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Abstract: For ≥n 4, let ���n be the orientation-preserving and order-decreasing transformation semigroup
on the finite chain { }= < <X n1 …n . First, we determine the set of two-sided zero-divisors of ���n, and its
cardinality. Then, we let ���( )Γ n be the graph whose vertices are the two-sided zero-divisors of ���n

excluding the zero element θ and distinct two vertices α and β joined by an edge in case = =αβ θ βα. In this
study, we prove that ���( )Γ n is a connected graph, and we find the diameter, girth, domination number,
minimum degree, and maximum degree of ���( )Γ n . Moreover, we give a lower bound for clique number
of ���( )Γ n and we prove that ���( )Γ n is an imperfect graph.
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1 Introduction

In the literature, the zero-divisor graph of a commutative ring was defined by Beck [1]. In Beck’s definition, the
zero element is a vertex. Later, Anderson and Livingston redefined the zero-divisor graph without the zero
element [2], which is now the standard definition of the zero-divisor graph of a commutative ring. Let R be a
commutative ring, 0 be the zero element of R, and ( )Z R be the set of zero-divisors of R. The zero-divisor graph
of R is an undirected graph ( )RΓ with vertex set ( ) ( ) { }=Z R Z R* \ 0 and distinct two vertices x and y in ( )Z R * are
adjacent vertices in ( )RΓ if and only if =xy 0. Similarly, the zero-divisor graph of a commutative semigroup
was defined, and some properties of this graph were investigated [3,4]. Since then, zero-divisor graphs of some
special commutative semigroups have been investigated (for example [5]). Redmond [6] defined four different
zero-divisor graphs on a non-commutative ring. Those graphs can also be considered on a non-commutative
semigroup with a zero element. Note that every zero-divisor graph is simple, meaning it has no loops or
multiple edges. Let S be a non-commutative semigroup with 0. We assign the following subsets on S:

( ) { { }}

( ) { { }}

( ) ( ) { } ( ) ( ) { }

= ∈ = = ∈
= ∈ = = ∈
= =

T S x S xy zx y z S

Z S x S xy yx y S

T S T S Z S Z S

: 0 for some , \ 0 ,

: 0 or 0 for some \ 0 ,

* \ 0 and * \ 0 .

We define four different zero-divisor graphs on S as follows:
• ( ) ( )=S SΓ Γ1 is the undirected graph with vertices ( )T S * and distinct two vertices x and y are adjacent if and
only if = =xy yx0 ;
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• ( )SΓ2 is the undirected graph with vertices ( )Z S * and distinct two vertices x and y are adjacent if and only
if = =xy yx0 ;

• ( )SΓ3 is the undirected graph with vertices ( )Z S * and distinct two vertices x and y are adjacent if and only if
=xy 0 or =yx 0; and

• ( )SΓ4 is the directed graph with vertices ( )Z S * and for distinct two vertices x and y, →x y is a directed edge
if and only if =xy 0.

In this study, we only consider the zero-divisor graph given in the first definition above.
For �∈n , let �n denote the full transformation semigroup on the chain { }=X n1, …,n under its natural

order. An element �∈α n is called order-preserving if ≤x y implies ≤xα yα for all ∈x y X, n, and order-
decreasing if ≤xα x for all ∈x Xn. Then, the subsemigroup consisting of all order-preserving transformations
in �n is denoted by �n, and the subsemigroup consisting of all order-decreasing transformations in �n

is denoted by �n, and the subsemigroup consisting of all order-preserving and order-decreasing transforma-
tions in �n is denoted by �n. Higgins [7] proved that the cardinality of �n is the nth Catalan number, namely,

= ⎛
⎝

⎞
⎠+Cn

n

n

n

1

1

2 , that is why �n is also known as the nth Catalan monoid. For a sequence ( )x x x, , …, r1 2 on Xn, if there

exists no more than one subscript i such that > +x xi i 1, where =+x xr 1 1, then ( )x x x, , …, r1 2 is called a cyclic.
An element α in �n is called orientation-preserving if ( )α α nα1 , 2 , …, is a cyclic. Then, the subsemigroup
consisting of all orientation-preserving transformations in �n is denoted by ��n and the subsemigroup
consisting of all order-decreasing transformations in ��n is denoted by ���n. �( )Γ n1 was investigated [8].
Let �n be the partial transformation semigroup on Xn, and let �� � �= \n n n. The undirected graph �( )Γ n

was studied [9], the undirected graph ��( )Γ n3 and the directed graph ��( )Γ n4 were studied [10]. Recently,
Korkmaz defined two undirected graphs on �n and investigated some properties of these two graphs [11].
We refer to [12–14] for other terms in semigroup and graph theories, which are not explained here.

In this study, we investigate some properties of ���( )Γ n . Since ��� �=n n for =n 1, 2, we suppose that

≥n 3 and note that ���n is a non-commutative semigroup with the zero element = ⎛
⎝

⋯
⋯

⎞
⎠θ

n1 2

1 1 1
.

And the identity element of ���n will be denoted by 1n. In this study, we prove that ���( )Γ n is a connected
graph, and we find the diameter, girth, domination number, minimum degree, and maximum degree
of ���( )Γ n . Moreover, we give a lower bound for clique number of ���( )Γ n and prove that ���( )Γ n

is an imperfect graph.

2 Zero-divisors of ���n

For ≥n 3, let ��� ��� { }= θ* \
n n , and then we define the following sets:

��� ��� ���

��� ��� ���

��� ��� ���

( ) { }

( ) { }

( ) { }

= = ∈ = ∈
= = ∈ = ∈
= = ∈ = = ∈ = ∩

L L α αβ θ β

R R α γα θ γ

T T α αβ θ γα β γ L R

: for some * ,

: for some * , and

: for some , * ,

n n n

n n n

n n n

which are called the set of left, right, and two-sided zero-divisors of ���n, respectively. In this section, we
determine the left, right, and two-sided zero-divisors of ���n, and then, find their cardinalities. Let us
remember known result from Korkmaz [11].

Proposition 2.1. [11, Proposition 1] For any �∈α β, n, =αβ θ if and only if ( ) ⊆ −
α βim 1 1. In particular, =α θ

2

if and only if ( ) ⊆ −
α αim 1 1.

Let us now define some specific mappings that will be useful throughout this study. For each ≤ ≤k n2 , let

= ⎛
⎝

⋯ −
⋯

⎞
⎠β

n n

k

1 1

1 1
and

k
(1)
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= ⎛
⎝

⋯ − + ⋯
⋯ ⋯

⎞
⎠γ

k k k n1 1 1

1 1 2 1 1
.

k
(2)

For each ≤ ≤ −r n1 1, let ��� ���( ) { ∣ ( )∣ }= ∈ ≤n r α α r, : imn , and recall that Narayana number ( )N n r,

is defined by ( ) = ⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠−N n r,

n

n

r

n

r

1

1
. It is known that ( )∑ == N n r C,

r

n

n1 (for example [15]). It is shown [16, Lemma 1

(i)] that ���∣ ( )∣ ( )= − + + ∑ + ∑ ∑= = + =n r n C N m k, 1 ,
m

r

m m r

n

k

r

1 1 1 . Moreover, since ��� ���( ) { }− =n n, 1 \ 1n n ,

we conclude that ���∣ ∣ = − + ∑ =n C1n m

n

m1 for ≥n 3. Thus, we have the following result.

Lemma 2.2. For ≥n 3, ��� { }=L \ 1n n , and so ∣ ∣ = − + ∑ =L n C
m

n

m1 .

Proof. For any ��� { }∈α \ 1n n , let ( )=A X α\imn . Since ≠ ∅A and ( )∈ α1 im , we have ( ) =A kmax for some
≤ ≤k n2 . If we consider γ

k
as defined in (2), then it is clear that ���∈γ *

k n
and =αγ θ

k
, and so α is a left-zero

divisor element of ���n. Since 1n is the identity, we have ��� { }=L \ 1n n , and so ∣ ∣ = − + ∑ =L n C
m

n

m1 . □

For any �∈α n and∅ ≠ ⊆Y Xn, we denote the restriction map of α toY by ∣α
Y
. For any ��∈α n, the order-

preserving degree of α is defined by

�( ) { }= ∈∣α m αopd max : .mY

Thus, ( ) =α nopd for all �∈α n and ( )≤ ≤ −α n2 opd 1 for all ��� �∈α \n n since =α1 1 for all �∈α n.
For any ��� �∈α \n n, if ( ) =α mopd , then it is clear that α has the following tabular form

= ⎛
⎝

⋯ +
⋯

⎞
⎠α

m m n

α mα

1 2 1 …

1 2 1 … 1

with the property that ≤ ≤ ≤ ≤α mα m1 2 … .

Lemma 2.3. For ≥n 3, ���{ ∣ ∣ }= ∈ ≥−
R α α: 1 2n

1 , or equivalently, ��� � �( ) { }= ∪ ∈ =R α α\ : 2 1n n n ,
and so,

∣ ∣ ∑= − + +
=

−

R n C C1 .n

m

n

m

1

2

Proof. Let ���{ ∣ ∣ }= ∈ ≥−
A α α: 1 2n

1 , and for any ∈α A, let ( ) =α mopd and suppose that ≠m n. If we
consider β

n
as defined in (1), then since =nα 1, we have =β α θ

n
, and so α is a right-zero divisor element of

���n. Suppose that =m n. Since �∈α n and ∣ ∣ ≥−
α1 21 , we must have = =α α1 2 1. If we consider β

2
as defined

in (1), then we have =β α θ
2

, and so α is a right-zero divisor element of ���n.
For any ���∈α n, let ∣ ∣ =−

α1 11 , that is { }=−
α1 11 . If =βα θ for some ���∈β n, then it follows from

Proposition 2.1 that ( ) { }⊆ =−
β αim 1 11 , and so =β θ. Thus, α cannot be a right-zero divisor. Therefore, we have

��� ��� � �{ ∣ ∣ } ( ) { }= ∈ ≥ = ∪ ∈ =−
R α α α α: 1 2 \ : 2 1 .n n n n

1

Moreover, if we define the mapping � �{ }∈ = → −ψ α α: : 2 2n n 1 by

= ⎛
⎝

⋯ −
− − ⋯ −

⎞
⎠αψ

n

α α nα

1 2 3 1

1 3 1 4 1 1

for all �{ }∈ ∈ =α α α: 2 2n , then it is clear thatψ is a well-defined mapping. For any �{ }∈ ∈ =α α α α, : 2 2n1 2 ,
suppose that =α ψ α ψ1 2 . Then, since = =α α1 1 11 2, = =α α2 2 21 2 and =kα kα1 2 for ≤ ≤k n3 , it follows that

=α α1 2, and so ψ is one to one. For any �∈ −β n 1, define

( )
= ⎛

⎝
⋯

+ ⋯ − +
⎞
⎠β

n

β n β

ˆ
1 2 3

1 2 2 1 1 1
.
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Then, it is clear that �{ }∈ ∈ =β α αˆ : 2 2n , and that =βψ βˆ . Thus, ψ is onto, and so ψ is a bijection. Moreover,
since � � �{ } { }∈ = = ∈ =α α α α: 2 1 \ : 2 2n n n , it follows that

� � �∣{ }∣ ∣ ∣ ∣{ }∣∈ = = − ∈ = = − −α α α α C C: 2 1 : 2 2 .n n n n n 1

Therefore, from [16, Lemma 1 (i)], we have

��� � �∣ ∣ ∣ ∣ ∣{ }∣

( )∑ ∑⎟⎜

= + ∈ =

=
⎛
⎝

− +
⎞
⎠

+ − = − + +
=

−

−
=

−

R α α

n C C C n C C

\ : 2 1

1 1 ,

n n n

m

n

m n n n

m

n

m

1

1

1

1

2

as required. □

Since ⊆R L, we have the following immediate corollary.

Corollary 2.4. For ≥n 3, =T R.

3 Zero-divisor graph of ���n

We denote the vertex set and the edge set of a simple graph G by ( )V G and ( )E G , respectively. For any +n 1

different vertices = =u v v v v, ,…, n0 1 in ( )V G , if there exists an edge − +v vi i 1 in ( )E G for each ≤ ≤ −i n0 1,
then = − − − − =−u v v v v v… n n0 1 1 is called a path between u and v, and n is called the length of the path. The
length of a shortest path between u and v in G is denoted by ( )d u v,G . If there exist a path for all two distinct
vertices in G, then G is called a connected graph. The eccentricity of a vertex v in a connected simple graph G,
denoted by ( )vecc , is defined by

( ) { ( ) ( )}= ∈v d u v u V Gecc max , : .G

The diameter of a connected simple graph G, denoted by ( )Gdiam , is defined by

( ) { ( ) ( )}= ∈G v v V Gdiam max ecc : .

Observe that ���( ( )) = ⎧⎨⎩
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎫⎬⎭V Γ

1 2 3

1 1 2
,

1 2 3

1 1 3
,

1 2 3

1 2 1
3 and ���( ( ))E Γ 3 contains only one edge, namely,

⎛
⎝

⎞
⎠ − ⎛

⎝
⎞
⎠

1 2 3

1 1 3

1 2 3

1 2 1
. Next we let

= ⎛
⎝

⋯ − + ⋯
⋯ ⋯

⎞
⎠ ≤ ≤δ

k k k n

k
k n

1 1 1

1 1 1 1
for 2 ,k

(3)

= ⎛
⎝

⋯ + ⋯
⋯ + ⋯ +

⎞
⎠ ≤ ≤ −λ

k k n

k k
k n

1 1

1 1 1 1
for 2 1,k

(4)

= ⎛
⎝

⎞
⎠ρ

n

n

1 2 3 …

1 1 3 …
, and (5)

= ⎛
⎝ −

⎞
⎠τ

n

n

1 2 3 …

1 1 2 … 1
. (6)

For convenience, we use the notation Γ instead of ���( )Γ n . For any ( )∈v V G , the neighborhood of v

is denoted by ( )N v and defined by

( ) { ( ) ( )}= ∈ − ∈N v u V G u v E G: .

Moreover, for ( )∈α V Γ , we let

� ��� �( ) ( ) ( ) ( ) ( )= ∩ = ∩N α N α N α N αand \ .n n n1 2

Then, we state and prove one of the main results in this study.
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Theorem 3.1. For ≥n 4, Γ is connected and ( ) =diam Γ 4.

Proof. For any distinct ( )∈α β V, Γ , we consider three cases; both of them in �n, just one of them in �n and none
of them in �n.
Case 1: Suppose that �∈α β, n. First note that = =α β2 1 2 since ��� �( ) ( )∈ = ∪α β V, Γ \n n �{ }∈ =α α: 2 1n .
Then, we consider three subcases; none of the image sets contains n, just one of the image sets contains n, and
both the image sets contain n.
Subcase (i). Suppose that <nα nβ n, . If one of them is β

2
as defined in (1), then we have the path −α β; and if

none of them is β
2
, then we have the path − −α β β

2
.

Subcase (ii). Without loss of generality, suppose that =nα n and <nβ n. If ( ( ))=k X αmin \imn , then since
≤ ≤ −k n2 1, we consider γ

k
, β

2
, and β

3
as defined in (1), and (2). Suppose that { }∉β β β,

2 3
. If ≠k 2, then

− − −α γ β β
k 2

is a path in Γ, and if =k 2, then − − − −α γ β β β
2 3 2

is a path in Γ, and so, ( ) ≤d α β, 4Γ . If
{ }∈β β β,

2 3
, then it is similarly shown that α and β are connected, and ( ) ≤d α β, 3Γ .

Subcase (iii). Suppose that =nα n and =nβ n. If ( ( ))=k X αmin \imn and ( ( ))=l X βmin \imn , then since
≤ ≤ −k l n2 , 1, we consider δ2, γ

k
, γ

l
, and β

n
as defined in (1), (2), and (3). If = =k l 2, then − −α δ β2 is a

path in Γ since = = = =α α β β1 2 1 1 2 . Without loss of generality, suppose that ≠k 2 and =l 2. Similarly, if
{ }∉α β β,

n
, then − − − −α γ β δ β

k n 2 is a path in Γ and if =α β
n
or =β β

n
, then it is clear that ( ) ≤d α β, 2Γ . Now,

suppose ≥k l, 3. If =k l, then − −α γ β
k

is a path in Γ, and if ≠k l, then − − −α γ γ β
k l

is a path in Γ.
Case 2: Suppose that �∈α n and ��� �∈β \n n. Let ( ( ))=k X αmin \imn . If =nα n, ≠α β

n
and ≠β γ

k
, then

− − −α γ β β
k n

is a path in Γ. If =nα n and =α β
n
or =nα n and =β γ

k
, then it is clear that α and β are adjacent

vertices in Γ. If <nα n, ≠α β
2
and ≠β δ3, then − − − −α β δ β β

n2 3 is a path in Γ. If <nα n and =α β
2
or <nα n

and =β δ3, then it is also clear that ( ) ≤d α β, 3Γ .
Case 3: Suppose that both α and β in ��� �\n n. Since = =nα nβ1 , it follows that − −α β β

n
is a path in Γ.

Therefore, Γ is a connected graph and ( ) ≤d α β, 4Γ for all ( )∈α β V, Γ . If we consider ρ and τ as defined in
(5) and (6), then we note that ρ and τ are non-adjacent vertices in Γ. Moreover, if = =ρη ηρ θ and = =τμ μτ θ,
then we have =η δ2 and =μ β

2
. Finally, since ≠β δ θ

2 2 , it follows that ( ) ≥d ρ τ, 4Γ , and so ( ) =diam Γ 4. □

For any simple graph G and ( )∈v V G , the degree of v, denoted by ( )vdeg
G

, is defined as the number of
adjacent vertices to v in G. Moreover, the minimum degree of G, denoted by ( )δ G , is defined by

( ) { ( ) ( )}= ∈δ G v v V Gmin deg : ,
G

and the maximum degree of G, denoted by ( )Δ G , is defined by

( ) { ( ) ( )}= ∈Δ G v v V Gmax deg : .
G

Thus, ifG is connected, then ( ) ≥δ G 1. Moreover, since ( ) ( )= =ρ τdeg deg 1
Γ Γ

, we have the following immediate
corollary.

Corollary 3.2. For ≥n 4, ( ) =δ Γ 1.

To find ( )Δ Γ , we need some preliminary results. Let �{ }= ∈ =U α α: 2 2n1 and �{ }= ∈ =U α nα n:n2 .
As shown in the proof of Lemma 2.3 that ∣ ∣ = −U Cn1 1, one can easily show that ∣ ∣ = −U Cn2 1 and ∣ ∣∩U U1 2

�∣{ }∣= ∈ = = = −α α nα n C: 2 2 andn n 2. Since � �{ } ( )∈ = < = ∪α α nα n U U: 2 1 and \n n 1 2 , we conclude that
the cardinality of the set �{ }∈ = <α α nα n: 2 1 andn is − +− −C C C2n n n1 2 (see, also [8, proof of Lemma 3.3]).

For ≤ ≤m n2 , let ���{ ( ) }= ∈ =Q α α m: opd
m n . Then, it is shown [16, Lemma 1] that

���

�

( )

( )

( ) { }

= ⋃

∩ = ∅ ≤ ≠ ′ ≤
∪ ≤ ≤

=

′

i Q

ii Q Q m m n

iii Q θ m n

,

for all 2 , and

and are isomorphic for each 2 .

n

m

n

m

m m

m m

2

By using these results, we prove the following lemma.
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Lemma 3.3. For ≥n 4, ( ) = − + − −− −β C C C ndeg 1n n nΓ 2 1 2 .

Proof. For ≥n 4, let

� � 	 ��� �

� ��� �

{ ( ) } { }

{ }

= ∈ ∩ < = ∈ =
= ∈ =

α V nα n α α

α α

Γ : , \ : 2 1 , and

\ : 2 2 .

n n n

n n

Then, it is clear that �∈β
2

, 	 � ��� �∪ = \n n, and 	 �∩ = ∅. Since � �{ } {∪ = ∈ =θ α α nα: 2 1 andn

}<n , it follows that �∣ ∣ = − + −− −C C C2 1n n n1 2 . For ≤ ≤ −m n2 1, if ���{ ( )′ = ∈ =Q α α m α: opd and 2
m n

}=2 , then � is a disjoint union of ′ ′−Q Q,…,
n2 1

, and that for each ≤ ≤ −m n2 1, ′Q
m

and �{ }∈ =α α: 2 2m are

isomorphic semigroups, and �∣{ }∣∈ = = −α α C: 2 2m m 1, it follows that �∣ ∣ = ∑ = ∑=
−

− =
−

C C
m

n

m m

n

m2

1

1 1

2 . Moreover,
from the proof of Lemma 2.3, we have 	 ��� � �∣ ∣ ∣ ∣ ∣ ∣= − = − +−C n\ 1n n n 1 . Therefore, since any α in ( )V Γ

is an adjacent vertex to β
2
if and only if � 	( ) { }∈ ∪α β\

2
, it follows that � 	( ) ∣ ∣ ∣ ∣= − + = − −β C Cdeg 1 n nΓ 2 1

+ − −−C n 1n 2 . □

It is known that the Catalan numbers satisfy the recurrence relation = ∑ =
−

− −C C Cn m

n

m n m0

1

1 , where =C 10 [17].
Therefore, we have the following proposition.

Proposition 3.4. For ≥n 4, ( ) ( )> ∑ −=
−

β Cdeg 1
i

n

iΓ 2 2

1 .

Proof. For ≥n 4, since ≥−C 2n 2 , it follows from Lemma 3.3 that

( )

( ) ( )

∑

∑ ∑

∑ ∑ ∑

⎟

⎟ ⎟

⎟

⎜

⎜ ⎜

⎜

=
⎛
⎝

⎞
⎠

− + − −

=
⎛
⎝

⎞
⎠

+ − − ≥
⎛
⎝

⎞
⎠

− +

>
⎛
⎝

⎞
⎠

− + = − = −

=

−

− − − −

=

−

− − −
=

−

− −

=

−

=

−

=

−

β C C C C n

C C C n C C n

C n C C

deg 1

1 1

1 1 1 ,

m

n

m n m n n

m

n

m n m n

m

n

m n m

m

n

m

m

n

m

m

n

m

Γ 2

0

1

1 1 2

1

1

1 2

1

1

1

1

1

1

1

2

1

as required. □

Proposition 3.5. For ≥n 4 and ≤ ≤k n3 , ( ) ( )<β βdeg deg
kΓ Γ 2

.

Proof. First, we show that ( ) ( )<β βdeg deg
nΓ Γ 2

. It is clear that ( ) = ∅N β
n1 and ��� �( ) =N β \

n n n2 , and so from
Proposition 3.4, ( ) ( ) ( )= ∑ − <=

−
β C βdeg 1 deg

n i

n

iΓ 2

1

Γ 2
.

For all �( )∈ ∩α V Γ n, we recall =α2 1, and we let ≤ ≤ −k n3 1. Since ( ) ( )∈−λ N β N β\k k1 1 2 1 , it follows that
∣ ( )∣ ∣ ( )∣<N β N β

k1 1 2
. Moreover, if ( )∈α N β

k2 , then α has the following tabular form

( ) ( ) ( )
= ⎛

⎝
⋯ − + ⋯ −
⋯ − + ⋯ −

⎞
⎠α

k k k n n

α k α k α n α

1 2 1 1 1

1 2 1 1 1 1 1
.

If we let

( ) ( ) ( )
= ⎛

⎝
⋯ + ⋯ −
⋯ − + ⋯ −

⎞
⎠α

k k n n

α k α k α n α
˜

1 2 3 1 1

1 1 2 1 1 1 1
, (7)

then we have ( )∈α N β˜ 2 2
. If we define the mapping ( ) ( )→φ N β N β:

k k2 2 2
by =αφ α̃

k
for all ( )∈α N β

k2 , then it is
clear that φ

k
is a well-defined one to one mapping, and so ∣ ( )∣ ∣ ( )∣≤N β N β

k2 2 2
. Therefore, we conclude that

( ) ( )<β βdeg deg
kΓ Γ 2

for each ≤ ≤k n3 . □

Proposition 3.6. For ≥n 4 and ≤ ≤ −m n2 1, we have ( ) ( )<γ βdeg deg
mΓ Γ 2

.
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Proof. Let ≤ ≤ −m n2 1. It is clear that ( ) ( )⊆N γ N β
m2 2 2

for all ≤ ≤ −m n2 1. Moreover, since ( )∈γ N β
m 2 2

if >m 2, and since ( ) ( )⎛
⎝

⋯ −
⋯

⎞
⎠ ∈n n

N β N γ
1 2 3 1

1 1 2 2 1
\2 2 2 2

, it follows that ∣ ( )∣ ∣ ( )∣+ ≤N γ N β1
m2 2 2

for all

≤ ≤ −m n2 1.
For ≤ ≤m n2 , let �( ) { ( )}= ∈ = ∉J m α α m α: 2 1 and imn . Then, we show that ∣ ( )∣ ∣ ( )∣<J m J n for all

≤ ≤ −m n2 1. For ≤ ≤m n3 and ( )∈ −α J m 1 , let →α X Xˆ : n n be defined by

=
⎧
⎨
⎩

≠
− =xα

xα xα m

m xα m
ˆ

1

for all ∈x Xn. Similarly, the mapping ( ) ( )− →ψ J m J m: 1
m

defined by =αψ α̂
m

for all ( )∈ −α J m 1 is one
to one, and so ∣ ( )∣ ∣ ( )∣− ≤J m J m1 for all ≤ ≤m n3 . Moreover, if we consider the transformation

= ⎛
⎝

⋯ −
⋯ − −

⎞
⎠β

n n

n n

1 2 3 1

1 1 3 1 1
,

then it is clear that ( ) ( )∈ −β J n J n\ 1 and ≠β α̂ for all ( )∈ −α J n 1 , and soψ
n
is not onto, i.e., ∣ ( )∣ ∣ ( )∣− <J n J n1 .

Therefore, we have ∣ ( )∣ ∣ ( )∣<J m J n for all ≤ ≤ −m n2 1. Since

( ) ( ) { } ( ) { } ( ) { }= ∪ =N γ J m θ N β β J n θ\ and \ ,
m1 1 2 2

it follows that ∣ ( )∣ ∣ ( )∣− <N γ N β1
m1 1 2

for all ≤ ≤ −m n2 1. Therefore, ( ) ( )<γ βdeg deg
mΓ Γ 2

for all ≤ m2

≤ −n 1. □

Theorem 3.7. ( ) = − + − −− −Δ C C C nΓ 1n n n1 2 for ≥n 4.

Proof. Let ( )∈α V Γ . For �( )∈ ∩α V Γ n, let ( ( ) { })=k αmin im \ 1 , consider β
k
and suppose ≠α β

k
. For any ξ

( )∈ N α , it follows from Proposition 2.1 that ( ) ⊆ ⊆ =−
−

−
ξ α X βim 1 1n

k

1
1

1 and ( ) ( )⊆ ⊆ −
β α ξim im 1

k

1, and so ξβ
k

= =θ β ξ
k
. Thus, if ≠ξ β

k
, then ( )∈ξ N β

k
, and if =ξ β

k
, then ( )∈α N β

k
. Therefore, ( ) ( )≤α βdeg deg

kΓ Γ
,

and so from Proposition 3.5, ( ) ( )≤α βdeg deg
Γ Γ 2

.
If ��� �( ) ( )∈ ∩α V Γ \n n and ( ) =α mopd , then α has the following tabular form

( )
= ⎛

⎝
⋯ − + ⋯
⋯ − ⋯

⎞
⎠α

m m m n

α m α k

1 2 1 1

1 2 1 1 1

with the property ( )≤ ≤ ≤ − ≤ ≤ ≤ −α m α k m n1 2 … 1 1 and ≥k 2. If we consider =ᾱ

⎛
⎝

⋯ − + ⋯
⋯ ⋯

⎞
⎠

m m m n

k

1 1 1

1 1 1 1
, then we similarly have ( ) ( )≤α αdeg deg ¯Γ Γ

. Now, consider γ
m
. If =k 2, then

=α γ¯ m
, and so suppose ≥k 3. If ( )∈ζ N ᾱ1 , then it is clear that ( )∈ζ N γ

m1 , and so, ( ) ( )⊆N α N γ¯ m1 1 . Moreover,

we have ( ) ( )⎛
⎝

⋯
⋯

⎞
⎠ ∈n

N γ N α
1 2 3

1 1 2 2
\ ¯m1 1 since ≥ ≥m k 3. Thus, ∣ ( )∣ ∣ ( )∣≤ −N α N γ¯ 1

m1 1 .

If ( )∈ζ N ᾱ2 , then =kζ 1, and so, ζ has the following tabular form:

( ) ( ) ( )
= ⎛

⎝
⋯ − + ⋯ −
⋯ − + ⋯ −

⎞
⎠ζ

k k k n n

ζ k ζ k ζ n ζ

1 2 1 1 1

1 2 1 1 1 1 1
.

Thus, we have ≠iζ m for { }∈ − + −i k k n2, 3, …, 1, 1, …, 1 since ζ and ᾱ are adjacent vertices in Γ. If we define

( ) ( ) ( )
= ⎛

⎝
⋯ + ⋯ −
⋯ − + ⋯ −

⎞
⎠ζ

k k n n

ζ k ζ k ζ n ζ

˜
1 2 3 1 1

1 1 2 1 1 1 1
as in (7), then we have ( ) ⊆ −

ζ γim ˜ 1
m

1 and ( ) ⊆ −
γ ζim 1 ˜
m

1,

and so, ( )∈ζ N γ˜
m2 if ≠ζ γ˜

m
. If we define the mapping ( ) ( ) { }→ ∪f N α N γ γ: ¯ m m2 2 by =ζf ζ̃ for all ( )∈ζ N ᾱ2 , then

it is clear that f is a well-defined one to one mapping, and so, ∣ ( )∣ ∣ ( )∣≤ +N α N γ¯ 1
m2 2 . Thus, from Proposition 3.6,

( ) ( ) ( ) ( )≤ ≤ <α α γ βdeg deg ¯ deg deg
mΓ Γ Γ Γ 2

. Therefore, from Lemma 3.3, we have ( ) ( )= = −Δ β CΓ deg nΓ 2 −Cn 1

+ − −−C n 1n 2 . □

Orientation-preserving and order-decreasing transformations  7



The length of a shortest cycle contained in a graph G is called the girth of G and it is denoted by ( )Ggr .
Moreover, if G does not contain any cycles, then its girth is defined as infinity. Thus, if G is a simple connected
graph, then the length of a shortest cycle must be at least 3, and so ( ) ≥Ggr 3. Then, we have the following
corollary.

Corollary 3.8. For ≥n 4, ( ) =gr Γ 3.

Proof. If we consider = ⎛
⎝

− − ⎞
⎠α

n n n1 2 … 2 1

1 1 … 1 2 2
, β

2
and γ

3
as defined in (1) and (2), then − − −α β γ α

2 3

is a cycle in Γ, and so ( ) =gr Γ 3. □

Let D be a non-empty subset of the vertex set ( )V G of a graph G. For each ( )∈v V G , if ∈v D, or if there
exists ∈u D such that −u v is an edge in ( )E G , then D is called a dominating set for G. The domination number
of G, denoted by ( )Υ G , is defined by

( ) {∣ ∣ }=Υ G D D Gmin : is a dominating set for .

To find ( )Υ Γ , we also consider the following vertices in ( )V Γ :

( )

= ⎛
⎝

⎞
⎠

= ⎛
⎝

+ +
+

⎞
⎠ ≤ ≤ −

= ⎛
⎝ −

⎞
⎠

= ⎛
⎝

−
−

⎞
⎠

−

μ
n

n

μ
k k n

k k n
k n

μ
n

n

μ
n n

n

1 2 3 …

1 1 3 …
,

1 2 3 … 1 2 …

1 1 2 … 2 …
2 2 ,

1 2 3 …

1 1 2 … 1
, and

1 2 … 1

1 2 … 1 1
.

k

n

n

1

1

With these notations, we have the following theorem.

Theorem 3.9. For ≥n 4, ( ) =Υ nΓ .

Proof. For each ≤ ≤ −k n1 1, it is easy to check that = =μ α αμ θ
k k

if and only if = +α γ
k 1

, and that
= =μ α αμ θ

n n
if and only if =α β

n
. Thus, ( ) =μdeg 1

kΓ
for each ≤ ≤k n1 . Now, let 
 { }= γ γ γ β, , …, ,

n n2 3
.

If D is a dominating set for Γ, then either μ
k
or its unique adjacent vertex in D, and so ( ) ≥Υ nΓ .

Next we show that 
 is a dominating set for Γ. For any 
( )∈α V Γ \ , we consider two cases: either
��� �∈α \n n or �∈α n. In the first case, since =nα 1, it is clear that α and β

n
are adjacent vertices in Γ.

In the second case, we have two subcases, either <nα n or =nα n. If �∈α n and <nα n, then α and γ
n
are

adjacent vertices in Γ. If �∈α n and =nα n, then there exists at least one ( )∈k X α\imn such that ≤ ≤ −k n2 1.
Then, it is easy to see that α and γ

k
are adjacent vertices in Γ. Therefore, 
 is a dominating set of Γ, and so

( ) =Υ nΓ . □

Let G be a simple graph and C be a non-empty subset of ( )V G . If every two distinct vertices in C are
adjacent, then C is called a clique inG, and moreover, the subgraph whose vertex set is C and edge set contains
all edges of G, which have endpoints in C is called the subgraph of G induced by C . Thus, C is a clique if and
only if the subgraph of G induced by C is a complete graph. Moreover, the number of vertices of any maximal
clique in G is called the clique number of G, and it is denoted by ( )ω G .

For any real number x , we denote the smallest integer greater than or equal to x by ⌈ ⌉x . For any �∈p q r, ,

with <p q, let

{ } { }= + + =Y p p q X r1, 2, …, and 1, 2, …,q p r,

under their natural order. Moreover, let �* denote the set of all order-preserving mappings from Yq p, to Xr.
For any �∈α *, it is clear that (∣ ∣ ∣ ∣ ∣ ∣)− − −

α α rα1 , 2 , …,1 1 1 is a solution of the equation

� { }+ + + = − ∈ ∪x x x q p x… , where all 0 .r i1 2

8  Kemal Toker



Conversely, for each solution of this equation ( )c c c, , …, r1 2 , there exists unique �∈α * such that ∣ ∣ =−
iα ci

1 for
each ≤ ≤i r1 . Therefore, since the number of solutions of the above equation is the same with the cardinality
of �*, we have

�∣ ∣ = ⎛
⎝

− + −
−

⎞
⎠

q p r

r

*
1

1
, (8)

[17]. Now, we give a lower bound for clique number of Γ in the following theorem.

Theorem 3.10. For ≥n 4, if ⌈ ⌉ = s
n

2
, then ( ) ( )≥ ⎛

⎝
⎞
⎠ − − +ω n sΓ 1

n

s
.

Proof. For ≤ ≤ −r n2 2, if we let

���{ { } ( ) }= ∈ ≠ ⊆ ⊆ −
V α α X α: 1 im 1 ,r n r

1

then it is clear that ( )∅ ≠ ⊆V V Γr . Moreover, let Λ be the subgraph of Γ induced by Vr . Then, for any distinct
two vertices α and β in Vr , since ( ) ⊆ −

α βim 1 1 and ( ) ⊆ −
β αim 1 1, it follows from Proposition 2.1 that

= =αβ θ βα, and so Λ is a complete graph.
Moreover, for any ∈α Vr, if ( ) =α mopd , then we observe that + ≤ ≤r m n1 , =xα 1 for all ∈ ∪x X Yr n m, ,

and that the restriction ∣α
Ym r,

is an order-preserving transformation from Ym r, to Xr . From (8), there exist ⎛
⎝

⎞
⎠

−
−

m

r

1

1

many order-preserving mappings from Ym r, to Xr , and one of them is ∣θ
Ym r,

, and so

∣ ∣ ( ) ( )∑ ∑= ⎛
⎝
⎛
⎝

−
−

⎞
⎠ − ⎞

⎠ = ⎛
⎝

− +
−

⎞
⎠ − − + = ⎛

⎝
⎞
⎠ − − +

= + =

−

V

m

r

r k

r

n r

n

r

n r

1

1
1

1

1
1 1 .r

m r

n

k

n r

1 0

If ⌈ ⌉ = s
n

2
, then it is clear that ( ) ( )

⎛
⎝

⎞
⎠ − − + ≤ ⎛

⎝
⎞
⎠ − − +n r n s1 1

n

r

n

s
for all ≤ ≤ −r n2 2, and so

( ) ( )≥ ⎛
⎝

⎞
⎠ − − +ω n sΓ 1

n

s
. □

For =n 4, it is easy to see that ( ) ( )= ⎛
⎝

⎞
⎠ − − + =ω Γ 4 2 1 3

4

2
. In particular, the subgraph of Γ induced by

⎧⎨⎩
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎫⎬⎭

1 2 3 4

1 1 1 2
,

1 2 3 4

1 1 2 1
,

1 2 3 4

1 1 2 2
is a maximal complete subgraph of Γ. However, we have not proved

( ) ( )= ⎛
⎝

⎞
⎠ − − +ω n sΓ 1

n

s
in general.

If we color all the vertices in G with the rule of no two adjacent vertices have the same color, then the
minimum number of colors needed to color ofG is called the chromatic number ofG, and it is denoted by ( )χ G .
If ( ) ( )=ω H χ H for every induced subgraph H of G, then G is called a perfect graph, otherwise it is called
imperfect graph.

Theorem 3.11. Γ is an imperfect graph for ≥n 4.

Proof. For ≥n 4, let ( )= ⎛
⎝

− −
−

⎞
⎠ ∈ξ

n n n

n
V

1 2 … 2 1

1 1 … 1 2 1
Γ and { }= − − −H ξ γ λ β β, , , ,

n n n n2 2 2
. If Π is the subgraph

of Γ induced by H , then it is a routine matter to check that Π is a cycle graph with the cycle

− − − − −− − − −λ γ β ξ β λ .n n n n n2 2 2 2

Therefore, since ( ) =ω Π 2 and ( ) =χ Π 3, Γ is an imperfect graph. □

Orientation-preserving and order-decreasing transformations  9
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