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Abstract: In control theory, researchers need to understand a system’s local and global behaviors in relation

to its initial conditions. When discussing observability, the main focus is on the ability to analyze the system

using an output space defined by an output map. In this study, our objective was to establish conditions for

characterizing the observability properties of linear control systems on Lie groups. We will focus on five classes

of solvable, non-nilpotent three-dimensional Lie groups, examining local and global perspectives. This analysis

explores the kernels of homomorphisms between the state space and its simply connected subgroups, where

the output is projected onto the quotient space.
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1 Introduction

In the 1960s, Kalman significantly advanced in studying control systems within Euclidean spaces. His research

focused on essential topics such as controllability, observability and stability, which are crucial to understand

the dynamics of control systems and their interrelationships. These areas laid the foundation formodern control

theory and opened the door to advancements in various applications in engineering and technology.

As a main example of this era, consider the linear control system

Σℝn :

⎧⎪⎨⎪⎩

ẋ = Ax + Bu,

y = Cx,

where A ∈ ℝn×n,B ∈ ℝn×m, C ∈ ℝn×l, with l < n, and = L1
loc
(Ω), is the set of admissible controls, that is, the

family of locally integrable functions u: [0, Tu]→Ω ⊂ ℝm. The set Ω is closed and 0 ∈ int(Ω). If Ω = ℝm, the

system is called unrestricted. Otherwise, ΣG is restricted, see [1].

Starting with an initial condition x0 ∈ ℝn and a specific control u ∈  , we can fully describe the solution

to the system as follows:
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𝜙u
t
(x0 ) = etA

⎛⎜⎜⎝
x0 +

t

∫
0

e−𝜏ABu(𝜏 )d𝜏
⎞⎟⎟⎠
,

which satisfies the Cauchy problem ẋ = Ax + Bu, with initial value x(0) = x0. Thus,𝜙
u
t
(x0 ) with t ∈ ℝ describes

a curve in ℝd such that starting from x0 the elements on the curve are reached from x0 forward and backward

through the specific dynamics of the linear system determined by the control. Controllability and observability

for unrestricted systems was already solved. As for controllability, we say that the system
(
Σℝn

)
is controllable

if the whole ℝn can be reached by trajectories of 𝜙 with any initial condition. Hence, the system
(
Σℝn

)
is con-

trollable if, and only if,  =
(
B AB A2B … An−1B

)
has maximum rank. The observability had a similar

approach. The system
(
Σℝn

)
is observable if, and only if, the matrix

 =
(
C CA CA2 … CAn−1

)T
,

has maximum rank. See [1] for further informations.

Linear systems on Lie groups has been explored for decades and has many results related to controllabil-

ity, see e.g. [2–5] and observability [6–11]. Regarding to observability, in [6] and [7] this concept was extended

from ℝn to Lie groups. The fundamental idea remained unchanged, but these two papers’ findings were signif-

icantly more straightforward than the original. Furthermore, they provide necessary and sufficient conditions,

whichmakes the reasoning even easier to follow. Currently, this concept is often applied in control networks [8],

dynamical systems [10], probabilistic systems [11] and nonlinear ordinary differential equation [12].

In this work, we utilize the classification of non-nilpotent solvable Lie groups outlined in [13] and the con-

struction of linear systems on three-dimensional affine Lie groups described in [3]. By applying the results from

[6], we aim to list every simply connected subgroup of these groups and develop a general expression for the

homomorphisms between the groups and the relevant sets. Finally, we establish the conditions under which the

system is locally observable and observable.

This paper is divided as follows: Section 2 contains all the basic concepts about linear systems and primary

results needed throughout the article. Section 3 begins with the definition of every single affine 3-dimensional

solvable non-nilpotent Lie group, followed by all the primary results for each one, including the conditions for

observability and non-observability as well. Section 4 are dedicated to acknowledgments and final conclusions.

2 Preliminaries and initial results

Let G be a finite-dimensional Lie group with Lie algebra g. We use the results in [6] and [7] to characterize

observability in our context, i.e., on a general pair coming from the drift and a projection onto a homogeneous

space of G. In the classical linear control system, observability depends on the drift and the linear output map

between finite dimensional vector spaces. We start with the definition of drift.

Definition 2.1. A vector field  in G is said to be linear if its flow (𝜑t )t∈ℝ is a 1− parameter subgroup of Aut(G),

the Lie group of automorphisms of G.

Now, we can define the control systems we are interested in. A linear control system ΣG on G is determined

by the family,

ΣG :
⋅

g(t) =  (g(t))+
m∑
j=1

uj(t)Y
j(g(t)), g(t) ∈ G, t ∈ ℝ,u ∈  ,

of ordinary differential equations parametrized by the class = L1
loc
(Ω), as before.

The drift  satisfies the Definition (2.1) and, for any j, the control vector Y j ∈ g, is considered as left-

invariant vector field. We observe that any column vector of the matrix B in the system
(
Σℝn

)
induces an

invariant vector field on the Abelian Lie group ℝn.
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Assuming some basic informations about the system, from the orbit Theorem of Sussmann, [1], without loss

of generality we consider ΣG satisfying the Lie algebra rank condition (LARC), which means: for any g ∈ G,

SpanA
{ , Y 1,… , Ym

}
(g ) = TgG. (1)

Denote by𝜑(g, u, t) the solution ofΣG associated to the control uwith initial condition g at the time t. Therefore,

as proved in [3]

𝜑(g, u, t) = t(g )𝜑(e, u, t). (2)

Thus, to compute the system’s solution on G through an initial condition g, we need to translate the solution

through the identity element by the flow of the linear vector field acting on g.

Remark 2.2. Let us observe the symmetry with the solution of a classical linear system on Euclidean spaces

𝜙(x, u, t) = etA
⎛⎜⎜⎝
x +

t

∫
0

e−𝜏ABu(𝜏)d𝜏
⎞⎟⎟⎠
. (3)

This characteristic helps us to characterize the observability properties on the groupG by applying concepts

from classical linear systems inℝn. However, it is necessary to introduce the notion of local observability, defined

by adistributiondeterminedby theLie algebra associatedwith the indistinguishable class of the identity element

e of the group.

In addition, to every linear vector field  of G, there is a derivation ∈ Der(g), satisfying

−(Y ) = [ , Y],
for every Y ∈ g. Recall that a derivation is a linearmap that satisfies the Leibniz rule concerning the Lie bracket.
The relationship between 𝜑t and is given by the formula

d(𝜑t )e = et.

Remark 2.3. By the general theory of Lie groups (see [14], for instance), any closed subgroup K induces a well-

defined homogeneous space G∕K. Therefore, it is possible to consider a canonical projection 𝜋K :G→ G∕K as an

output map.

We are willing to introduce the primary definition, see [7].

Definition 2.4. A pair ( , 𝜋K ) in G is determined by a linear vector field  and by a closed subgroup K of G.

The projection 𝜋K in the definition above is the same as in the Remark (2.3). The main focus of this paper is

the observability properties on Lie groups which is given by the next definition.

Definition 2.5. A pair ( , 𝜋K ) is said to be:
1. observable at x1 if for all x2 ∈ G ∖{x1}, there exists a t ≥ 0 such that,

𝜋K (𝜑t(x1 )) ≠ 𝜋K (𝜑t(x2 ));

2. locally observable at x1 if there exists a neighborhood of x1 such that the condition 1. is satisfied for each x

in the neighborhood;

3. observable (locally observable) if it is observable (locally observable) for every x ∈ G.
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Next, we introduce the concept of unobservability, which allows us to decompose the state space into

equivalence classes. These classes group elements that cannot be distinguished from each other by the observa-

tion function h through the system dynamics.

Definition 2.6. Two states x0, x1 ∈ ℝn are indistinguishable by
(
Σℝn

)
, denoted by x0Ix1, if

x1 − x0 ∈ ker(CetA ),∀t ≥ 0.

Remark 2.7. In fact, under the definition’s condition the observation function h does not differentiate between

states x0 and x1 across the system, resulting in identical outcomes for each control u ∈  and for any t > 0,

C

⎛⎜⎜⎝
etA

⎛⎜⎜⎝
x0 +

t

∫
0

e−𝜏ABu(𝜏 )d𝜏
⎞⎟⎟⎠
⎞⎟⎟⎠
= C

⎛⎜⎜⎝
etA

⎛⎜⎜⎝
x1 +

t

∫
0

e−𝜏ABu(𝜏 )d𝜏
⎞⎟⎟⎠
⎞⎟⎟⎠
.

Therefore, we get that

Proposition 2.8. Let us consider a linear control system on the Euclidean space ℝn. Therefore,

1. I is an equivalence relation

2. If I(x) denotes the equivalence class x by the relation I, then,

a) I(0) = ⋂n−1
t≥0 ker(CetA );

b) I(x) = x + I(0).

Hence, the system
(
Σℝn

)
is said to be observable if the equivalence class of the origin is trivial. Now, for a

Lie group, two states g1, g2 ∈ G are said to be indistinguishbles if

t

(
g1g

−1
2

)
∈ K ∀t ≥ 0.

Furthermore,

I = {g ∈ G:t(g ) ∈ K,∀t ∈ ℝ}

is a closed normal subgroup of G, and the equivalence class of g is Ig.

Next, we establish the main results to apply in our context (see [7, Theorem 2.5]).

The pair ( , 𝜋K ) in G is observable if and only if, the Lie group I is discrete and,

Fix(𝜑) ∩ K = {e}.

Notice that the first condition indicates local observability, characterized by the trivialization of the Lie

algebra of I.

We conclude this section by proving a couple of propositions that will be useful later on.

Remark 2.9. Consider G a connected Lie group and H1,H2 ⊂ G subgroups of G. Assume that hi:G→ Hi for

i = 1, 2 are two homomorphisms whose respective kernels are given by K1 and K2. If K1 = K2, then ( , 𝜋K1 )
is observable if, and only if, ( , 𝜋K2 ) is observable.

The reasoning behind showing this statement is direct. Since for i = 1, 2,

Ii = {p ∈ G :𝜑t( p) ∈ Ki,∀t ∈ ℝ},

it turns out that I1 = I2. Also, Fix(𝜑) ∩ K1 = Fix(𝜑) ∩ K2.

Consider  and  linear vector fields defined over a Lie group G with respective flows 𝜑 and 𝜓 . We say

that  and  are conjugated (or 𝜋− conjugated) if there is an automorphism 𝜋:G→ G such that
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𝜋(𝜑t(x)) = 𝜓t(𝜋(x)),∀t ∈ ℝ,

𝜑t(𝜋
−1(x)) = 𝜋−1(𝜓t(x))

)
,∀t ∈ ℝ.

(4)

The following proposition will be helpful for our purposes.

Proposition 2.10. Consider a 𝜋− conjugation between the linear vector fields  and  on G and h:G→ G a

homomorphism. If K = ker(h) and S = ker(h⚬𝜋−1), then ( , 𝜋K ) is observable if, and only if, ( , 𝜋S ) is observable.
Proof. As before, we denote the indistinguishable classes of the identity element

I1 = {x ∈ G :𝜑t(x) ∈ K,∀t ∈ ℝ}

and

I2 = {y ∈ G :𝜓t(y) ∈ S,∀t ∈ ℝ}.

Taking x ∈ I2, we get 𝜓 t(x) ∈ S, for all t ∈ ℝ. Also, there is a y ∈ G such that 𝜋(y) = x. Therefore,

𝜓t(x) = 𝜓t(𝜋(y)) = 𝜋(𝜑t(y)),∀t ∈ ℝ,

with (h⚬𝜋−1)(𝜓 t(x)) = e, for all t ∈ ℝ. Applying h⚬𝜋−1 in the equality above, we get

(h⚬𝜋−1 )(𝜓t(x)) = (h⚬𝜋−1 )(𝜋(𝜑t(y))) = h(𝜑t(y)) = e,

which means that 𝜑t(y) ∈ K, for all t ∈ ℝ, that is, y ∈ I1. This shows that 𝜋
−1(I2) ⊂ I1.

On the other hand, if we consider z ∈ I1, by the second expression in (4), we obtain an element𝑤 ∈ G such

that 𝜋−1(𝑤) = z. Since 𝜑t(z) = 𝜑t(𝜋
−1(𝑤)) ∈ K, we get

𝜑t(𝜋
−1(𝑤)) = 𝜋−1(𝜓t(𝑤)) ∈ K,∀t ∈ ℝ.

Aplying h in the expression above, we obtain 𝜓 t(𝑤) ∈ S, for all t ∈ ℝ, which also give us𝑤 ∈ I2. This also

proves that 𝜋(I1) ⊂ I2, which allow us to conclude that 𝜋(I1) = I2.

Now, let us suppose that I1 is discrete. If y ∈ I2, considering x ∈ I1 such that𝜋(x) = y there is a neighborhood

V of x such that V ∩ I1 = {x}. Therefore

{𝜋(x)} = 𝜋(V ∩ I1 ) = 𝜋(V ) ∩ 𝜋(I1 ) = 𝜋(V ) ∩ I2 = {y},

with 𝜋(V) neighborhood of y. We can conclude that I1 is discrete if, and only if, I2 is discrete, which proves the

equivalence concerning local observability.

Conjugations preserve fixed points. As a matter of fact, if 𝜑t(g) = g for all t ∈ ℝ, then

𝜋(𝜑t(g )) = 𝜓t(𝜋(g )) = 𝜋(g ),∀t ∈ ℝ.

The same follows for the fixed points of 𝜓 using the function 𝜋−1.

Now, if Fix(𝜑) ∩ K = {e}, take q ∈ Fix(𝜓 ) ∩ S. Therefore, 𝜓 t(q) = q, for all t ∈ ℝ. We obtain

𝜋−1(𝜓t(q)) = 𝜑t(𝜋
−1(q)) = 𝜋−1(q),∀t ∈ ℝ.

Thus,𝜋−1(q) ∈ Fix(𝜑). As (h⚬𝜋−1)(q) = e, we get𝜋−1(q) ∈ K. Then𝜋−1(q) ∈ K ∩ Fix(𝜑) = {e}, implying q =
e. The same reasoning can be applied using the function 𝜋 at an arbitrary point g ∈ Fix(𝜑) ∩ K. □

From the proof of Proposition 2.6, we can easily derive the following result.

Corollary 2.11. With the same hypothesis of the previous proposition, I1 is discrete if, and only if, I2 is discrete.

Also, Fix(𝜑) ∩ K = {e} if, and only if, Fix(𝜓 ) ∩ S = {e}.
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3 Affine 3-dimensional Lie group

In this section, we explore the observability properties of linear control systems within five classes of solvable,

non-nilpotent three-dimensional Lie groups, examining both local and global perspectives. According to the

classification provided by [13], the following list presents these groups up to isomorphism:

1. r2 = ℝ×𝜃ℝ2, 𝜃 =
[
0 0

0 1

]
.

2. r3 = ℝ×𝜃ℝ2, 𝜃 =
[
1 1

0 1

]
.

3. r3,𝜆 = ℝ×𝜃ℝ2, 𝜃 =
[
1 0

0 𝜆

]
, with |𝜆| ∈ (0, 1].

4. r′
3,𝜆

= ℝ×𝜃ℝ2, 𝜃 =
[
𝜆 −1
1 𝜆

]
, with 𝜆 ∈ ℝ∖{0}.

5. e = ℝ×𝜃ℝ2, 𝜃 =
[
0 −1
1 0

]
.

All of these algebras can be described as a semi-direct product. The corresponding simply connected Lie groups

R2,R3,R3,𝜆,R
′
3,𝜆

and E, are constructed through the semi-direct product ℝ×𝜌ℝ2, with 𝜌t = et𝜃 .

3.1 Linear vector fields

We will begin by demonstrating some properties of the drift. For each s ∈ ℝ, defineΛs by

Λs =
[
s 0

0 es − 1

]
.

Consider a linear vector field onG and the associated derivation. By [3, Proposition 3.4], there is a linear

transformation∗:ℝ2 → ℝ2 such that

(0, 𝑣) = (0,∗𝑣).

Moreover, if G is simply connected, the vector field  reads as

 (t, 𝑣) = (
0,∗𝑣+Λt𝜉

)
,

with (0, 𝜉 ) = (1, 0). By [3, Remark 3.2], the solution 𝜑 is defined through the formula,

𝜑s(t, 𝑣) =
(
t, es∗

𝑣+ FsΛt𝜉
)
,

with

Fs =
∑
j≥1

s j(∗ ) j−1

j! .

3.1.1 Fixed points of 
As mentioned in the second section, analyzing observability requires computing the fixed point of the drift.

Considering the matrix of∗ described by parameters as follows:

[∗] =
[
a b

c d

]
,

the ordinary differential equations system generated by the vector field  reads as
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ṫ = 0,

ẋ = ax + by+ t𝜉1,

ẏ = cx + dy+ (et − 1)𝜉2,

with 𝜉 = (𝜉1, 𝜉2).

To find the fixed points of  , we have to solve the linear system
ax + by+ t𝜉1 = 0,

cx + dy+ (et − 1)𝜉2 = 0.
(5)

If∗ is invertible, we get the solution:

(x0, y0 ) =
(
−t𝜉1d + (et − 1)𝜉2b

ad − bc
,
−a(et − 1)𝜉2 + t𝜉1c

ad − bc

)
. (6)

If∗ is not invertible, ad = cb. And, when a ≠ 0, we obtain

x = −t𝜉1 − by

a
,

the solution of (5), for every y ∈ ℝ.

3.2 Subgroups of R2

The Lie algebra of dimension 1 is the real vector space ℝ, and the corresponding Lie groups are the simply

connected real line ℝ and the circle 𝕋 .
According to [13, Chapter 7], the only real connected Lie groups of dimension 2 are

ℝ2,ℝ × 𝕋 , 𝕋 2 and Aff(2,ℝ),

where Aff(2,ℝ) is the affine group, and 𝕋 n is the n− torus. The simply connected ones are ℝ2 and Aff2(ℝ). On
the other hand, the only two-dimensional Lie algebras are the Abelian ℝ2 endowed with the null-bracket and

r2(ℝ), with the Lie bracket given by
[(t, x), (s, y)] = (0, ty− sx).

Let us begin with R2, viewed as the semi-direct product ℝ×𝜌ℝ2, following the specific product rule:

(t, (x, y)) ⋅ (s, (z,𝑤)) = (t + s, (x + z, y+ et𝑤)). (7)

The 2-dimensional subgroups we will consider are the simply connected ones. The structures that are

isomorphic to ℝ2 or Aff2(ℝ), can be summarized in the following list:

G1 = ℝ×𝜌(ℝ × {0}) ≃ ℝ2,

G2 = ℝ×𝜌({0} ×ℝ) ≃ Aff2(ℝ),

G3 = {0}×𝜌ℝ2 ≃ ℝ2.

The simply connected 1-dimensional Lie subgroups are described as follows:

G4 = {0} × ({0} ×ℝ),

G5 = {0} × (ℝ × {0}),

G6 = ℝ × ({0} × {0}).
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3.2.1 The subgroup G1 = ℝ× (ℝ× {0})

It is easy to show that G1 = {ℝ × (ℝ × {0})} is a subgroup of ℝ×𝜌ℝ2. Define a homomorphism h:ℝ×𝜌ℝ2 → G1
determined by

h(t, (x, y)) = (𝛼1t + 𝛼2x + 𝛼3y, 𝛽1t + 𝛽2x + 𝛽3y, 0).

Then, hmust satisfy

h(t, (x, y))h(s, (z,𝑤)) = h(t + s, (x + z, y+ et𝑤)).

Using the expression provided above and referring to h, we get

𝛼1(t + s)+ 𝛼2(x + z)+ 𝛼3(y+𝑤) = 𝛼1(t + s)+ 𝛼2(x + z)+ 𝛼3(y+ et𝑤),

𝛽1(t + s)+ 𝛽2(x + z)+ 𝛽3(y+𝑤) = 𝛽1(t + s)+ 𝛽2(x + z)+ 𝛽3(y+ et𝑤),

which implies in 𝛼3 = 𝛽3 = 0. Therefore, h reads as

h(t, (x, y)) = (𝛼1t + 𝛼2x, 𝛽1t + 𝛽2x, 0).

The kernel K of the function h is obtained by deriving the following equations:

⎧⎪⎨⎪⎩

𝛼1t + 𝛼2x = 0,

𝛽1t + 𝛽2x = 0.
(8)

Consider the flows:
Σ1:𝜑s(t, 𝑣) = (t, es∗

𝑣),

Σ2:𝜓s(t, 𝑣) = (t, Pes∗
P−1𝑣),

(9)

where P ∈ GL2(ℝ) is a change of basis matrix. We claim that Σ1 and Σ2 are 𝜋− conjugated in the Lie subgroup

{0}×𝜌ℝ2, with 𝜋(t, 𝑣) = (t, Pv). First, we have

𝜋(𝜑s(t, 𝑣)) = 𝜋(t, es
∗
𝑣) = (t, Pes∗

𝑣)

and

𝜓s(𝜋(t, 𝑣)) = 𝜓s(t, Pe
s∗

P−1(P𝑣)) = (t, Pes∗
𝑣).

Moreover, when t = 0, it turns out that

𝜋(0, 𝑣)𝜋(0,𝑤) = (0, P𝑣+ P𝑤) = (0, P(𝑣+𝑤)) = 𝜋(0, 𝑣+𝑤).

Then, 𝜋 is a homomorphism in {0}×𝜌ℝ2. The equality

𝜑t ⚬𝜋−1 = 𝜋−1 ⚬𝜓t

is consistent with the same arguments presented earlier, as well as the definition of

𝜋−1(t, 𝑣) = (t, P−1𝑣)

For an arbitrary matrix B =
[
𝛼1 𝛼2

𝛽1 𝛽2

]
, we can examine the following cases.

3.2.2 Case 1: det B ≠ 0

The kernel h denoted by K is given by

K = {(t, (x, y)) ∈ G: t = x = 0}. (10)
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Since t = 0, it follows thatΛt = 0. Therefore, we get

𝜑s(0, (x, y)) = (0, es∗
(x, y)).

According to [15, Chapter 1], the dynamics of∗ in ℝ2 are determined by the matrices:
[
𝜆 0

0 𝜇

]
,

[
𝜆 1,

0 𝜆

]
and

[
a −b
b a

]
. (11)

Given two matrices A,B ∈ gl2(ℝ), let us consider the relation:

A ≃ B ⟺ PAP−1 = B,

for some P ∈ GL2(ℝ).

Proposition 3.1. The linear pair ( , 𝜋K ) is locally observable if the associated matrix∗ determined by the drift,

is conjugated to

[
a −b
b a

]
with b ≠ 0 or

[
𝜆 1

0 𝜆

]
.

Proof. If [∗] ≃ diag{𝜆, 𝜇}, we get
𝜑s(0, (x, y)) = (0, es𝜆x, es𝜇 y).

If es𝜆x = 0 for every s ∈ ℝ then x = 0. Therefore, I = K, which shows by the Proposition (2.10), that ( , 𝜋K )
is not locally observable.

If [∗] ≃
[
𝜆 1

0 𝜆

]
, we obtain

𝜑s(0, (x, y)) = (0, es𝜆(x + sy), es𝜆y).

If es𝜆(x + sy) = 0 for all s ∈ ℝ, it follows that x = y = 0. Then I = {(0, 0, 0)}, which allows us to conclude,
using the Proposition (2.10), that ( , 𝜋K ) is locally observable.

If [∗] ≃
[
a −b
b a

]
, the solution is given by

𝜑s(0, (x, y)) = (0, eas(cos(sb)x − sin(sb)y), eas(sin(sb)x + cos(sb)y)).

Assume eas(cos(sb)x − sin(sb)y) = 0 for every s ∈ ℝ, and b ≠ 0. By choosing s = 𝜋

2b
and s = 𝜋

b
we obtain

x = 0 and y = 0. Therefore I = {(0, 0, 0)} and by Proposition (2.10), the pair ( , 𝜋K ) is locally observable. Now,
if b = 0, we returns to the diagonal case. Consequently, K = I, showing that the system is not locally observable.

□

Example 3.2. In order to ilustrate the proposition above, consider the case a = b = 1 and  ≃
[
1 −1
1 1

]
. Then

the solution 𝜑 is given by

𝜑s(0, (x, y)) = (0, es(cos(s)x − sin(s)y), es(sin(s)x + cos(s)y)).

Looking for the points where 𝜑s(0, x, y) ∈ K, the second coordinate of 𝜑must be zero. Therefore

es(cos(s)x − sin(s)y) = 0 ⟺ x = y = 0,

by choosing s1 = 𝜋

2
and s2 = 𝜋. Consequently, I = {(0, 0, 0)} and the pair ( , 𝜋K ) is locally observable. The case

[∗] ≃
[
𝜆 1

0 𝜆

]
is similar, for instance, taking 𝜆 = 1. Hence

𝜑(0, (x, y)) = (0, es(x + sy), es y)
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which belongs to K for every s ∈ ℝ if, and only, if es(x + sy) = 0. Choosing s = 0, we get x = 0 and for s = 1, we

find y = 0, implying local observability.

3.2.3 Case 2: det B = 0

Assume that the first equation in the system (8) is true. We have several options for the kernel:

K = {(t, (x, y)) ∈ G :𝛼1t = −𝛼2x}.

Precisely,

K =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

G, 𝛼1 = 𝛼2 = 0,

{(t, (x, y)) ∈ G : t = 0}, 𝛼1 ≠ 0, 𝛼2 = 0,

{(t, (x, y)) ∈ G : x = 0}, 𝛼1 = 0, 𝛼2 ≠ 0,{
(t, (x, y)) ∈ G : t = −𝛼2

𝛼1
x

}
, 𝛼1 ≠ 0, 𝛼2 ≠ 0.

The case 𝛼1 = 𝛼2 = 0 implies that K = G, and ( , 𝜋K ) is not observable. The case 𝛼2 ≠ 0 and 𝛼1 = 0 will be

discussed in the Remark (3.4). For the remaining possibilities, we present the following proposition.

Proposition 3.3. The pair ( , 𝜋K ) is not locally observable.
Proof. First, let us suppose that 𝛼1 ≠ 0 and 𝛼2 = 0. The kernel of h is given by

K = {(t, (x, y)) ∈ G: t = 0}.

So, any point in the form (0, (x, y)) belongs to K, and the solution

𝜑s(0, (x, y)) = (0, es∗
(x, y))

as well, implying in I = K. As K is not discrete, ( , 𝜋K ) is not locally observable.
If 𝛼1 ⋅ 𝛼2 ≠ 0, we obtain

K =
{
(t, (x, y)) ∈ G: t = −𝛼2

𝛼1
x

}
.

This means that for every x ∈ ℝ,

𝜑s

(
−𝛼2
𝛼1

x, (x, y)

)
=

(
−𝛼2
𝛼1

x, es∗
(x, y)+ FsΛ(

−𝛼2
𝛼1

x
)𝜉

)
,

belongs to K. Again, the system in not locally observability. □

Remark 3.4. The case 𝛼1 = 0 and 𝛼2 ≠ 0 is unpredictable. Let us discuss some cases. Here,

K = {(t, x, y) ∈ G: x = 0}.

Consider∗ in the form

[∗] =
[
0 0

0 𝜇

]
,

for some 𝜇 ≠ 0. Then

es∗ =
[
1 0

0 es𝜇

]
.
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Hence,

FsΛt =
⎡⎢⎢⎣
s 0

0
(e𝜇s − 1)

𝜇

⎤⎥⎥⎦
⋅

[
t 0

0 et − 1

]
=

⎡⎢⎢⎣
ts 0

0
(et − 1)(es𝜇 − 1)

𝜇

⎤⎥⎥⎦
.

Thus,

𝜑s(t, 0, y) =
(
t, ts𝜉1, e

s𝜇 y+ (et − 1)(es𝜇 − 1)

𝜇
𝜉2

)
.

If 𝜉1 ≠ 0, then t = 0, implies that 𝜑s(0, 0, y) = (0, 0, es𝜇y) still belongs to K and the set I is not discrete. In

both cases, I is not discrete.

If [∗] =
[
0 1

0 0

]
, we get

es∗ =
[
1 s

0 1

]
.

and,

FsΛt =
(
sI + s2

2
∗

)
Λt =

⎡⎢⎢⎣
st

s2

2
(et − 1)

0 s(et − 1)

⎤⎥⎥⎦
.

Therefore,

𝜑s(t, x, y) =
(
t, x + sy+ st𝜉1 +

s2

2
(et − 1)𝜉2, y+ s(et − 1)𝜉2

)
.

If (t, x, y) ∈ K such that 𝜑s(t, x, y) ∈ K for all s ∈ ℝ, then x = 0 and,

sy+ st𝜉1 +
s2

2
(et − 1)𝜉2 = 0,∀s ∈ ℝ.

Let 𝜉 ≠ 0. If t and y are non-zero and s0, s1 ∈ ℝ∖{0} with s1 ≠ s0, we get:

y+ t𝜉1 +
s0
2
(et − 1)𝜉2 = y+ t𝜉1 +

s1
2
(et − 1)𝜉2 = 0,

which must imply s0 = s1, an absurd. Thus, we conclude:

y+ t𝜉1 +
s

2
(et − 1)𝜉2 = 0,

if t = y = 0, implying I = {(0, 0, 0)}. That is, the system is locally observable.

Considering the previous sections and the expression for the kernel described in (10), assume∗ is invert-

ible. The expression in (6) provides the fixed points of 𝜑.

Proposition 3.5. Let det B ≠ 0 and ∗ is conjugated to

[
a −b
b a

]
with b ≠ 0 or

[
𝜆 1

0 𝜆

]
. The associated linear

pair ( , 𝜋K ) is observable.
Proof. The local observability was already proved in the Proposition (3.1). By hypothesis det B ≠ 0. If ∗ ≃[
𝜆 1

0 𝜆

]
, it follows that,

Fix(𝜑) ∩ K = {(0, 0, 0)},

If t = 0, we get x0 = y0 = 0, which implies global observability.

On the other hand, if∗ =
[
a −b
b a

]
with b ≠ 0, the intersection between the fixed point of the drift with

the kernel of the homomorphism is trivial. Implying by the Proposition (2.10) that the system is observable. □
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Remark 3.6. As in the Example (3.2), choosing a = b = 1 and∗ =
[
1 −1
1 1

]
, the fixed points of 𝜑 are given by

(t, x0, y0 ) =
(
t,
−t𝜉1 + (et − 1)𝜉2

2
,
−(et − 1)𝜉2 + t𝜉1

2

)
, (12)

with 𝜉 = (𝜉1, 𝜉2), which, in our case, t = 0. Therefore Fix(𝜑) = {(0, 0, 0)}. The conclusion is Fix(𝜑) ∩ K =

{(0, 0, 0)}, implying observability. The same reasoning can be made for the case [∗] =
[
𝜆 1

0 𝜆

]
for 𝜆 = 1.

3.2.4 Subgroup G2 = ℝ×𝝆({0} ×ℝ)

Next, we consider the subgroup G2 = ℝ×𝜌{0} ×ℝ. Let h:G→ G2 given by

h(t, x, y) = (𝛼1t + 𝛼2x + 𝛼3y, 0, 𝛽1t + 𝛽2x + 𝛽3y).

The homomorphism hmust satisfy the following condition:

h(t, x, y)h(s, z,𝑤) = h(t + s, x + y, y+ et𝑤).

Therefore,

𝛼1(t + s)+ 𝛼2(x + z)+ 𝛼3(y+𝑤) = 𝛼1(t + s)+ 𝛼2(x + z)+ 𝛼3(y+ et𝑤),

𝛽1t + 𝛽2x + 𝛽3y+ e𝛼1t+𝛼2x+𝛼3 y(𝛽1s+ 𝛽2z+ 𝛽3𝑤) = 𝛽1(t + s)+ 𝛽2(x + z)+ 𝛽3(y+ et𝑤).

The first equality gives 𝛼3 = 0. If we choose h to be non-zero, the second equality gives 𝛽1 = 𝛽2 = 0 and

𝛼1 = 1, 𝛼2 = 0. Therefore, h has the form:

h(t, x, y) = (t, 0, 𝛽3y),

with 𝛽3 ≠ 0, for every (t, x, y), (s, z,𝑤) ∈ G. The case 𝛽3 = 0 will be discussed in Remark (3.11).

The kernel of h reads as,

ker h = {(t, x, y) ∈ G: y = t = 0}. (13)

With the previous analysis, we get the following result.

Proposition 3.7. Considering the conjugation in (9) and the possible forms of∗, the only case for the linear pair

( , 𝜋K ) being locally observable is
[∗] ≃

[
a −b
b a

]
,

with b ≠ 0.

Proof. Let us suppose at first∗ ≃ diag{𝜆, 𝜇}. Then

𝜑s(0, x, 0) = (0, es𝜆x, 0) ∈ K,∀(s, x) ∈ ℝ2,

which shows that I is not discrete.

If [∗] ≃
[
𝜆 1

0 𝜆

]
, the solution through (0, x, 0) is given by

𝜑s(0, x, 0) = (0, es𝜆x, 0),

which remains in K, for every pair (s, x) ∈ ℝ2. Thus, the system is not locally observable.
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Now, if [∗] ≃
[
a −b
b a

]
, the solution in (0, x, 0) is given by

𝜑s(0, x, 0) = (0, eas cos(bs)x, eas sin(bs)x).

To ensure that eas sin(bs)x = 0 for all s ∈ ℝ, we must consider some possibilities for b. If b = 0, then we

recover the diagonal case. If b ≠ 0, sin(bs)x = 0 for all s ∈ ℝ if, and only, if x = 0. Therefore, I = {(0, 0, 0)} if,
and only if, b ≠ 0, as claimed. □

Example 3.8. As in the previous subsection, considering the case a = b = 1, for [∗] ≃
[
1 −1
1 1

]
, we get

𝜑s(0, x, 0) = (0, es cos(s)x, es sin(s)x).

By choosing s = 𝜋, we get x = 0 and, therefore, I = {(0, 0, 0)}, ensuring local obserability.

Based on the earlier proposition, we can draw the following conclusion.

Proposition 3.9. In the same settings of the Proposition (3.7), the pair ( , 𝜋K ) is observable.
Proof. Let us consider the expression in (5). If t = 0, we get (x0, y0) = (0, 0). We can easily conclude that Fix(𝜑) ∩
K = {(0, 0, 0)}. □

Example 3.10. As in the Example (3.8), considering explicitly [∗] =
[
1 −1
1 1

]
, for the case t = y = 0, the set of

fixed points of 𝜑 is given by Fix(𝜑) = {(0, 0, 0)}. Therefore Fix(𝜑) ∩ K = {(0, 0, 0)}

Remark 3.11. The case when 𝛽3 = 0 implies that

ker h = {(t, x, y) ∈ G: t = 0}.

The solution is given by

𝜑s(0, x, y) = (0, es∗
(x, y)).

In particular, I = K and consequently, the system can not be locally observable.

3.2.5 Subgroup G3 = {0}×𝝆ℝ2

Let h:G→ G3 be a homomorphism in the form

h(t, x, y) = (0, 𝛼1t + 𝛼2x + 𝛼3y, 𝛽1t + 𝛽2x + 𝛽3y).

Since, h(t, x, y)h(s, z,𝑤) = h(t + s, x + z, y+ et𝑤), we get

𝛼1(t + s)+ 𝛼2(x + z)+ 𝛼3(y+𝑤) = 𝛼1(t + s)+ 𝛼2(x + z)+ 𝛼3(y+ et𝑤),

𝛽1(t + s)+ 𝛽2(x + z)+ 𝛽3(y+𝑤) = 𝛽1(t + s)+ 𝛽2(x + z)+ 𝛽3(y+ et𝑤).

As a consequence, we obtain 𝛼3 = 𝛽3 = 0. Therefore,

h(t, x, y) = (0, 𝛼1t + 𝛼2x, 𝛽1t + 𝛽2x).
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The kernel of h is given by the solutions of the linear system

{
𝛼1t + 𝛼2x = 0,

𝛽1t + 𝛽2x = 0.

If the matrix B =
[
𝛼1 𝛼2

𝛽1 𝛽2

]
, is invertible, the kernel of h is given by

ker h = {(t, x, y) ∈ G: t = x = 0}.

If B is not invertible, 𝛼1𝛽2 = 𝛼2𝛽1. Therefore

ker h = {(t, x, y) ∈ G:𝛼1t = −𝛼2x}.

Next, let us consider the following subcases:

ker h =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

G, 𝛼1 = 𝛼2 = 0,

{(t, x, y) ∈ G: x = 0}, 𝛼1 = 0, 𝛼2 ≠ 0,

{(t, x, y) ∈ G: t = 0}, 𝛼1 ≠ 0, 𝛼2 = 0,{
(t, x, y) ∈ G: t = −𝛼2

𝛼1
x

}
, 𝛼1 ≠ 0 ≠ 𝛼2.

(14)

Concerning to local observability, we can derive the following results.

Proposition 3.12. If B is invertible, ( , 𝜋K ) is locally observable when [∗] is conjugated to

[
𝜆 1

0 𝜆

]
or

[
a −b
b a

]
, b ≠ 0.

Proof. If∗ ≃
[
𝜆 0

0 𝜇

]
, we have

𝜑s(0, 0, y) = (0, 0, es𝜇 y) ∈ K,∀s ∈ ℝ,

which implies that I is not discrete.

If [∗] ≃
[
𝜆 1

0 𝜆

]
, we obtain

𝜑s(0, 0, y) = (0, e𝜆ssy, y).

If e𝜆ssy = 0 for all s ∈ ℝ, then y = 0. Therefore, I = {(0, 0, 0)} proving local observability.

If [∗] ≃
[
a −b
b a

]
, with b ≠ 0, then

𝜑s(0, 0, y) = (0,−eas sin(sb)y, eas cos(bs)y).

If𝜑s(0, 0, y) ∈ K for all s ∈ ℝ, we get eas sin(sb)y = 0, for all s ∈ ℝ. That is, sin(sb)y = 0, for all s ∈ ℝ. Choos-
ing s = 𝜋

2b
, we get y = 0. Therefore, I = {(0, 0, 0)}, and the system is locally observable. If b = 0, we recover the

diagonal case, which indicates that the system is not locally observable. □

Remark 3.13. The examples that comes from the results fromnowon can also be ilustrated by the Examples (3.2)

and (3.8).
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Due to matrix B not being invertible, we can draw the following conclusion.

Proposition 3.14. Assume B is not invertible. In cases 1, 2 and 4 for ker h in (14), the pair ( , 𝜋K ) is not locally
observable.

Proof. The case 𝛼1 = 𝛼2 = 0 is trivial. Considering 𝛼1 ≠ 0 and 𝛼2 = 0, we have

𝜑s(0, x, y) = (0, es∗
(x, y)) ∈ K,∀s ∈ ℝ.

Therefore, I = {0} ×ℝ2, which is not discrete. Finally, if 𝛼1 ≠ 0 and 𝛼2 ≠ 0, considering the point(
−𝛼2
𝛼1
x, x, y

)
∈ K. It turns out

𝜑s

(
−𝛼2
𝛼1

x, x, y

)
=

(
−𝛼2
𝛼1

x, es∗
(x, y)+ FsΛ(

−𝛼2
𝛼1

x
)𝜉

)
∈ K,∀s ∈ ℝ,

which also implies I = K, ending the proof. □

The case ker h = {(t, (x, y)) ∈ G: x = 0} is discussed in the Remark (3.4).
When B is invertible, we establish the following proposition.

Proposition 3.15. The pair ( , 𝜋K ) is observable if∗ is conjugated to

[
𝜆 1

0 𝜆

]
or

[
a −b
b a

]
, b ≠ 0. (15)

Proof. As a matter of fact,

ker h = {(t, x, y) ∈ G: t = x = 0}.

So, Fix(𝜑) = {(0, 0, 0)} if t = 0. And, K ∩ Fix(𝜑) = {(0, 0, 0)} for both matrices in (15). □

3.2.6 Other subgroups

Consider the group G4 = {0} × {0} ×ℝ. For the homomorphism h:G→ G4, we get

h(t, x, y) = (0, 0, 𝛼t + 𝛽x).

Therefore,

ker h =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

G, 𝛼 = 𝛽 = 0,

{(t, x, y) ∈ G: x = 0}, 𝛼 = 0, 𝛽 ≠ 0,

{(t, x, y) ∈ G: t = 0}, 𝛼 ≠ 0, 𝛽 = 0,{
(t, x, y) ∈ G: t = −𝛽

𝛼
x

}
, 𝛼 ≠ 0 ≠ 𝛽 .

(16)

The cases mentioned are the same as those in (14). In particular, for the cases 1, 2, and 4 the corresponding

pairs are not locally observable. The case 3 depends on thematrix∗ (see Remark (3.4)). It is not hard to conclude

the same for the subgroups G5 = {0} ×ℝ × {0} and G6 = ℝ × {0} × {0}.

3.3 Subgroups of R

Next we deal with R3, which is the semi-direct product ℝ⋊𝜌ℝ2, endowed with the product:

(t, x, y) ⋅ (s, z,𝑤) = (t + s, x + et(z+ t𝑤), y+ et𝑤).
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Using the same reasoning applied in R2, the subgroups of R3 are as follows:

G1 = ℝ×𝜌ℝ × {0},

G2 = {0}×𝜌ℝ2,

G3 = {0}×𝜌{0} ×ℝ,

G4 = {0}×𝜌ℝ × {0},

G5 = ℝ×𝜌{0}2.

We notice that G1 is isomorphic to Aff(2,ℝ), G2 to ℝ2, G3,G4 and G5 are isomorphic to ℝ.

3.3.1 The subgroup G1

Considering h:R3 → G1 a homomorphism in the form

h(t, x, y) = (𝛼1t + 𝛼2x + 𝛼3y, 𝛽1t + 𝛽2x + 𝛽3y, 0),

by the expression

h(t, x, y)h(s, z,𝑤) = h(t + s, x + et(z+ t𝑤), y+ et𝑤),

we obtain 𝛼1 = 1, 𝛼2 = 𝛼3 = 𝛽1 = 𝛽2 = 0. Therefore,

h(t, x, y) = (t, 𝛽3y, 0),

whose kernel is given by

ker h =
⎧⎪⎨⎪⎩

{(t, x, y) ∈ R3: t = y = 0}, 𝛽3 ≠ 0,

{(t, x, y) ∈ R3: t = 0}, 𝛽3 = 0.

The case 𝛽3 ≠ 0 is explained in the Proposition (3.7). The case 𝛽3 = 0 is analyzed in Proposition (3.14).

3.3.2 The subgroup G2

Consider h:R3 → G2, in the form

h(t, x, y) = (0, 𝛼1t + 𝛼2x + 𝛼3y, 𝛽1t + 𝛽2x + 𝛽3y).

Hence, 𝛼2 = 𝛼3 = 𝛽2 = 𝛽3 = 0. Thus,

h(t, x, y) = (0, 𝛼1t, 𝛽1t). (17)

The kernel of h reads as

ker h =
⎧⎪⎨⎪⎩

R3, 𝛼1 = 𝛽1 = 0,

{(t, x, y) ∈ R3: t = 0}, otherwise,
(18)

which also leads to the Proposition (3.14).

3.3.3 The subgroup G3

The homomorphisms between R3 and G3 are given by

h(t, x, y) = (0, 0, 𝛼t).
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Here, the kernel is as in (18). The same behavior observed with homomorphisms also applies to the sub-

groups G4,G5 and G6.

3.4 The subgroups of R3,𝝀

The Lie group R3 is the set ℝ×𝜌ℝ2 endowed with the semi-direct product

(t, x, y) ⋅ (s, z,𝑤) = (t + s, x + etz, y+ e𝜆t𝑤).

Let us consider the subgroups:

G1 = {0} ×ℝ2,

G2 = ℝ ×ℝ × {0},

G3 = ℝ × {0} ×ℝ,

G4 = ℝ × {0}2,

G5 = {0} ×ℝ × {0},

G6 = {0} × {0} ×ℝ.

Obviously, G4,G5 and G6 are isomorphic to ℝ. The subgroup G2 is diffeomorphic to the set Aff(2,ℝ) and G1 is
diffeomorphic to ℝ2.

Finally, the subgroup G3 can also be considered as the plane ℝ2 endowed with the product

(t, x) ⋅ (s, y) = (t + s, x + e𝜆t y).

If h : Aff(2,ℝ)→ G3, is defined by:

h(t, x) = (𝜆−1t, x),

it is not hard to prove that h is an isomorphism. Therefore, G3 is also isomorphic to Aff(2,ℝ).
We conclude this section by examining the observability properties through the previously listed subgroups.

3.4.1 The subgroup G1

Considering the samepattern for the homomorphismsbetween the group and its subgroups, the homomorphism

h :R3,𝜆 → G1 is given by

h(t, x, y) = (0, 𝛼1t, 𝛽1t),

which is the same case for the homomorphism in (17).

3.4.2 Subgroup G2

The homomorphisms between R3,𝜆 and G2 are given by functions h:R3,𝜆 → G2 defined by

h(t, x, y) = (t, 𝛽2x, 0).

Therefore,

ker h =
⎧⎪⎨⎪⎩

{(t, x, y) ∈ R3,𝜆: t = x = 0}, 𝛽2 ≠ 0.

{(t, x, y) ∈ R3,𝜆: t = 0}.

The case 𝛽2 ≠ 0 was explored in the expression (10) and the Proposition (3.1).
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3.4.3 The subgroup G3

The subgroup G3 is isomorphic to G2. Hence, taking

h(t, x, y) =
(
𝜆−1t, 𝛽2x, 0

)

the cases for the kernel of h are the same as in the G2 case.

3.4.4 The subgroup G4

The homomorphisms are given by the functions h:R3,𝜆 → G4 defined by

h(t, x, y) = (𝛼1t, 0, 0).

It turns out that

ker h =
⎧⎪⎨⎪⎩

R3,𝜆, 𝛼1 = 0,

{(t, x, y) ∈ R3,𝜆: t = 0}, 𝛼1 ≠ 0.

This led to the cases we have previously discussed. It is easy to conclude that the subgroups G5 and G6 share

the same results.

3.5 The subgroups of R′
3, 𝝀

and E

Here, we will deal only with R′
3,𝜆
, since E has the same structure with 𝜆 = 0.

It is easy to confirm that the only existing subgroups are as follows:

G1 = {0} ×ℝ2,

G2 = ℝ × {0}2.

Just observe that {0} ×ℝ × {0} and {0} × {0} ×ℝ, are the same as G2.

3.5.1 The subgroup G1

The homomorphisms h:R′
3,𝜆

→ G1

h(t, x, y) = (0, 𝛼1t + 𝛼2x + 𝛼3y, 𝛽1t + 𝛽2x + 𝛽3y)

reads as

h(t, x, y) = (0, 𝛼1t, 𝛽2t),

which follows the form outlined in equation (17) and has already been studied.

3.5.2 The subgroup G2

For this case, the standard form is given by

h(t, x, y) = (𝛼1t + 𝛼2x + 𝛼3y, 0, 0).

By applying the product rule, we find 𝛼2 = 𝛼3 = 0, resulting in a scenario similar to (18).
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4 Conclusions

This paper examines the conditions for observability in non-nilpotent solvable three-dimensional Lie groups.

It focuses on the connection between the group structure, the kernels of homomorphisms involving simply

connected subgroups, and the dynamics of linear vector fields. By combining the analysis of Lie group homo-

morphismswith the properties of the drift, we identified criteria that depend not only on the algebraic structure

of the Lie group but also on the specific characteristics of the linear vector field being considered.

We also explored the conditions under which observability is unattainable, providing specific examples

related to the corresponding derivation of the drift. This study proposes new avenues for future research, such

as investigating observability in higher-dimensional ormore complex Lie groups and developing computational

methods to apply these criteria in practical scenarios.
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