwitz zeta-function ( )ζ s α, was introduced in [1], and,
for >σ 1, is defined by the Dirichlet series
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Moreover, ( )ζ s α, has analytic continuation to the whole complex plane, except for a simple pole at the point
=s 1 with residue 1.

The function ( )ζ s α, is a generalization of the Riemann zeta-function ( )ζ s because, for >σ 1,
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On the other hand, the functions ( )ζ s and ( )ζ s α, have one essential difference: the function ( )ζ s , for >σ 1,
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has the representation by the Euler product:
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while the function ( )ζ s α, , except for the cases =α 1 and = ∕α 1 2, has no such representation. Moreover,
it is well known that ( )ζ s satisfies the symmetric functional equation:
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where ( )sΓ is the Euler gamma-function, while, for ( )ζ s α, , the following nonsymmetric equations connecting
s and − s1 are true:
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This is one of the causes of differences in value distribution of ( )ζ s and ( )ζ s α, and also reflects in the
approximate functional equation for ( )ζ s α, , which is the main ingredient for the proof of the mean square
estimate in short intervals [2]. Regardless of that difference, the Hurwitz zeta-function is an important analytic
object of number theory having a wide field of applications. Since Dirichlet L-functions have a representation
by Hurwitz zeta-functions with rational parameters, the functions ( )ζ s α, play an important role in the
investigation of prime numbers in arithmetic progressions. In addition, Hurwitz zeta-functions have deep
applications in algebraic number theory and special function theory.

One of the most interesting analytic properties of the Hurwitz zeta-function is its universality, i.e., the
ability to approximate analytic functions defined in the strip �{ }= ∈ ∕ < <D s σ: 1 2 1 by shifts ( )+ζ s iτ α, ,

�∈τ . Universality is a common feature of the functions ( )ζ s and ( )ζ s α, ; however, the shifts ( )+ζ s iτ

approximate only nonvanishing on D functions.
Universality of the function ( )ζ s and Dirichlet L-functions was proved by Voronin [3], see [4–8]. His

discovery is a certain infinite-dimensional generalization of the Bohr-Courant theorem [9] on the denseness
of the set:

�{ ( ) }+ ∈ζ σ it t: ,

with fixed ∕ < <σ1 2 1.
Value distribution of the function ( )ζ s α, , including universality, depends on the arithmetic of the para-

meter α. The final universality results are known only for transcendental and rational α. Let � be the class of
compact subsets of the strip D with connected complements, and ( )H K with �∈K the class of continuous
functions on K that are analytic in the interior of K . Moreover, let Ameas stand for the Lebesgue measure of
a measurable set �⊂A . Then the following statement is known.

Proposition 1. Suppose that the parameter α is transcendental or rational ≠1 or 1/2. Let �∈K and ( )f s

( )∈ H K . Then, for every >ε 0,
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Moreover, the lower limit can be replaced by the limit for all but at most countably many >ε 0.

The first part of the proposition was obtained by S.M.Gonek in his thesis [10]. In the case of rational
= ∕α a q, ( ) =a q, 1, the representation
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where ( )L s χ, denotes the Dirichet L-function, and ( )φ q is the Euler totient function, and the joint hybrid
universality of Dirichlet L-functions that, if ⩽ <θ0 1p , �∈p , ∣p q, then for every >ε 0, there exists �∈τ such
that

∣− <
τ p

π

θ ε p q

log

2

,p

and

∣ ( ) ∣( )+ − <
∈

L s iτ χ εsup , e

s K

f s

were applied. Here, ‖ ‖u denotes the distance of u to the nearest integer.
In the case of transcendental α, the set �{ ( ) }+ ∈m α mlog :

0
is linearly independent over �; therefore,

methods of Diophantine analysis can be applied.
Bagchi in the thesis [11] proposed a new method for the proof of universality for zeta-functions based on

probabilistic limit theorems for weakly convergent probability measures in the space ( )H D of analytic func-
tions on D. This method is also convenient for the proof of Proposition 1.

In the cases =α 1 and = ∕α 1 2, the assertion of Proposition 1 remains valid with a remark that the function
( )f s is nonvanishing on K .

The case of algebraic irrational α is the most complicated. The best result in this case is given in [12] with
a certain restriction for the degree of α.

The second assertion of Proposition 1 was given in [13].
Proposition 1, as the other universality theorems for zeta-functions, is not effective. Though Proposition 1

implies that there are infinitely many shifts ( )+ζ s iτ α, approximating a given function, any concrete shift is
not known. A weaker problem is to indicate the interval containing τ with the approximating property. For the
Riemann zeta-function, this was considered in [14–16] and in [12] for the function ( )ζ s α, with algebraic
irrational α. Another way toward effectively realized universality theorems for zeta-functions is shortening
of the length of the interval. The latter way for ( )ζ s was proposed in [17], and improved in [18]. A universality
theorem in short intervals for ( )ζ s α, with transcendental α was obtained in [2].

Proposition 2. [2] Suppose that α is transcendental, and ⩽ ⩽∕ ∕
T H T

27 82 1 2. Let �∈K and ( ) ( )∈f s H K . Then,
for every >ε 0,
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Moreover, “liminf ” can be replaced by “lim” for all but at most countably many >ε 0.

In this article, we are interested in the joint universality of Hurwitz zeta-functions, i.e., simultaneous
approximation of a tuple of analytic functions by shifts ( ( ) ( ))+ +ζ s iτ α ζ s iτ α, , …, , r1

. The first joint univers-
ality theorem was obtained by Voronin [19], who proved joint universality for Dirichlet L-functions with
pairwise nonequivalent Dirichlet characters. Clearly, in the joint case, the approximating functions must be
independent in a certain sense. In the case of Dirichlet L-functions [19], this independence is realized by the
pairwise nonequivalence of Dirichlet characters. For Hurwitz zeta-functions, a sufficient independence is
achieved by using algebraically independent over � parameters α α. …, r1

, i.e., that there is no polynomial
( ) ≢p s s, …, 0r1

with rational coefficients such that ( ) =p α α, …, 0r1
. The following joint universality theorem

is known [20,21].

Proposition 3. Suppose that the numbers α α,…, r1
are algebraically independent over �. For =j r1,…, , let Kj

�∈ and ( )∈f H K
j j . Then, for every >ε 0,
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In [22], the algebraic independence over � of the parameters α α,…, r1
was replaced by a weaker require-

ment that the set

�( ) { ( ) }= + ∈ =L α α m α m j r, …, log : , 1, …,r j1

def

0

is linearly independent over �.
Our aim is to give a joint generalization of Proposition 2. For the statement of the main results, some

notation is needed. Denote by ��( ) the Borel σ -field of a topological space � . Define the set

�
�

{ ∣ ∣ }∏= ∈ =
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s sΩ : 1 .

m
0

Elements of Ω are all functions defined on �
0
with values from the unit circle on � . With the product topology

and pointwise multiplication, Ω is a compact topological Abelian group. Therefore, by the Tikhonov theorem
[23], the Cartesian product
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where =Ω Ωj for =j r1,…, , again is a compact topological group. Therefore, on �( ( ))Ω , Ω

r r , the probability
Haar measure mH exists. Notice that the measure mH is the product of the Haar measures mjH on �( ( ))Ω , Ωj j ,

=j r1,…, , i.e., if
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Thus, we have the probability space �( ( ) )mΩ , Ω ,

r r

H . We equip the space ( )H D of analytic functions with the
topology of uniform convergence on compact sets and set
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r

r

Now, on the probability space �( ( ) )mΩ , Ω ,

r r

H , define the ( )H D
r -valued random element
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The main result of the article is the following theorem.

Theorem 4. Suppose that the parameters α α,…, r1
are algebraically independent over �, and ⩽ ⩽∕ ∕

T H T
27 82 1 2.

For =j r1,…, , let �∈Kj and ( ) ( )∈f s H K
j j . Then, for every >ε 0,
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The form of Theorem 4 suggests that, for its proof, probabilistic arguments connected to the space
�( ( ) )mΩ , Ω ,

r r

H will be applied.

2 Limit theorem

The main ingredient of the proof of Theorem 4 is a joint limit theorem for Hurwitz zeta-functions in the space
( )H D

r in short intervals. For �( ( ))∈A H D
r , define

( ) { [ ] ( ) }= ∈ + + ∈P A

H

τ T T H ζ s iτ α A

1

meas , : , ,T H α, ,
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( ) ( ( ) ( ))=ζ s α ζ s α ζ s α, , , …, , .r1

Denote by Pζ α,
the distribution of the ( )H D

r -valued random element ( )ζ s α ω, , , i.e.,

�( ) { ( ) } ( ( ))= ∈ ∈ ∈P A m ω ζ s α ω A A H DΩ : , , , .ζ α H

r r

,

Theorem 5. Suppose that the parameters α α,…, r1
are algebraically independent over �, and ⩽ ⩽∕ ∕

T H T
27 82 1 2.

Then PT H α, ,
converges weakly to Pζ α,

as → ∞T . Moreover, the support of the measure Pζ α,
is the whole

space ( )H D
r .

Since joint limit theorems in short intervals for zeta-functions are not known, we will give a full proof of
Theorem 5. For this, we will use separate lemmas.

For �( )∈A Ω
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Lemma 6. Suppose that the parameters α α,…, r1
are algebraically independent over �, and ⩽ ⩽∕ ∕

T H T
27 82 1 2.

Then P
T H α, ,

Ω

r

converges weakly to the Haar measure mH as → ∞T .

Proof. A classical way for investigation of the weak convergence of probability measures in compact groups is
the Fourier transform method, see, for example, [24]. The characters of the group Ω

r are of the form
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We need to show that ( )F k k, …,T H α r, , 1
, as → ∞T , converges to the Fourier transform of the Haar measure mH ,

i.e.,
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(3)

Now, suppose that ( ) ( )≠k k, …, 0, …,0r1
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and this contradicts the algebraic independence of the numbers α α,…, r1
. Thus, (4) holds, and, after integration
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Since → ∞H as → ∞T , this shows that, for ( ) ( )≠k k, …, 0, …,0r1
,
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F k klim , …, 0,

T

T H α r, , 1

and this together with (3) proves (2). □

We notice that → ∞H as → ∞T is the sufficient requirement for H in Lemma 6. Moreover, in place of
algebraic independence of α α,…, r1

, we may use the linear independence over � for the set ( )L α α, …, r1
.

Next, we will apply Lemma 6 for the proof of a limit lemma in the space ( )H D
r . Let > ∕β 1 2 be a fixed
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0
and =j r1,…, ,

( ) =
⎧
⎨
⎩
−⎛

⎝
+ ⎞

⎠
⎫
⎬
⎭

v m α

m α

n

, exp .n j

j

β

Define

( ) ( ( ) ( ))=ζ s α ζ s α ζ s α, , , …, , ,n n n r1
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It is obvious, that the latter series are absolutely convergent in any half-plane >σ σ
0
with finite σ

0
.

For �( ( ))∈A H D
r , set
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For the definition of the limit measure of PT H n α, , ,
as → ∞T , we introduce the function ( )→u H D: Ωn α
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,
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( ) ( )=u ω ζ s α ω, , ,n α n,
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where
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In addition, the latter series converges absolutely for >σ σ
0
, thus, uniformly with respect to ωj. Hence, the

function un α,
is continuous; therefore, it is � �( ( ( )) ( ( )))D H DΩ ,
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sure mH on �( ( ))Ω , Ω
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Lemma 7. Suppose that the parameters α α,…, r1
are algebraically independent over �, and ⩽ ⩽∕ ∕

T H T
27 82 1 2.

Then PT H n α, , ,
converges weakly to Q

n α,

as → ∞T .

Proof. From the definitions of P
T H α, ,

Ω

r

, PT H n α, , ,
and un α,

, it follows that, for �( ( ))∈A H D
r ,
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P P uT H n α T H α n α, , , , ,

Ω

,

1

r

. Now, this equality, continuity of the function
un α,

and preservation of weak convergence under continuous mappings, see, for example, Section 5 of [25],
together with Lemma 6 show that PT H n α, , ,

converges weakly to the measure Q
n α,

as → ∞T . □

In addition, define two measures
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τ T ζ s iτ α A A H D

1

meas 0, : , , ,T α

r

,

and
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1

meas 0, : , , .T n α n

r

, ,

Then in [22], using the linear independence of the set ( )L α α, …, r1
, it was obtained that PT n α, ,

converges weakly
to Q

n α,

, and PT α,
converges weakly to Pζ α,

as → ∞T . Moreover, Q
n α,

, as → ∞n , and PT α,
, as → ∞T , converges

weakly to the same limit measure, i.e., to Pζ α,
. Since the algebraic independence over � of numbers α α,…, r1

implies the linear independence of ( )L α α, …, r1
, we have the following statement.

Lemma 8. Suppose that the parameters α α,…, r1
are algebraically independent over �. Then Q

n α,

converges
weakly to Pζ α,

as → ∞n .

From Lemma 8, it follows that, for the proof of Theorem 5, it suffices to show that the measures PT H α, ,
,

as → ∞T , and Q
n α,

, as → ∞n , have the same limit measure. For this aim, we need some mean value estimate.
Before the statement of a mean value lemma, we recall a metric in ( )H D

r . For ( )∈g g H D,
1 2

, set

( )
∣ ( ) ( )∣

∣ ( ) ( )∣
∑=

−
+ −=

∞
− ∈

∈
d g g

g s g s

g s g s

, 2

sup

1 sup

,

m

m
s K

s K

1 2

1

1 2

1 2

m

m

where �{ }∈ ⊂K m D:m is the sequence of compact embedded sets such that the strip D is the union of all Km,
and each compact set ⊂K D lies in some Km. Then d is a metric in ( )H D , which induces the topology of uniform
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convergence on compacta. Setting, for ( ) ( ) ( )= = ∈g g g g g g H D, …, , , …
r r

r

1
11 1

2
21 2

,

( ) ( )=
⩽ ⩽

d g g d g g, max ,r

j r
j j

1 2

1

1 2

gives the metric in ( )H D
r which induces the product topology.

Lemma 9. Suppose that the parameters α α,…, r1
are algebraically independent over �, and ⩽ ⩽∕ ∕

T H T
27 82 1 2.

Then

( ( ) ( ))∫ + + =
→∞ →∞

+

H

d ζ s iτ α ζ s iτ α τlim limsup

1

, , , d 0.

n
T

T

T H

r n

Proof. Since the numbers α α,…, r1
are algebraically independent over �, they are transcendental. Therefore,

in view of Lemma 5 of [2],

( ( ) ( ))∫ + + = =
→∞ →∞

+

H

d ζ s iτ α ζ s iτ α τ j rlim limsup

1

, , , d 0, 1,…, .

n
T

T

T H

j n j
(5)

This and the definition of the metric dr prove the lemma.
For the convenience of the reader, we will present a proof of (5). By the definition of the metric d, the latter

equalities follow from

∣ ( ) ( )∣∫ + − + =
→∞ →∞

+

∈H

ζ s iτ α ζ s iτ α τ j rlim limsup

1

sup , , d , 1,… ,

n
T

T

T H

s K

j n j
(6)

for every compact set ⊂K D.
Let

( ) ⎜ ⎟= ⎛
⎝

⎞
⎠

l s

β

s

β

n

1

Γ .n

s

Then the classical Mellin formula implies, for >σ 1, the representation ( =α αj )

( ) ( ) ( )∫= +
− ∞

+ ∞

ζ s α

πi

ζ s z α l z z,

1

2

, d .n

β i

β i

n (7)

Suppose ⊂K D is a compact set. Then there exists >δ 0 such that ∕ + ⩽ ⩽ −δ σ δ1 2 2 1 for all + ∈σ it K .
Let = ∕ +β δ1 2 and = ∕ + −β δ σ1 2

1

. Then the residue theorem, in view of (7), gives

( ) ( ) ( ) ( ) ( )∫− = + + −
− ∞

+ ∞

ζ s α ζ s α

π

ζ s z α l z z l s, ,

1

2

, d 1 .n

β i

β i

n n

1

1

Therefore,

∣ ( ) ( )∣ ∣ ( )∣∫+ − + ≪ ⎛
⎝ + + + ⎞

⎠
⎛
⎝ + − + ⎞

⎠ + − −
∈ −∞

∞

∈ ∈
ζ s iτ α ζ s iτ α ζ δ iτ iv α l δ s iv v l s iτsup , ,

1

2

, sup

1

2

d sup 1 .

s K

n

s K

n

s K

n

Hence, we have

∣ ( ) ( )∣

∣ ( )∣
{ }

(∣ ∣ )

∫

∫ ∫

∫ ∫

+ − +

≪
⎛

⎝
⎜ ⎛

⎝ + + + ⎞
⎠

⎞

⎠
⎟ ⎛

⎝ + − + ⎞
⎠

+ − − +
−

+

= + + >

+

∈

−

+

∈

+

∈

− +
∕

H

ζ s iτ α ζ s iτ α τ

H

ζ δ iτ iv α τ l δ s iv v

H

l s iτ τ

n c T

H

τ τ

I I I c

1

sup , , d

1 1

2

, d sup

1

2

d

1

sup 1 d

exp log

1 d

, 0.

T

T H

s K

n

δ α K

T

T

T

T H

s K

n

T

T H

s K

n

δ

T

T H

, ,

log

log

1

2

1 2

def

1 2 3 1

2

2

(8)
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For estimation of I
1
, the mean square estimate in short intervals obtained in [2] is applied. Namely, if ≠ ∕α 1 2

and 1, and ∕ < ⩽ ∕σ1 2 7 12, then, for ⩽ ⩽∕
T H T

σ27 82 , uniformly in H ,

∣ ( )∣∫ + ≪
+

ζ σ it α τ H, d .

T

T H

σ α

2

,

Application of the latter result gives, for ∣ ∣ ⩽v Tlog

2 ,

( ∣ ∣) ( ∣ ∣)∫ ⎛
⎝ + + + ⎞

⎠ ≪ ⎛
⎝ + ⎞

⎠ ≪ +
+ ∕

H

ζ δ iτ iv α τ

H

H v v

1 1

2

, d

1

1 ,

T

T H

δ α δ α,

1 2

,

and

≪ −
I n .δ α

δ

1 ,
(9)

Properties of the function ( )sΓ lead to

≪
∕ −

I

n

H

.K

δ

2

1 2 2

(10)

Since ( )=I o 1
3

as → ∞T , this (8) and (9) prove (6) □

For convenience, we additionally state one lemma on the convergence of random elements in distribu-

tion (
�

→).

Lemma 10. Suppose that the metric space �( )ρ, is separable, the � -valued random elements Xnk and Yn,
�∈k n, , are defined on the same probability space  �( )νΩ, , , for every �∈k ,

�

→
→∞

X Xnk
n

k

and
�

→
→∞

X X .k
k

If, for every >δ 0,
{ ( ) }⩾ =

→∞ →∞
ν ρ X Y δlim limsup , 0,

k
n

nk n

then
�

→
→∞

Y Xn
n

.

Proof of the lemma can be found, for example, in [25], Theorem 4.2.

Proof of Theorem 5. On a certain probability space  �( )νΩ, , , define a random variable θT H, , and suppose that
it is uniformly distributed on [ ]+T T H, . Introduce the ( )H D

r -valued random elements

( ) ( )= = +ζ ζ s ζ s iθ α,T H α T H α T H, , , , ,

and
( ) ( )= = +ζ ζ s ζ s iθ α, ,T H n α T H n α n T H, , , , , , ,

and let ( )=ζ ζ sn α n α, ,
be the ( )H D

r -valued random element having the distributionQ
n α,

, where the measureQ
n α,

is the same as in Lemma 8. Lemma 8 implies the relation

�

→
→∞

ζ P ,n α
n

ζ α, ,
(11)

while Lemma 7 gives
�

→
→∞

ζ ζ .T H n α
T

n α, , , ,

(12)
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Moreover, using Lemma 9, we obtain that, for every >δ 0,

{ ( ) }

{ [ ] ( ( ) ( )) }

( ( ) ( ))∫

⩾

= ∈ + + + ⩾

⩽ + + =

→∞ →∞

→∞ →∞

→∞ →∞

+

ν d ζ ζ δ

H

τ T T H d ζ s iτ α ζ s iτ α δ

δH

d ζ s iτ α ζ s iτ α τ

lim limsup ,

lim limsup

1

meas , : , , ,

lim limsup

1

, , , d 0.

n
T

r T H α T H n α

n
T

r n

n
T

T

T H

r n

, , , , ,

This together with relations (11) and (12) shows that all conditions of Lemma 10 satisfied for the random
elements ζT H α, ,

, ζT H n α, , ,
and ζn α,

. Therefore, we have

�

→
→∞

ζ P ,T H α
T

ζ α, , ,

and this gives the first assertion of the theorem.
In [22], under a hypothesis that the set ( )L α α, …, r1

is linearly independent over �, it was proved that
the support of the measure Pζ α,

is the whole space ( )H D
r . Since the algebraic independence of α α,…, r1

implies
the linear independence of ( )L α α, …, r1

, this proves the second assertion of the theorem. □

3 Proof of universality

We recall the Mergelyan theorem on approximation of analytic functions by polynomials [26,27].

Lemma 11. [26] Let K be a compact set with a connected complement on the complex plane, and ( )g s

a continuous function on K analytic in the interior of K. Then, for every >δ 0, there exists a polynomial ( )p s

such that

∣ ( ) ( )∣− <
∈

g s p s δsup .

s K

Proof of Theorem 4. Consider the set

( ) ( ) ∣ ( ) ( )∣=
⎧
⎨
⎩

∈ − <
⎫
⎬
⎭⩽ ⩽ ∈

G g g H D g s p s

ε

, …, : sup sup

2

,ε r

r

j r s K

j j1

1 j

where ( ) ( )p s p s,…,
r1

are polynomials such that

∣ ( ) ( )∣− <
⩽ ⩽ ∈

f s p s

ε

sup sup

2

.

j r s K

j j

1 j

(13)

This is possible by Lemma 11. Since, by Theorem 5, the support Sζ α,
of Pζ α,

is the set ( )H D
r , ( ( ) ( ))p s p s, …,

r1

is an element of Sζ α,
. Therefore, the set Gε is an open neighborhood of an element of the support Sζ α,

. Hence,
by the property of supports,

( ) >P G 0.ζ α ε,
(14)

Let

G ( ) ( ) ∣ ( ) ( )∣=
⎧
⎨
⎩

∈ − <
⎫
⎬
⎭⩽ ⩽ ∈

g g H D g s f s ε, …, : sup sup .ε r

r

j r s K

j j1

1 j

Then (13), and the definitions ofGε andGε show that the setGε lies inGε. Thus, taking into account (14), we have

G( ) >P 0.ζ α ε,
(15)
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The latter inequality, Theorem 5 and the equivalence of weak convergence of probability measures in terms
of open sets (see Theorem 2.1 of [25]) lead to

G G( ) ( )⩾ >
→∞

P Pliminf 0,

T

T H α ε ζ α ε, , ,

and the definitions of PT H α, ,
and Gε prove the first assertion of the theorem.

To prove the second assertion of the theorem, we will apply the equivalent of weak convergence in terms
of continuity sets. We recall that �( ( ))∈A H D

r is a continuity set of Pζ α,
if ( )∂ =P A 0ζ α,

, where ∂A denotes
the boundary of A.

Observing that the boundary of G∂ ε of the set Gε lies in the set

( ) ( ) ∣ ( ) ( )∣
⎧
⎨
⎩

∈ − =
⎫
⎬
⎭⩽ ⩽ ∈

g g H D g s f s ε, …, : sup sup ,
r

r

j r s K

j j1

1 j

we obtain that the boundaries G∂ ε
1

and G∂ ε
2

have no common elements for ≠ε ε
1 2

. This remark implies that
G( )∂ >P 0ζ α ε,

for at most countably many >ε 0. Therefore, the setGε is a continuity set of the measure Pζ α,
for

all but at most countably many >ε 0. Hence, Theorem 5 and the equivalence of weak convergence of prob-
ability measures in terms of continuity sets (see Theorem 2.1 of [25]) give, by (15), that

G G( ) ( )= >
→∞

P Plim 0

T

T H α ε ζ α ε, , ,

for all but at most countably many >ε 0. The definitions of PT H α, ,
, Gε and Pζ α,

show that the limit

[ ] ∣ ( ) ( )∣

∣ ( ) ( )∣

⎧
⎨
⎩

∈ + + − <
⎫
⎬
⎭

=
⎧
⎨
⎩

∈ − <
⎫
⎬
⎭

→∞ ⩽ ⩽ ∈

⩽ ⩽ ∈

H

τ T T H ζ s iτ α f s ε

m ω ζ s α ω f s ε

lim

1

meas , : sup sup ,

Ω : sup sup , ,

T
j r s K

j j

H

r

j r s K

j j j

1

1

j

j

exists and is positive for all but at most countably many >ε 0. The theorem is proved. □
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