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Abstract: The averaging method is applied to the study of optimal control problems for systems of integro-
differential equations with rapidly oscillating coefficients and a small parameter. The original problem
is associated with an averaged optimal control problem, formulated for a system of ordinary differential
equations, which significantly simplifies the analysis. It is proven that as the small parameter tends to zero,
the quality criterion, optimal control, and optimal trajectory of the original problem converge to those of
the averaged problem.
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1 Introduction

In this study, we apply the averaging method to the study of optimal control problems for systems of integro-
differential equations with rapidly oscillating coefficients and a small parameter. The averaging method is one
of the most widely used and effective approaches for analyzing nonlinear dynamical systems. Originally
proposed by Krylov and Bogolyubov for ordinary differential equations, this method was later developed
and applied to various problems. In particular, it has been employed in the context of integro-differential
systems in [1,2], and further extended to boundary value problems for such systems in [3].

Moreover, the averaging method has been effectively employed in the study of optimal control problems.
The central idea is to replace the original control problem with a simpler averaged problem, whose optimal
solutions are “almost” optimal for the original problem. For systems of ordinary differential equations, this
approach was developed in [4,5]. For impulsive optimal control systems with both finite and infinite horizons,
it was applied in [6,7]. Optimal control problems using the averaging method for systems of functional-
differential equations were studied in [8].

In this work, we apply the averaging method to the analysis of optimal control problems for systems of
integro-differential equations. Such equations arise as mathematical models for various processes in the
natural sciences, including population dynamics [9], chemical kinetics, and fluid dynamics [10,11]. We consider
both a nonlinear optimal control problem for a Volterra-type integro-differential system and a linear control
problem. A key role in our study is played by lemmas on the averaging of systems of integro-differential
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equations, where the right-hand sides depend on a control functional parameter. The proximity estimates
obtained for exact and averaged solutions are uniform with respect to control functions from a set of
admissible controls. This allows us to establish the closeness between the optimal solutions of the exact
and averaged problems. Notably, the averaged system is already a system of autonomous ordinary differential
equations, which significantly simplifies its study in the context of optimal control.

The study consists of an introduction and three sections. In Section 2, we present a rigorous formulation
of the problem in both the linear and nonlinear cases and state the main results of the work. Section 3 serves
an auxiliary purpose, proving the necessary averaging lemmas mentioned above. The main results are proved
in Section 4. Finally, examples illustrating the obtained results are provided at the end of the study.

2 Problem statement

2.1 Optimal control problem, nonlinear with respect to the control, for a system
of integro-differential equations with rapidly oscillating parameters

We consider the nonlinear control problem for a system of integro-differential equations with rapidly oscil-
lating parameters:
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over the interval [ ]T0, , where >ε 0 is a small parameter, >T 0 is a given constant, x is the state vector in �d,
( )u t is the m-dimensional control vector such that �( ) ∈ ⊂u t W

m, =d m, 1, 2, 3,… , ( )xΦ is a given function.
The function ( )x t u,ε denotes the solution of the Cauchy problems (1) and (2), corresponding to the control

( )u t . For simplicity of notation, in the following discussion, we omit the explicit dependence on u and ε and
denote this solution as ( )x t .
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The optimal control problems (1) and (2) with rapidly oscillating coefficients correspond to a simpler
optimal control problem
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with the quality criterion
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For problems (1) and (2), we assume that the following conditions hold:
(C1) The admissible controls are considered to be m-dimensional vector functions ( )⋅u such that ( )⋅ ∈u U ,

where U is a compact set in ( )L T0,

2 ;
(C2) The function ( )X t x y u, , , is defined and jointly continuous in all its variables in the domain =Q

0

� �{ }≥ ∈ ∈ ∈t x y u W0, , ,

d n , and satisfies:
(C2a) a linear growth condition with respect to x y, in Q

0

; that is, there exists a constant >M 0 such that
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;
(C3) The function ( )φ t s x, , is defined and continuous in the domain �{ [ ] [ ] }= ∈ ∈ ∈Q t T s T x0, , 0, ,

d

1

, takes
on the values in �n, and satisfies the linear growth condition and the Lipschitz condition with respect
to x , i.e., there exists >L 0φ such that

∣ ( )∣ ( ∣ ∣) ∣ ( ) ( )∣ ∣ ∣≤ + − ≤ −φ t s x L x φ t s x φ t s x L x x, , 1 and , , , , ;φ φ1 1

(C4) There exists the limit (3) uniformly in �∈x
d and ∈u W ;

(C5) The function ( )L t x u, , is defined in the domain �{ [ ] }= ∈ ∈ ∈Q t T x u W0, , ,

d

2

, and
(C5a) ( )L t x u, , is uniformly continuous in �∈x

d with respect to [ ]∈t T0, and ∈u W ;
(C5b) ( )L t x u, , satisfies the Lipschitz condition with respect to u in Q

2

, with constant >λ 0;
(C5c) The function � �→Φ :

d is continuous in x .

The conditions (C2), (C3), and Theorems 3.1 [12] and 2.2 [13] imply that for any admissible control ( )u t ,
there exists a unique solution ( )x t u, of the Cauchy problem on the whole interval [ ]T0, . It is hence obvious
that problems (1) and (4) are valid for all admissible controls.

The main result of this subsection is the theorem that establishes the relationship between the optimal
control and the quality criteria of the exact problems (1), (2) and the averaged problems (4), (5). We set
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Theorem 2.1. Let conditions (C1)–(C5) hold. Then, problems (1), (2), and (4), (5) have solutions ( ( ) ( ))x t u t* , *

ε ε
and

( ( ) ( ))ξ t u t* , * , respectively, and
(i) →J J* *

ε 0

as →ε 0;
(ii) for any >η 0, there exists ε

0

such that for <ε ε
0

,
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i.e., the optimal control of the averaged problem is nearly optimal for the exact problem;
(iii) there exists a sequence →ε 0n , → ∞n , such that
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Furthermore, if the averaged problems (4), (5) have a unique solution, then convergence (6) and (7) holds
for all →ε 0n .
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2.2 Optimal control problem, linear with respect to the control, for a system
of integro-differential equations with rapidly oscillating parameters

We also consider the control problem with rapidly oscillating parameters, that is, linear with respect to the
control input:
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over the interval [ ]T0, , where >ε 0 is a small parameter, >T 0 is a given constant, �∈x
d is the state vector,

and ( )u t is the m-dimensional control vector belonging to a functional set.
If the following limit exists uniformly with respect to �∈x
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then the optimal control problems (8), (9) with rapidly oscillating coefficients correspond to a simpler control
problem on the interval [ ]T0, :
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The main result is the proof of the convergence of the minimal values of the quality criterion, optimal
controls, and optimal trajectories of the exact problems (8) and (9) to the corresponding minimal values of the
quality criterion, optimal controls, and trajectories of the averaged problems.

We assume that the following conditions are met for problems (8) and (9):
(C6) The admissible control is an m-dimensional vector function ( ) (( ) )⋅ ∈u L T V0, ;

p , >p 1, taking on the
values in a closed convex set �⊂V

m;
(C7) The function ( )f t x y, , is defined and jointly continuous in all its variables in the domain =Q

3
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d n ; the ×n m matrix function ( )f x
1
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1
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condition; that is, there exists some >L 0φ such that
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(C9) Limit (10) exists uniformly in �∈x
d;
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The main result here is the following theorem on a relationship between the optimal triples of the exact
and averaged problems.

Theorem 2.2. Let conditions (C6)–(C10) hold. Then, problems (8), (9) and (11), (12) have solutions ( ( ) ( ))x t u t* , *
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Furthermore, if the averaged problems (11), (12) have a unique solution, then convergence (13) and (14) holds
for all →ε 0.

3 Averaging lemmas

This section is devoted to proving lemmas on the closeness of solutions of the original optimal control system
and the solutions of the corresponding averaged system in both the nonlinear-in-controls case and the linear-
in-controls case.

Lemma 3.1. Let conditions (C1)–(C4) hold. Then, given any >η 0, there exists ( )=ε ε η
0 0

such that for < ≤ε ε0

0

,
the solutions of the Cauchy problems (1) and (4) satisfy the estimate

∣ ( ) ( )∣− ≤x t u ξ t u η, , , (15)

for all [ ]∈t T0, and all admissible controls ( )u t .

Remark 3.1. In this lemma, it is important that estimate (15) is uniform for all admissible controls u.

Proof. Let us choose an arbitrary >η 0 and fix it. For any >ε 0 and any admissible control ( )u t , we estimate
the difference between ( )x t u, and ( )ξ t u, . For simplicity, we denote ( ) ( )=x t u x t, and ( ) ( )=ξ t u ξ t, . We also
omit the dependence of ( )x t on ε.

SinceU is compact in ( )L T0,
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−

ηe
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λ

-net ( ) ( )u t u t,…, N1

, where ( )=N N η .
Thus, for the chosen control ( )u t , there exists a representative ( )u tj from the net such that
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λ
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Again, since U is compact in ( )L T0,

2 , there exists >K 0 such that all admissible controls ( )u t satisfy
the inequality
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Since every function in ( )L T0,

2 can be approximated in the L
2-norm by a continuous function, and every

continuous function on a closed interval can be approximated by a piecewise constant function, we choose for
( )u tj a continuous function ( )u tc and a piecewise constant function ( )u tp such that the following inequalities

hold:

‖ ‖− < −
u u

η

λ

e

16

,j c L

λT
2 (21)

‖ ( ) ( )‖− < −
u t u t

η

λ

e

16

,c p L

λT
2 (22)

for [ ]∈t T0, .
Using (21) and (22), we estimate the last integral in (20):

( ) ( ( )) ( ) ( ( ) ( ))

( ) ( ( )) ( ) ( ) ( ( )) ( )

( ) ( ( )) ( ) ( ) ( ( )) ( )

( ) ( ( )) ( ) ( ( ( ) ( )) ( ( ) ( )))

( ( ( ) ( )) ( ( ) ( ))) ( ( ) ( )) ∣ ( ) ( )∣

∣ ( ) ( )∣ ( ) ( ( )) ( ) ( ( ) ( )) ∣ ( ) ( )∣

∣ ( ) ( )∣ ( ) ( ( )) ( ) ( ( ) ( ))

∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫

⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟ −

⎤

⎦
⎥

=
⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟
⎤

⎦
⎥

+
⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟
⎤

⎦
⎥

+
⎛

⎝
⎜

⎞

⎠
⎟ + −

+ − − ≤
⎛

⎝
⎜ −

⎞

⎠
⎟

+
⎛

⎝
⎜ −

⎞

⎠
⎟ +

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟ −

⎞

⎠
⎟ +

⎛

⎝
⎜ −

⎞

⎠
⎟

+
⎛

⎝
⎜ −

⎞

⎠
⎟ ≤

⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟ −

⎤

⎦
⎥ + −

X

s

ε

ξ s φ s τ ξ τ τ u s X ξ s u s s

X

s

ε

ξ s φ s τ ξ τ τ u s X

s

ε

ξ s φ s τ ξ τ τ u s s

X

s

ε

ξ s φ s τ ξ τ τ u s X

s

ε

ξ s φ s τ ξ τ τ u s s

X

s

ε

ξ s φ s τ ξ τ τ u s s X ξ s u s X ξ s u s s

X ξ s u s X ξ s u s s X ξ s u s s λ u s u s s

λ u s u s s X

s

ε

ξ s φ s τ ξ τ τ u s X ξ s u s s λ u s u s s

λ u s u s s X

s

ε

ξ s φ s τ ξ τ τ u s X ξ s u s s

η

e

, , , , d , , d

, , , , d , , , , , d , d

, , , , d , , , , , d , d

, , , , d , d , , d

, , d , d d

d , , , , d , , d d

d , , , , d , , d

4

.

t s

j j

t s

j

s

c

t s

c

s

p

t s

p

t

c j

t

p c

t

p

T

j c

T

c p

t s

p p

T

c j

T

p c

t s

p p

λT

0 0

0

0 0 0

0 0 0

0 0 0

0 0

0

0 0

0

0

0

2

0

2

0 0

0

0

2

0

2

0 0

0

1

2

1

2

1

2

1

2

Let us consider the last integral in this inequality. We have:

( ) ( ( )) ( ) ( ( ) ( ))

( ) ( ( )) ( ) ( ) ( ( )) ( )

( ) ( ( )) ( ) ( ( ) ( ))

∫ ∫

∫ ∫ ∫

∫ ∫

⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟ −

⎤

⎦
⎥

≤
⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟
⎤

⎦
⎥

+
⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟ −

⎤

⎦
⎥ = +

X

s

ε

ξ s φ s τ ξ τ τ u s X ξ s u s s

X

s

ε

ξ s φ s τ ξ τ τ u s X

s

ε

ξ s φ s τ ξ s τ u s s

X

s

ε

ξ s φ s τ ξ s τ u s X ξ s u s s I I

, , , , d , , d

, , , , d , , , , , d , d

, , , , d , , d .

t s

p p

t s

p

s

p

t s

p p

0 0

0

0 0 0

0 0

0 2 3

We estimate the integral I
2

by dividing the interval [ ]T0, by the points { }tk

R

0

( = =t t T0, R0

) in such a way
that all components of the vector function ( )u tp have constant values on each subinterval [ )+t t,k k 1

, that is,
( ) ( )=u t u tp p k for [ )∈ +t t t,k k 1

. Here, the natural ( )=R R η is fixed for a given choice of η.
Now, we choose a natural n and divide the interval [ ]T0, into n equal parts by the points = ∕t i ni

( )=i n0, …, . Suppose n is large enough so that each subinterval [ )+t t,k k 1

contains the points ti. As a result,
we obtain n intervals [ )+t t,i i 1

. If for some k and i we have < < +t t ti k i 1

, the interval [ )+t t,i i 1

is split into two

Optimal control problems averaging method for integro-differential equations  7



subintervals: [ )t t,i k and [ )+t t,k i 1

. Thus, the interval [ ]T0, is divided into no more than +n R subintervals, each
with length not exceeding

n

1 . The partition points are again denoted by ti, and the total number of intervals
[ )+t t,i i 1

is denoted by ( )=K K η . Clearly, ≤ +K n R, and ( ) ( )=u t u tp p i for [ )∈ +t t t,i i 1

. Let us denote ( )=ξ ξ ti i and
( ) =u t up i pi. Then,

( ) ( ( )) ( )

( ) ( ) ( ( ))

∣ ( ) ∣ ∣ ( ) ∣ ∣ ( )∣ ∣ ( )∣

( )
( )

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫

∑

∑

∑ ∑

∑

≤
⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟
⎤

⎦
⎥

+
⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟

≤ − + − + − + −

≤
+ ⎛

⎝
⎜ +

⎞

⎠
⎟ ≤ +

+ ⎛
⎝ + ⎞

⎠

=

−

=

−

=

−

=

−

=

−

+

+

+ + + +

+

I X

s

ε

ξ s φ s τ ξ τ τ u X

s

ε

ξ φ s τ ξ τ u s

X

s

ε

ξ φ s τ ξ τ u X

s

ε

ξ s φ s τ ξ s τ u s

λ ξ s ξ s L ξ τ ξ τ s λ ξ ξ s s L ξ ξ s τ s

λ

MT C

n

s L τ λMT C

n R

n

L

T

n

, , , , d , , , , , d , d

, , , , d , , , , , d , d

d d d d d d

2

1

1 d d 1 1 .

i

K

t

t s

pi i

s

i pi

i

K

t

t

i

s

i pi

s

pi

i

K

t

t

i

t

t s

φ i

i

K

t

t

i

t

t s

φ i

i

K

t

t s

φ φ

2

0

1

0 0

0

1

0 0

0

1

0

0

1

0

0

1

2

0

2

i

i

i

i

i

i

i

i

i

i

i

i

i

i

1

1

1 1 1 1

1

Now, for the chosen >η 0, there exists a number >η 0 such that for all >ε 0, the following holds:

≤ −
I

η

e

8

.

λT

2

We now fix the chosen n and estimate the integral I
3

. To do this, we split it over the interval [ ]T0, into
a sum of integrals:

( ) ( ( )) ( ) ( ( ) ( ))

( ) ( ( )) ( )

[ ( ( ) ) ( )] ( ) ( )

∣ ( ) ∣ ∣ ( ) ∣ ∣ ( ) ∣

∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫ ∫

∑

∑ ∑

∑ ∑

⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟ −

⎤

⎦
⎥

≤
⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟
⎤

⎦
⎥

+ − +
⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟ −

⎤

⎦
⎥

≤
⎡

⎣
⎢ − + −

⎤

⎦
⎥ + − +

=

−

=

−

=

−

=

−

=

−

+

+ +

+ + +

X

s

ε

ξ s φ s τ ξ s τ u s X ξ s u s s

X

s

ε

ξ s φ s τ ξ s τ u X

s

ε

ξ φ s τ ξ τ u s

X ξ s u X ξ u s X

s

ε

ξ φ s τ ξ τ u X ξ u s

λ ξ s ξ s L ξ s ξ τ s λ ξ s ξ s I

, , , , d , , d

, , , , d , , , , , d , d

, , d , , , , d , , d

d d d d .

t s

p p

i

K

t

t s

pi i

s

i pi

i

K

t

t

pi i pi

i

K

t

t

i

s

i pi i pi

i

K

t

t

i

t

t s

φ i

i

K

t

t

i

0 0

0

0

1

0 0

0

1

0 0

0

1

0

0

0

1

0

0

1

4

i

i

i

i

i

i

i

i

i

i

i

i

1

1 1

1 1 1

Let us now estimate the integral I
4

. We obtain

( ) ( )∫ ∫∑=
⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟ −

⎤

⎦
⎥

=

− +

I X

s

ε

ξ φ s τ ξ τ u X ξ u s, , , , d , , d .

i

K

t

t

i

s

i pi i pi4

0

1

0

0

i

i 1

In terms of ( )φ t x,

1

, we have

( ) ( )

( ) ( ) ( ) ( )

∫

∫ ∫

⎡
⎣

⎛
⎝

⎞
⎠ − ⎤

⎦

= ⎡
⎣

⎛
⎝

⎞
⎠ − ⎤

⎦ − ⎡
⎣

⎛
⎝

⎞
⎠ − ⎤

⎦

+

+

X

s

ε

ξ φ s ξ u X ξ u s

X

s

ε

ξ φ s ξ u X ξ u s X

s

ε

ξ φ s ξ u X ξ u s

, , , , , d

, , , , , d , , , , , d .

t

t

i i pi i pi

t

i i pi i pi

t

i i pi i pi

1

0

0

1

0

0

1

0

i

i

i i

1

1
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Due to condition (3), each term on the right-hand side of the last equality tends to zero as →ε 0. Since K

is fixed, by choosing a sufficiently small ε, it is possible to achieve the inequality

≤ −
I

η

e

16

.

λT

4

Hence,

≤ −
I

η

e

8

.

λT

3

Similarly, for I
2

, the following inequality can be obtained:

∣ ( ) ( )∣ ∣ ( ) ( )∣∫ ∫ ∫≤
⎛

⎝
⎜ − + −

⎞

⎠
⎟ + ≤− −

I λ x s ξ s s L x τ ξ τ τ s

η

e

η

ed d d

4 2

.

t t s

φ

λT λT

1

0 0 0

The reasoning outlined above can be applied to each function ( ) ( ) ( )u t u t u t, ,…, n1 2

from the constructed
grid. Due to its finiteness, ε

0

can be chosen uniformly for each function from the grid.
Thus, from inequalities (16)–(19), (22), and the last two estimates for the integrals I

1

and I
2

, it follows that
inequality (15) holds uniformly for all admissible controls, which proves the lemma. □

Lemma 3.2. Let conditions (C6)–(C9) hold. If ⟶u uε

w

0n
weakly in ( )L T0,

p as →ε 0, then the solution ( )x tε of the
Cauchy problem (8) with ( ) ( )=u t u tε converges uniformly on [ ]T0, to the solution ( )ξ t of the corresponding
Cauchy problem (11) with control ( ) ( )=u t u t

0

, i.e.,

( ) ( )⇉ →x t ξ t ε, 0ε

uniformly in [ ]∈t T0, .

Proof. Let us rewrite (8) in the integral form

( ) ( ) ( ( )) ( ( )) ( )∫ ∫ ∫= +
⎛

⎝
⎜

⎞

⎠
⎟ +x t x f

s

ε

x s φ s τ x τ τ s f x s u s s, , , , d d d .ε

t

ε

s

ε

t

ε ε0

0 0 0

1

Without loss of generality we can assume =T 1. We have

∣ ( )∣ ∣ ∣ ( ∣ ( )∣ ( ∣ ( )∣) ) (∣ ( ( )) ( )∣ ∣ ( )∣)∣ ( )∣

∣ ∣ ( ∣ ( )∣∣ ( )∣) ( ∣ ( )∣)∣ ( )∣ ∣ ( )∣

∫ ∫ ∫

∫ ∫ ∫ ∫

≤ + + + + + − +

≤ + + + + + +

x t x M x s L x τ τ s f x s f f u s s

x M L f u s s M λ u s x s s L x τ τ s

1 1 d d 0 0 d

0 d d d d .

ε

t

ε

s

φ ε

t

ε ε

t

φ ε

t

ε ε φ

t s

ε

0

0 0 0

1 1 1

0

0

1

0 0 0

(23)

Applying the generalized Gronwall-Bellman inequality to (23), we obtain

∣ ( )∣ (∣ ∣ ∣ ( )∣ ∣ ( )∣ )
( )∫ ∫≤ + + + + ∣ ∣ +

x t x M L f u s s e0 d .ε φ

t

ε

M λ u s s L

0

1

0

d

t

ε φ

0

Let = +M M L* φ, then

∣ ( )∣ (∣ ∣ ∣ ( )∣‖ ‖ ) ‖ ‖≤ + + ⋅ +
x t x M f u e* 0 .ε ε L

M λ u

0

1

*

p ε L
p (24)

From the weak convergence of uε, it follows that uε is strongly bounded, i.e., ‖ ‖ < ∞> usup

ε ε L
0

p . This,
together with (24), implies the existence of a constant >C 0 such that

∣ ( )∣ ≤x t C ,ε (25)

for all >ε 0 and [ ]∈t 0, 1 .

Optimal control problems averaging method for integro-differential equations  9



Now, for any <t t
1 2

, where [ ]∈t t, 0, 1

1 2

, we have

∣ ( ) ( )∣ ( ( ) ) (∣ ( )∣ )∣ ( )∣

( )( ) ( )( ) (∣ ( )∣ ) ∣ ( )∣ ( )

∫ ∫ ∫

∫

− ≤ + + + + +

≤ + − + + − + +
⎛

⎝
⎜

⎞

⎠
⎟ −

x t x t M C L C τ s f λC u s s

M C t t ML C t t f λC u s s t t

1 1 d d 0 d

1 1 0 d ,

ε ε

t

t

φ

s

t

t

ε

φ

t

t

ε

p

2 1

0

1

2 1 2 1

1

2 1

p

q

1

2

1

2

1

2

1

1

where + = 1

p q

1 1 .

From the last inequality, it follows that the family ( )x tεn
is equicontinuous on [ ]0, 1 , and taking into account

(25), it is also compact.
Let ( )x tεn

be a sequence that converges uniformly to some function ( )ξ t as →ε 0n . We will show that ( )ξ t

is a solution of the Cauchy problem with the control ( ) ( )=u t u t
0

. We have

( ) ( ) ( ( )) ( ( )) ( )∫ ∫ ∫= +
⎛

⎝
⎜

⎞

⎠
⎟ +x t x f

s

ε

x s φ s τ x τ τ s f x s u s s, , , , d d d .ε

t

n

ε

s

ε

t

ε ε0

0 0 0

1n n n n n

Let us consider the following expression:

( ) ( ( )) ( ( )) ( ( )) ( ) ( ( )) ( )

( ) ( ( )) ( ) ( ( ))

( ) ( ( )) ( ( ))

[ ( ( )) ( ) ( ( )) ( ) ( ( )) ( ) ( ( )) ( )]

∫ ∫

∫ ∫ ∫

∫ ∫

∫

⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟ − + −

⎤

⎦
⎥

≤
⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟
⎤

⎦
⎥

+
⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟ −

⎤

⎦
⎥

+ − + −

f

s

ε

x s φ s τ x τ τ f ξ s f x s u s f ξ s u s s

f

s

ε

x s φ s τ x τ τ f

s

ε

ξ s φ s τ ξ τ τ s

f

s

ε

ξ s φ s τ ξ τ τ f ξ s s

f x s u s f ξ s u s f ξ s u s f ξ s u s s

, , , , d d

, , , , d , , , , d d

, , , , d d

d .

t

n

ε

s

ε ε ε

t

n

ε

s

ε

n

s

t

n

s

t

ε ε ε ε

0 0

0 1 1

0

0 0 0

0 0

0

0

1 1 1 1

0

n n n n

n n

n n n n

(26)

The first term in (26), due to conditions (C7) and (C8), admits the following estimate:

∣ ( ) ( )∣ ∣ ( ) ( )∣ ∣ ( ) ( )∣ ( )
[ ]

∫ ∫
⎛

⎝
⎜ − + −

⎞

⎠
⎟ ≤ − + → →

∈
λ x s ξ s L x τ ξ τ τ s x t ξ t λ L εd d sup 1 0, 0.

t

ε

s

φ ε

t

ε φ n

0 0

0, 1

n n n

For the last term in (26), we obtain the estimate

[( ( ( )) ( ( ))) ( ) ( ( ))( ( ) ( ))]

( ( ( )) ( ( ))) ( ) ( ( ))( ( ) ( ))

∫

∫ ∫

− + −

≤ − + −

f x s f ξ s u s f ξ s u s u s s

f x s f ξ s u s s f ξ s u s u s s

d

d d .

t

ε ε ε

t

ε ε

t

ε

0

1 1 1

0

0

1 1

0

1

0

n n n

n n n

(27)

Taking into account (25) and the continuity of the function f
1

, and using the weak convergence of uεn

to u
0

in ( )L 0, 1

p , we obtain that the last term in (27) tends to 0.
We now estimate the first term in (27). Under condition (C7b), it holds that

( ( ( )) ( ( ))) ( ) ∣ ( ) ( )∣ ∣ ( )∣

∣ ( ) ( )∣ ‖ ‖

[ ]

[ ]

∫ ∫− ≤ − ⋅

≤ − ⋅
∈

∈

f x s f ξ s u s s x s ξ s u s s

x s ξ s u

d sup d

sup .

t

ε ε

t

ε

t

ε

t

ε ε L

0

1 1

0, 1

0

0, 1

n n n n

n n

p

(28)

10  Roksolana Lakhva et al.



Taking into account ∣ ( ) ( )∣[ ] − →∈ x s ξ ssup 0

t ε
0, 1 n

, as well as the uniform boundedness of ‖ ‖uε Ln

p, we con-
clude that, due to (28), the first term in (27) tends to 0.

Let us now estimate the second term in the right-hand side of (26), which we denote by I
1

. We will show
that for any >η 0, there exists εn

0

such that for <ε εn n
0

, the following inequality holds:

( ) ( ( )) ( ( ))∫ ∫=
⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟ −

⎤

⎦
⎥ <I f

s

ε

ξ s φ s τ ξ τ τ f ξ s s η, , , , d d .

t

n

s

1

0 0

0

To show this, we choose a natural number k and divide the interval [ ]0, 1 into k equal parts using the

points ( )= =t i k0, …,i

i

k
, i.e. ∣ ∣− ≤+t ti i

k
1

1 . We denote the total number of the intervals [ )+t t,i i 1

by ( )=κ κ η . Due
to the uniform continuity of ( )ξ t on [ ]0, 1 , for >η 0 one can specify k such that following estimate will be valid:

∣ ( ) ( )∣
( )

− <
++ξ t ξ t

η

λ L2 2

.i i

φ

1 (29)

Let us fix such k and denote ( ) =ξ t ξi i. We have

( ) ( ( )) ( )

( ) ( ) ( ) ( ( ))

( ) ( ( )) ( ) ∣ ( ) ( ( ))∣

( ) ( )

∣ ( ) ∣ ∣ ( ) ∣ ∣ ( )∣

( ) ( )

∫ ∫ ∫

∫

∫ ∫ ∫

∫ ∫

∫ ∫

∫ ∫

∑

∑

∑

∑

∑

≤
⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟

+
⎛

⎝
⎜

⎞

⎠
⎟ − + −

⎤

⎦
⎥

≤
⎡

⎣
⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟ + −

⎤

⎦
⎥
⎥

+
⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟ −

⎞

⎠
⎟

≤
⎛

⎝
⎜ − + − + −

⎞

⎠
⎟

+
⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟ −

⎤

⎦
⎥

=

−

=

−

=

−

=

−

=

−

+

+

+

+

+

I f

s

ε

ξ s φ s τ ξ τ τ f

s

ε

ξ φ s τ ξ τ

f

s

ε

ξ φ s τ ξ τ f ξ f ξ f ξ s s

f

s

ε

ξ s φ s τ ξ s τ f

s

ε

ξ φ s τ ξ τ f ξ f ξ s s

f

s

ε

ξ φ s τ ξ τ f ξ s

λ ξ s ξ L ξ τ ξ τ ξ ξ s s

f

s

ε

ξ φ s τ ξ τ f ξ s

, , , , d , , , , d

, , , , d d

, , , , d , , , , d d

, , , , d d

d d

, , , , d d .

i

κ

t

t

n

s

n

i

s

i

n

i

s

i i i

i

κ

t

t

n

s

n

i

s

i i

i

κ

t

t

n

i

s

i i

i

κ

t

t

i φ

t

i i

i

κ

t

t

n

i

s

i i

1

0

1

0 0

0

0 0 0

0

1

0 0

0 0

0

1

0

0

0

1

0

0

1

0

0

i

i

i

i

i

i

i

i

i

i

1

1

1

1

1

It follows from (29) that

∣ ( ) ∣ ∣ ( ) ∣ ∣ ( )∣∫ ∫∑
⎛

⎝
⎜ − + − + −

⎞

⎠
⎟ ≤

=

− +

λ ξ s ξ L ξ τ ξ τ ξ ξ s s

η

d d

2

.

i

κ

t

t

i φ

t

i i

0

1

0

i

i 1

Let I
11

denote the following expression:

( ) ( )∫ ∫∑=
⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟ −

⎤

⎦
⎥

=

− +

I f

s

ε

ξ φ s τ ξ τ f ξ s, , , , d d .

i

κ

t

t

n

i

s

i i11

0

1

0

0

i

i 1

In terms of ( )φ t x,

1

, we have

( ) ( )

( ) ( ) ( ) ( )

∫

∫ ∫

∑

∑ ⎟ ⎟⎜ ⎜

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

−
⎤
⎦⎥

=
⎡

⎣
⎢
⎛
⎝

⎛
⎝

⎞
⎠

−
⎞
⎠

−
⎛
⎝

⎛
⎝

⎞
⎠

−
⎞
⎠

⎤

⎦
⎥

=

−

=

−

+

+

f

s

ε

ξ φ s ξ f ξ s

f

s

ε

ξ φ s ξ f ξ s f

s

ε

ξ φ s ξ f ξ s

, , , d

, , , d , , , d .

i

κ

t

t

n

i i i

i

κ
t

n

i i i

t

n

i i i

1

1

1 0

1

1

0

1 0

0

1 0

i

i

i i

1

1
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Due to (10), for each i, there exists εni
such that for <ε εn ni

, the following inequalities hold:

( ) ( )∫ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

−
⎤
⎦⎥

≤f

s

ε

ξ φ s ξ f ξ s

η

k

, , , d

4

.

t

n

i i i

0

1 0

i

Since k is fixed, the number of such integrals is finite. Let { }=ε ε εmin , …,η n nk1

. Then, for <ε εn η, we obtain

≤I

η

2

.

11

Thus,

≤I η.

1

The latter means that ( )ξ t is the solution of the Cauchy problem (8). Consequently, the uniform conver-
gence ( )⇉x ξ tεn

as →ε 0n implies convergence to the solution of the Cauchy problem (8). Since ( )ξ t is the
unique solution, the entire sequence xε converges to ( )ξ t , which completes the proof of this lemma. □

4 Proof of main theorems

4.1 Nonlinear case

Proof of Theorem 2.1. For simplicity, we will again assume =T 1. Let us first prove the existence of solutions.
To do this, we will establish the continuity of [ ]J u

ε
with respect to u for each >ε 0.

Let ( ) ( )u t u t,

1 2

be any admissible controls for problem (1), (2), and let ( ) ( )x t u x t u, , ,

1 2

be the corresponding
trajectories.

Using condition (C2) and Gronwall’s inequality, we obtain

∣ ( ) ( )∣ ‖ ‖
[ ]

− ≤ −
∈

x t u x t u λ u u esup , , .

t

L

λ

0, 1

1 2 1 2

2 (30)

Therefore,

∣ [ ] [ ]∣ ∣ ( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))∣

∣ ( ( )) ( ( ))∣

‖ ‖ ∣ ( ( ) ( )) ( ( ) ( ))∣ ∣ ( ( )) ( ( ))∣

∫

∫

− ≤ − + −

+ −

≤ − + − + −

J u J u L t x t u u t L t x t u u t L t x t u u t L t x t u u t t

x u x u

λ u u L t x t u u t L t x t u u t t x u x u

, , , , , , , , , , , , d

Φ 1, Φ 1,

, , , , , , d Φ 1, Φ 1, .

ε ε

L

1 2

0

1

1 1 2 1 2 1 2 2

1 2

1 2

0

1

1 1 2 1 1 2

2

(31)

Now, using estimate (18), which is uniform for all admissible ( )u t , we conclude that ( )x t u, remains within
the ball BC of radius C centered at zero for all [ ]∈t 0, 1 .

According to assumption (C5a) and Cantor’s theorem, the function ( )L t x u, , is uniformly continuous in
∈x Bc, uniformly with respect to [ ]∈t 0, 1 and ∈u W . Similarly, Φ is uniformly continuous in ∈x BC .

Therefore, from (30) and (31), it follows that [ ]J u
ε

is continuous in the L
2-norm.

A similar argument establishes the continuity of the functional [ ]J u
0

with respect to u.
Now, considering the compactness of the set of admissible controls, we establish the existence of optimal

solutions ( ( ) ( ))x t u t* , *

ε ε
and ( ( ) ( ))ξ t u t* , * of problems (1), (2) and (4), (5), respectively. This proves the existence

of optimal solutions for both the exact and the averaged problems.
Let us now prove statement ( )i , namely, that →J J* *

ε 0

as →ε 0. We choose an arbitrary >η 0 and fix it.
Then, we have

[ ] [ ] [ ]≤ = + −J J u J J u J u*
*

*
* * .

ε ε ε
0

0

(32)
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However,

∣ [ ] [ ]∣ ∣ ( ( ) ( )) ( ( ) ( ))∣ ∣ ( ( )) ( ( ))∣∫− ≤ − + −J u J u L t x t u u t L t ξ t u t t x u ξ* * , , * , * , , * d Φ 1, * Φ 1 .

ε 0

0

1

(33)

By Lemma 3.1, we have

∣ ( ) ( )∣
[ ]

− → →
∈

x t u ξ t εmax , * * 0, 0.

t 0, 1

(34)

Taking into account the uniform continuity of the function ( )L t x u, , with respect to ∈x Bc, uniformly in
[ ]∈t 0, 1 and ∈u W , it follows from (33), (34), and condition (C5) that there exists >ε 0

0

such that for <ε ε
0

,
we have

∣ [ ] ∣− <J u J η* .

ε 0

Hence, from (32) we obtain
< +J J η* * .

ε 0

(35)

On the other hand, for <ε ε
0

, we obtain

[ ] ( [ ] [ ])≤ = + −J J u J J u J u* * * * * .

ε ε ε ε ε
0

0 0

However, similarly to (35), we have

∣ [ ] [ ]∣− <J u J u η* * .

ε ε ε
0

Consequently,

< +J J η* * .

ε0

(36)

It follows from (35) and (36) that →J J* *

ε 0

as →ε 0, which proves statement ( )i of Theorem 2.1.
Statement ( )ii of Theorem 2.1 follows directly from the fact that

∣ [ ]∣ ∣ ∣ ∣ [ ] [ ]∣− ≤ − + −J J u J J J u J u*
*

* *
* * .

ε ε ε ε
0

0

We proceed to the proof of statement ( )iii . Since U is compact in ( )L 0, 1

2 , we can extract a subsequence
u *

ε
n

that converges in ( )L 0, 1

2 . Let

=
→

u ulim * .

ε

ε

0

0

n

n (37)

Let us now consider the auxiliary systems

( ) ( ( )) ( )

( )

∫
⎧

⎨
⎪

⎩
⎪

=
⎛

⎝
⎜

⎞

⎠
⎟

=

z X

t

ε

z t φ t s z s s u t

z x

˙ , , , , d , ,

0 ,

ε

n

ε

t

ε

ε

0

0

0

n n n

n

and

( ( ))

( )

=
=

ξ X ξ u t

ξ x

˙

, ,

0 .

0 0

0

(38)

By (30), we have

∣ ( ) ( )∣
[ ]

− → →
∈

x t z t εsup * 0, 0

t

ε ε n

0, 1

n n (39)

and, by Lemma 3.1,

∣ ( ) ( )∣
[ ]

− → →
∈

z t ξ t εsup 0, 0.

t

ε n

0, 1

n
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Hence, it follows from (38) and (39) that

∣ ( ) ( )∣
[ ]

− → →
∈

x t ξ t εsup * 0, 0.

t

ε n

0, 1

n (40)

Therefore,

[ ] ( ( ) ( )) ( ( ))

( ( ) ( )) ( ( )) [ ( ( ) ( )) ( ( ) ( ))]

∫

∫ ∫

= = +

= + + −

J J u L t x t u t t x

L t x t u t t x L t x t u t L t x t u t t

* * , * , * d Φ * 1

, * , d Φ * 1 , * , * , * , d .

ε ε ε ε ε ε

ε ε ε ε ε

0

1

0

1

0

0

1

0

n n n n n n

n n n n n

(41)

Condition (C5b) and (37) imply that the last term in (41) approaches 0 as →ε 0n .
By letting →ε 0n in (41), and using (40), we obtain

( ( ) ( )) ( ( ))∫= +J L t ξ t u t t ξ* , , d Φ 1 .

0

0

1

0

Hence, ( ( ) ( ))ξ t u t,

0

is the optimal solution of the averaged problems (4), (5), which proves statement ( )iii .
If problems (4), (5) has a unique solution, then the above reasoning implies that any converging sequence

( ( ) ( ))u t x t* , *

ε ε
n n

tends to the same limit. This completes the proof of the final statement of the theorem. □

4.2 Linear case

Proof. We again set =T 1 and consider the problem on [ ]0, 1 .
The existence of an optimal solution ( ( ) ( ))x t u t* , *

ε ε
for each >ε 0 is established in a standard way by

extracting a weakly convergent minimizing sequence ( )( )
u t

ε

n , converging to ( )u t*

ε
, and then passing to the limit.

This approach relies on the lower semicontinuity of the integral ( ( ))∫ B t u t t, d

0

1

with respect to u, which follows
from the convexity of ( )B t u, .

The fact that ( )u t*

ε
belongs to the setV for each [ ]∈t 0, 1 follows from Mazur’s lemma [14], as well as from

the convexity and closedness of the set V .
The existence of an optimal pair ( ( ) ( ))ξ t u t* , * for problems (11), (12) is proved in a similar manner.
Thus,

[ ] [ ( ( )) ( ( ))] ( ( ))∫= = + +J J u A t x t B t u t t x* * , * , * d Φ * 1 .

ε ε ε ε ε ε

0

1

Let ū be an arbitrary constant vector from V . Clearly, the control ( ) ≡u t ū is admissible for problems (8),
(9). Then, for each >ε 0, we have

[ ] [ ]= ≤J J u J u* *

¯
.

ε ε ε ε

Similarly to the derivation of estimate (18), one can show the existence of a constant C
1

, independent
of ε, such that

∣ ( )∣ ≤x t u C,
¯ε 1

for [ ]∈t 0, 1 . Then, from the continuity of A, B, and Φ, it follows that there exists a constant C
2

, independent
of ε, such that ≤J C*

ε
2

. Therefore,

≤J C*

ε
2

(42)
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for all positive ε. From condition (C10) and (42), we obtain

∣ ( )∣∫ ≤u t t

C

a

* d .

ε

p

0

1

2

Thus, the set u *

ε
is weakly compact in ( )L 0, 1

p . Let ( )u t*

ε
n

be a sequence of optimal controls that weakly
converges to ( )u t

0

. From Mazur’s lemma, it follows that ( ) ∈u t V
0

for [ ]∈t 0, 1 , meaning that ( )u t
0

is an
admissible control.

Let ( )y t be the solution of the Cauchy problem (11) with ( ) ( )=u t u t
0

. By Lemma 3.2, the solution ( )x t u, *

ε εn n

of the Cauchy problem (8) converges uniformly, with respect to [ ]∈t 0, 1 , to ( )y t for →ε 0n .
For any >η 0, we have

[ ] [ ] [ ] [ ] [ ] [ ]≤ = + − = + −J J u J u J u J u J J u J u*
* * * *

*
* * .

ε ε ε ε0 0
0

0

n n n n
(43)

Again, according to Lemma 3.2, the solution ( )x t u, *εn
of the Cauchy problem (8) converges uniformly, with

respect to [ ]∈t 0, 1 , to ( )ξ t* as →ε 0n . Hence,

∣ [ ] [ ]∣ ∣ ( ( ) ( ( )))∣ ∣ ( ( )) ( ( ))∣∫− ≤ − + − → →J u J u A t x t u A t ξ t t x u ξ ε* * , , * , * d Φ 1, * Φ 1 0, 0.

ε ε ε n
0

0

1

n n n

Thus, for any >η 0, there exists ε̄ such that, for <ε ε̄n ,

∣ [ ] [ ]∣− <J u J u η* * .

ε 0n
(44)

This, together with (43), implies
≤ +J J η* * .

ε 0

n

(45)

On the other hand, we have
[ ] [ ] [ ]≤ = + −J J u J J u J u* * * * * .

ε ε ε ε ε
0

0 0n n n n n
(46)

Let us consider an auxiliary system

( ) ( )= +z f z f z u˙
*

n n n ε
0 1 n

(47)

and system
( ) ( )= +y f y f y u˙ .

0 1

0

(48)

Applying Lemma 3.2 to systems (47) and (48), we obtain

∣ ( ) ( )∣
[ ]

− → → ∞
∈

z t y t nsup 0, .

t

n

0, 1

From this, taking into account the uniform convergence of x *

ε
n

to y, it follows that
∣ ( ) ( )∣

[ ]

− → → ∞
∈

x t z t nsup * 0, .

t

ε n

0, 1

n

Hence,

∣ [ ] [ ]∣ ∣ ( ( )) ( ( ))∣ ∣ ( ( )) ( ( ))∣

∣ ( ( )) ( ( ))∣ ∣ ( ( )) ( ( ))∣

∫ ∫− ≤ − + −

+ − + − → → ∞

J u J u A t x t A t z t t A t z t A t y t t

x y x y n

* * , * , d , , d

Φ * 1 Φ 1 Φ * 1 Φ 1 0, ,

ε ε ε ε n n

ε ε

0

0

1

0

1

n n n n

n n

due to the uniform continuity of ( )A t x, on the compact and the obvious estimates

∣ ( )∣ ∣ ( )∣
[ ] [ ]

≤ ≤
∈ ∈

x t C z t Csup * , sup

t

ε

t

n

0, 1

3

0, 1

3

n

for some constant >C 0

3

independent of n.

Optimal control problems averaging method for integro-differential equations  15



Thus, for an arbitrary >η 0, there exists ε̄ such that

∣ [ ] [ ]∣− <J u J u η* * .

ε ε ε
0n n n

Consequently, by (46), we obtain

≤ +J J η* * ,

ε0

n

(49)

for <ε ε̄n 1

.
Then, if { }<ε ε εmin

¯
,

¯n 1

, it follows from (45) and (49) that ∣ ∣− <J J η* *

ε0

n

, which means

→ →J J ε* * , 0.

ε
n

0

n

(50)

Since a convergent subsequence { }u *

ε
m

can be chosen from any sequence in the family of controls { }u *

ε
,

for which relation (50) holds analogously to the above, we obtain

→ →J J ε* * , 0,

ε 0

(51)

which proves statement ( )i of the theorem.
Now, let us prove statement ( )ii . Since ( )x t u, *ε converges to ( )ξ t* , uniformly with respect to for [ ]∈t 0, 1 ,

as →ε 0, we obtain the inequality by arguments similar to those used in the derivation of estimate (44):

∣ [ ] [ ]∣− <J u J u η* * ,

ε 0

(52)

which holds for any >η 0 for sufficiently small ε. Therefore,

∣ [ ]∣ ∣ ∣ ∣ [ ] [ ]∣− ≤ − + −J J u J J J u J u*
*

* *
* * .

ε ε ε ε
0

0

From (51) and (52), statement ( )ii follows.
Now, let us prove statement ( )iii . To do so, we will show that ( ( ) ( ))y t u t,

0

is indeed the optimal solution
of problems (8) and (9). We have

[ ( ( )) ( ( ))] ( ( ))∫= + +J A t x t B t u t t x* , * , * d Φ * 1 .

ε ε ε ε

0

1

n n n n

Letting → ∞n and taking into account (51) and condition (C10), we obtain

( ( )) ( ( )) ( ( ))

[ ( ( )) ( ( ))] ( ( ))

∫ ∫

∫

= + +

≥ + +

→
J A t y t t B t u t t y

A t y t B t u t t y

* , d lim , * d Φ 1

, , d Φ 1 .

ε

ε
0

0

1

0

0

1

0

1

0

n

n

From this, it follows that ( ( ) ( ))y t u t,

0

is an optimal pair.
The final statement of the theorem is proved similar to the corresponding statement in Theorem 2.1. □

5 Examples

Example 1 (Weakly nonlinear regulator). Consider the following optimal control problem:

( ) ( ) ( ( )) ( ) ( )

( )

∫= ⎛
⎝

⎞
⎠ +

⎛

⎝
⎜

⎞

⎠
⎟ +

=

x t f

t

ε

x f

t

ε

x t φ t s x s s f t u t

x x

˙ , , , , d ,

0 ,

t

1

0

2

0

(53)
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where [ ]∈t T0, , �∈x
d, �∈u

m, with the quality criterion

[ ] [( ( ) ( ) ( )) ( ( ) ( ) ( ))] ( ( ) ( ))∫= + + →J u C t x t x t F t u t u t t Dx T x T, , d , inf,

ε

T

ε ε ε

0

(54)

where ( )C t and D are symmetric non-negative definite ×d d matrices, ( )F t is a positive definite ×m m matrix,
( )f t is a ×d d matrix, ( )f t x y, ,

1

is a d-dimensional vector function defined for [ ]∈t T0, , �∈x
d, �∈y

n,
and ( )f t

2

is a ×n m matrix.
Since the terms in functional (54) are quadratic forms, this problem is referred to as an optimal control

problem for a weakly nonlinear oscillator. The classical linear case has been studied, for example, in [15].
We assume that the functions f

1

andφ satisfy conditions C7 and C8, and functions f and f
2

are continuous.
By introducing a small positive parameter, this problem is reduced to an optimal control problem for

a weakly nonlinear oscillator. The classical and linear cases have been studied. We consider a function
( )∈φ L Ω

p . Function ( )f t x,

1

and φ are assumed to be measurable functions, satisfying conditions (C7) and (C8).

Let ( ) ( )∫=φ t x φ t s x s, , , d

t

1

0

. Suppose that the following limits exist uniformly with respect to �∈x
d

and �∈u
m:

∫⎡
⎣

⎛
⎝

⎞
⎠ − ⎤

⎦ =
→

f

τ

ε

A τlim d 0,

ε

t

0

0

0

( )∫ ⎛
⎝

⎞
⎠ =

→
f

τ

ε

x φ τ x τlim , , , d 0.

ε

t

0

0

1 1

We associate the optimal control problems (53) and (54) with the corresponding averaged problem

( )

[ ] [( ( ) ( ) ( )) ( ( ) ( ) ( ))] ( ( ) ( ))∫

= +

= + + →

ξ A ξ f t u

J u C t ξ t ξ t F t u t u t t Dξ T ξ T

˙

,

, , d , inf.

T

0

2

0

0

(55)

Problem (55) is a classical linear regulator problem. It is well known that its solution reduces to the matrix
Riccati equation. In particular, when f

2

, C , and F are constants, this equation is autonomous, and in the one-
dimensional case, it can be solved exactly. Consequently, the averaged problem (55) is solvable. The proven theorem
then states that the optimal control found for the averaged problem is “almost” optimal for the original problem.

The following example is illustrative and demonstrates the convergence of the optimal controls and
trajectories of the original problem to those of the averaged problem.
Example 2. We consider the optimal control problem

( ( ) )

( ) [ ]

[ ] ( ( ) ( ))

∫

∫

⎧

⎨

⎪
⎪

⎩

⎪
⎪

= ⎛
⎝

⎞
⎠ +

= ∈

= − →

x

t

ε

x s s s u

x t

J u x t u t t

˙ sin cos d ,

0 1, 0, 1 ,

d inf.

ε

t

ε

ε

ε ε

0

0

1

2

(56)

Here ( ) ∫= =φ t x x s s x t, cos d sin

t

1

0

. Then, according to (10), we have

∫ ⎛
⎝

⎞
⎠ = ⎡

⎣⎢ −
⎛
⎝
⎛
⎝ − ⎞

⎠
⎞
⎠ −

+
⎛
⎝
⎛
⎝ + ⎞

⎠
⎞
⎠
⎤
⎦⎥

=
→

x

s

ε

s s x

ε

ε ε

t

ε

ε ε

tlim sin sin d

1

2 1

sin

1

1

1

sin

1

1 0.

ε

t

0

0
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So, the averaged problem is as follows:

( )

[ ] ( ( ) ( ))∫

⎧

⎨
⎪⎪

⎩
⎪
⎪

=
=

= − →

ξ u

ξ

J u ξ t u t t

˙

,

0 1,

d inf.

0

1

2

(57)

The optimal control of problem (57) is obviously ( ) ( )=u t ξ t* * , where ( )ξ t* is the solution of the Cauchy
problem

( )
⎪

⎪
⎧
⎨
⎩

=

=

ξ

t

ξ

ξ

d *

d

*,

* 0 1.

Hence, ( ) =u t e*

t .
For the initial problem (56), it is also obvious that ( ) ( )=x t u t* *

ε ε
, where ( )x t*

ε
is the solution of the Cauchy

problem

( )

( )

∫
⎧

⎨
⎪

⎩⎪

= ⎛
⎝

⎞
⎠ +

=

x

t

ε

x s s s x

x

˙ sin cos d ,

0 1.

ε

t

ε ε

ε

0

(58)

Figure 1: Convergence of the solution ( )x tε of the original problem (58) to the solution ( ) =ξ t e*

t of the averaged problem (57) as →ε 0.

Table 1: Numerical comparison between the solutions of the original problem (58) and the averaged problem (57): values of ( )x tε , e
t ,

and ∣ ( ) ∣−x t eε

t at selected points

ε t 0.20 0.40 0.60 0.80 1.00

e
t 1.221403 1.491825 1.822119 2.225541 2.718282

= −
ε 10

2 ( )x tε
1.220604 1.495096 1.829428 2.226669 2.706371

= −
ε 10

4 ( )x tε
1.218997 1.485621 1.813555 2.217434 2.707980

= −
ε 10

2 ∣ ∣−x eε

t × −
7.985 10

4 × −
3.272 10

3 × −
7.309 10

3 × −
1.128 10

3 × −
1.191 10

2

= −
ε 10

4 ∣ ∣−x eε

t × −
2.405 10

3 × −
6.203 10

3 × −
8.564 10

3 × −
8.107 10

3 × −
1.030 10

2
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The graphs and numerical illustrations below demonstrate the convergence of the solution of problem (58)
toward the function e

t as →ε 0 (Figure 1 and Table 1).
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