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1 Introduction

In this article, all polynomials are integer polynomials (i.e., belonging to Z[x]), and factorization and irredu-
cibility are in Z[x]. There have been lots of results on the irreducibility of certain classes of integer poly-
nomials (see, e.g., [1] for a review of some classic irreducibility criteria for integer polynomials). Some more
recent results in this direction can be found in [2-5] for instance.

Suppose P = P(x) € Z[x] has degree d(P) = d. Denote

S(P) = (...,P(-1), P(0), P(D), ...),

the infinite sequence of values of P at integers. Then, the primes and units in S(P) determine the irreducibility
of P in some sense. For example, Murty [6] proved that if P(m) is a prime for a “large” number m, then P is
irreducible’; Brown and Graham [7] proved that if p + 2u — d > 4, then P is irreducible, where p and u are,
respectively, the number of primes and units (i.e., 1) in S(P). However, it is not always easy to find a prime
represented by a polynomial. For example ([8, pp. 42, 172]), P(x) = x® + 1091 is not prime for x = 1, 2,..., 3905.

In this article, we characterize all fit polynomials (Definition 2.2), i.e., polynomials with u = d, and deter-
mine the irreducibility of fit polynomials by means of an elementary approach. We note that Dorwart and Ore
[9] also studied fit polynomials (without using the term “fit”), and our results give a more detailed
characterization.

We say P is equivalent to Q € Z[x], denoted by P ~ Q, if P = +Q(+x + b) for some b € Z. Now, we can
present our main results, which give a complete classification of fit polynomials up to the equivalence rela-
tion ™.

1 More precisely, let f(x) = ap + aix +...+ a,x" be an integer polynomial of degree n and set H = max{|a;/a,||0 <i<n -1},
if f(m) is a prime for some integer m > H + 2, then f(x) is irreducible in Z[x].
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Theorem 1.1. Each fit polynomial of degree d > 1 is equivalent to one of the following polynomials, where
0xceZ.
D) ex(x-a)x-¢)..(x—cg-1) +1, where 0 < ¢, 0< g <G ..< C4-1, and moreover, c 23 ifd =1, (c,q) #
@L,3)or(2,2)ifd=2,(c,aq,6) *(1,1,3)ifd=3;
(i) ex(x - c)(x - ¢)...(x = c4-1) — 1, where0 < c,d iseven,0 < g < ¢ ...< ¢4y, and (¢, ¢) # (1, 1) if d = 2;
(i) ex*+ @ +20x3+Q2-ox*-Q2c+1x-1;
(v) ex?* - 2cx3 - (c+ Dx% + 2c + Dx + 1;
W exd-xt-Q+c)x+1,c#1;
W) ex®+2x2-cx-1,¢c22;
i) ex3+ A +ox2+ (A -20)x-1,c+1;
(vill) ex? -x-c¢,¢c22;
() ex?-(c+2)x+1,c=3.

Conversely, each polynomial equivalent to one in the aforementioned list is fit. Furthermore, if P and Q are both
in the aforementioned list, then P ~ Q if and only if P = Q.

The following theorem gives an irreducibility testing criterion for fit polynomials.

Theorem 1.2. Suppose P is a fit polynomial of degree d > 1. Then, the following statements are equivalent:
(1) P is reducible.

(i) P = +Q? for some Q € Z|[x].

(iti) P =+Q? for someQ ~x*+x-1,2x -1, or x.

(V) P~x*+2x3-x*-2x+1,4x%2 - 4x + 1, or x2.

The rest of this article is organized as follows. In Section 2, we introduce basic notions and facts on fit
polynomials. Then, we study fit polynomials in Section 3 for d > 3, in Section 4 for d = 3, and in Section 5 for
d < 3. We prove Theorems 1.1 and 1.2 in Section 6. Finally, we give an example in Section 7.

2 Preliminaries

We always employ P, Q, R, M, and N to denote integer polynomials of positive degree and use a, b, and ¢ to
represent integers.

Let u(P), u.(P), u-(P), and p(P), respectively, be the number of units (i.e., +1), the number of 1, the number
of -1, and the number of primes in S(P). Note thatu < o since P(x) + 1 cannot have infinitely many roots, and
that it is possible p = o, e.g., p(P) = o for P(x) = a + bx with (a, b) = 1 by Dirichlet’s theorem about primes
in arithmetic progressions.

If us =us(P)21, then there exist integers a; < a; <...< a,, such that P(aq;) = P(ap) =...= P(a,,) = 1.
Similarly, if u- = u_(P) = 1, then there exist integers b; < b, <...< b,_such that P(b,) = P(b;) =...= P(b, ) = -1.

Definition 2.1. Denote A.(P) = (ay, ay, ...,ay,) and A_(P) = (by, by, ...,by).

Motivated by the definition of fat polynomials in [7], we have the following definition.
Definition 2.2.
(i) The difference f(P) = u(P) — d(P) is called the fatness of P.

(ii) We call P fat, fit, or thin, respectively, if f(P) > 0, f(P) = 0, or f(P) < 0.

It follows from the definition that nontrivial factors (if exist) of a fit polynomial are fat.
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Denote

I(P)={P(xx+Db):b € 7},
J(P)={tP(tx + b) : b € Z}.

It is clear that J(P) = I(P) U I(-P) is the equivalence class consisting of all Q ~ P.
Lemma 2.3. Suppose Q € I(P), u = u(P), u+ = u+(P), and u- = u-(P). Then, the following statements hold:
) u(Q) = us+, u-(Q) = u-, and u(Q) = u.

(ii) The leading coefficient of Q equals either that of P or that of —P.
@ii) If A+(P) = (ay, ...,ay,) and A.(Q) = (by, ...,by,), then

a;—aj=b;—b, foralll<i<j<u,.
(v) IfA_(P) = (, ...,ay ) and A-(Q) = (by, ...,b,), then

a-aj=b—b, foralll<i<j<u.
(v) There exists a unique R € I(P) such that A.(R) = (0, G, ...,Cy,).

Proof. The statements are clear since Q and R can be obtained from P by shifting x and/or reflecting about
X-axis. O

Similarly, we also have the following:
Lemma 2.4. Suppose Q € J(P). Then, the following statements hold:
() P isirreducible (or fit, respectively) if and only if so is Q.
(@ u(Q) = u(P), d(Q) = d(P), and thus, f(Q) = f(P).
(iii) The leading coefficient of Q equals either that of P or that of -P.
(iv) If Q € I(-P), then u.(Q) = u-(P) and u-(Q) = u.(P).
Lemma 2.5. Suppose u.(P) 21 and u-(P) > 1. Then, u(P) < 4.

Proof. See the proof of [7, Theorem 1]. O

The following lemma is a direct corollary of [7, Theorem 1], which fully characterizes the family of fat
polynomials.

Lemma 2.6.

(i) Let P be a fat polynomial. Then, u(P) < 4, d(P) < 3, f(P) < 2, and P belongs to one of the classes in Table 1.
(i)) All fat polynomials are irreducible.

Proof. (i) Note that J(x) = I(x) and J(2x — 1) = I(2x — 1). Then, the statement follows from [7, Theorem 1].
(ii) It is easy to see. O

Table 1: Fat polynomials

U, u- u d f
I(x) 1 1 2 1 1
I2x - 1) 1 1 2 1 1
12 - 1) 2 1 3 2 1
I(-2x%+1) 1 2 3 2 1
Jx2+x- 1) 2 2 4 2 2
IXP+2x2- x- 1) 3 1 4 3 1
I(-x3- 22 +x+1) 1 3 4 3 1
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Lemma 2.7. [7, Theorem 2 and Corollary 2] Let p = p(P), u = u(P), and d = d(P).
() Ifp +2u>d 2 2, then either P is irreducible or P = QR with f(Q) + f(R) = p + 2u - d.
(i) If p + 2u — d > 4, then P is irreducible.

The following lemma characterizes the reducibility of fit polynomials.

Lemma 2.8. Suppose P is fit and reducible, d = d(P) and u = u(P). Assume P = QR with f(Q) = f(R). Then,
u=d < 4. Furthermore,
@ ifu=d=2,then f(Q)=f(R) =1;
(i) ifu=d=3,then f(Q)=2and f(R) =1,
(iti) ifu=d=4,then f(Q)=f(R)=2,d(Q)=dR)=2andQ ~R~x*+x-1.

Proof. Suppose u=d>4. Since p+2u=p+2d>d>4, by Lemma 2.7 (@), f(Q)+f(R)zp+2u-d>
p+4 24 By Lemma 2.6 (i), fatness of a polynomial is at most 2, and thus, f(Q) + f(R) < 4, which is
a contradiction. Hence, u = d < 4.

() Suppose u = d = 2. Then, d(Q) = d(R) = 1. By Lemma 2.6 (i), f(Q) = f(R) = 1.

(ii) Suppose u = d = 3. By Lemmas 2.7 (i) and 2.6 (i), we have that p + 3 < f(Q) + f(R) < 4. Thus, either
f(@ =2 and f(R)=1, or f(Q)=f(R) =2 If f(Q)=f(R) =2, then d(Q) = d(R) =2 and d(P) = d(Q) +
d(R) = 4, which is a contradiction. Therefore, f(Q) = 2 and f(R) = 1.

(iii) Similar to (ii), we have f(Q) + f(R) = 4, and thus, f(Q) = f(R) = 2. By Lemma 2.6 (i), we obtain that
dQ)=dR)=2andQ ~R~x*+x-1. O

3 Fit polynomials withd > 3

In this section, we consider fit polynomials of degree d > 3.

3.1 Cased > 4

Lemma 3.1. Suppose P is a fit polynomial with u = d > 4. Then, P is irreducible and equivalent to one of the
following polynomials:

x(x-a)x-6¢).x-c-1)+1, c¢c>0, @
cx(x - )x - 6@)..x—-cg-1) -1, c¢>0,d is even, 2
where 0 < @ < G ...< C4-1. Moreover, each polynomial in (1) or (2) is fit.
Proof. By Lemma 2.8, we obtain that P is irreducible. It follows from Lemma 2.5 that either u, =u=4d
or u- = u = d. Thus, by Lemma 2.3,
P(x) ~ Q(X) = ex(X = a)(X = G)...(X = €g-1) + 1
or
P(x) ~ R(x) =cx(x — c)(x = ¢)...(x = cg-1) — 1,
where ¢ # 0, and ¢;’s are distinct nonzero integers. If ¢ < 0 and d is odd, then

P(x) ~ Q(=x) = (=Ox(x + &)X + @)...(x + ¢g-1) + 1,



DE GRUYTER Classification and irreducibility of integer polynomials == 5

which has the form (1), or

P(x) ~ —R(X) = (=o)x(x = )(X = @)...(x = €g-1) *+ 1,
which has the form (1). If ¢ < 0 and d is even, then

PO ~ =) = (mox(x = @)X — @)..(x ~ cz-1) — 1,
which has the form (2), or

P(x) ~ —RO) = (=ox(x = a)(X = @)..(x — ¢g-1) + 1,

which has the form (1). Hence, P is equivalent to a polynomial in (1) or (2).
Conversely, it is clear that each polynomial in (1) or (2) is fit. O

3.2 Cased =14
Now, we consider the cased = 4 and u; = 0 or 4.

Lemma 3.2. Suppose P is a fit polynomial withd = u = 4.
(i) Suppose u. = 0 or 4. Then, P is equivalent to

x(x-a)x-g)x-g)tl, 0<c0<g<og<a. 3)

Conversely, each polynomial in (3)is fit.
(il) Suppose u. = 4. Then, P is reducible if and only if P = Q? for some Q ~ x*> + x - 1.
(iii) Suppose u. = 0. Then, P is reducible if and only if P = —Q? for some Q ~ x> + x - 1.

Proof. (i) It is similar to the proof of Lemma 3.1.

(ii) Suppose u, = 4 and A+(P) = (ay, @y, a3, a4). Then, P(x) = c(x — a;)(x - ax)(x — a3)(x — ay) + 1 for some
¢ # 0. Assume P is reducible and P = QR. By Lemma 2.8 (iii), Q ~ R ~ x* + x — 1. Since Q(a;)R(a;) = P(a;) = 1fori
=1,2,3,4, and all factors on the left-hand sides of the aforementioned equations are integers, we have that, fori =1,
2, 3, 4, either Q(a;) = R(a;) = 1 or Q(a;) = R(a;) = —1. Hence, the polynomial equation Q(x) — R(x) = 0 has four
solutions. But d(Q(x) — R(x)) < 4. It follows that Q(x) = R(x). Thus, P = Q* for Q ~ x*> + x - 1.

(iii) If u, = 0, then P’ := —P satisfies the conditions in (ii), and thus the statement follows from (ii). O

The following lemma deals with the case d = 4 and u. =1 or 3.

Lemma 3.3. Suppose P is a fit polynomial with d = 4 and u. = 1 or 3. Then, the following statements hold:
()) P isirreducible.
(i) P is equivalent to

ext+A+203+@2-c)x*-Qc+1Dx-1, c#0.

(iit) Each polynomial in (ii) is fit.

Proof. Suppose u. = 3 (if u, = 1, consider P’ = -P), A, = (a1, a4, a3), and A- = (a4). Then,
P(x) = MO)(x — a))(x — ap)(x —a3) + 1= NX)(x - ag) - 1,

for M(x), N(x) € Z[x]such that M(x) does not have integer roots other than a;, a;, as, and N(x) does not have
integer roots other than ay.

(i) Assume P is reducible and P = QR. Then, Q(a;)R(a;) = P(a;) =1 for i = 1, 2, 3. Similar to the proof of
Lemma 3.2, we have that P = Q% which contradicts the assumption that P(a,) = —1. The contradiction implies
that P is irreducible.
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(ii) First, note that
M(ag)(as — a1)(as — ay)(as — as) = —2. @
Note that the conditions a; < a, < as imply that
Ay —A3< A4 — Ay < A4 — O4.

Thus, it follows from equation (4) that we have the following two cases to consider.
Qa) au-y=2,a,-a;=1,a, - a3 = -1, M(ay) = 1,
(Zb) a,—aq = 1, as — ay = —1, a, — as = —2, M(a4) =-1.

For case (2a), by Lemma 2.3, we may assume @; = 0. From this, we can immediately deduce a, = 2, which
further leads to a; = 1 and as = 3. Thus, M(x) = c¢(x - 2) + 1 for ¢ # 0. Now,

PX)=(cx-2)+Dx(x-Dx-3) +1
=cxt+(1-60)x3+ (Me-4)x*+(3-60)x+1
Sc(x -2+ A +20)(x-23+2-c)x-22-Q2c+1Dx-2)-1
~vext+ (1 +20x3+ 2-ox2- Qe+ Dx - 1.

Similarly, we obtain for case (2b) that

PeI(cx* - (6¢c + Dx3 + (11c + 5)x> - (6c + 6)x + 1)
=I(ex* - (A +20)x3+ 2 -ox2+ Qc+1x-1)
=[xt + (A +20x3+2-oOx* - Q2c+Dx - 1),

where the last = is obtained by replacing x by —x.
(i) Let P=cx* + (1 + 2c)x3 + 2 - ¢)x* - (2c + Dx - 1, ¢ # 0. Then P(0) = P(1) = P(3) =1 and P(2) = -1.
Thus, u(P) = 4. By Lemma 2.5, u(P) = 4 = d(P). Therefore, P is fit. ([l

Now, let us consider the case d = 4 and u. = 2.

Lemma 3.4. Suppose P is a fit polynomial with d = 4 and u. = 2. Then, the following statements hold:
(@) P(x) is irreducible.
(ii) P is equivalent to

POO)=cx*-2cx3 - (c+Dx2+ Q2c+1Dx+1, c=0. (5)

(iii) Each P. with ¢ # 0 s fit.

Proof. Suppose A.(P) = (a3, a;) and A-(P) = (as, as). Then,
P(x) = MOO(X = a)(x = @) + 1= N(X)(x = ag)(x = aq) - 1, (6)

where M (x) does not have integer roots other than @; and ay, and N(x) does not have integer roots other than
az and ay.

(i) Assume P is reducible and P = QR. By Lemma 2.8 (iii), Q, R € J(x* + x = 1) and u.(Q) = u.(R) = u-(Q)
= u_(R) = 2. Note that

Q(a)R(ay) = P(a;)) =1, =12 (7
Q(apR(a;) = P(a)) = -1, =34 €)

We claim that Q(a;) # Q(a;) and Q(az) # Q(as). Otherwise, if Q(a;) = Q(ay) = 1, then it follows from
u(Q) =u-(Q) =2 that Q(as) = Q(ay) = ¥1. Now, equations (7) and (8) imply R(a;) = R(a;) = R(as) =
R(ay) = +1, and thus, u«(R) =4 or u-(R) =4, which is a contradiction. Hence, Q(a;) # Q(a;), and simi-
larly Q(as) # Q(ay).

By the aforementioned claim, equation (7) implies either Q(a;) = R(a;) =1 and Q(a;) = R(a;) = -1 or
Q(a;) = R(ay) = -1 and Q(ay) = R(ay) =1, and equation (8) implies either Q(az) = —R(as) =1 and Q(ay) =
-R(ay) = -1 or Q(as) = —R(a3) = -1 and Q(ay) = —~R(ay) = 1. We consider one of the four possibilities to get
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a contradiction and the other cases are similar. Suppose Q(a;) = R(a;) =1, Q(az) = R(ay) = -1, Q(az) =
-R(a3) =1, and Q(ay) = -R(ay) = -1 (Table 2). Note that Q € J(R) = I(R) U I(-R). Suppose Q € I(R). By
Lemma 2.3, a4 — a; = a3 — a, and thus, as = a4, which is impossible. Similarly, we can obtain a contradiction
for the case Q € I(-R). Therefore, P is irreducible.

(ii) It follows from equation (6) that

M(ai)(a; - m)(a; - a) = -2, =34,
N(a)(a; - a3)(ai - ag) =2, =12
Note that the conditions @; < a, and as < a4 imply that
G- W<aG-@<a-A@, G- BO<a-0<044~- qQ.
As aresult, ;3 —a; # 2, a3 —a # 1,2, ay — a; # -2,-1, and ay — a, # +2. Also, we note that (a3 - a;) -
(a3 - ap) = (a4 — @1) - (a4 — az). Considering all restrictions mentioned earlier, we have the following two
cases to consider.

a) - =-lw-m=-2,a-@=2,a,-aq=1,
@2b) as-a=1l,a3-az=-2,a4-a;=2,a4 — a; = 1.

For case (2a), by Lemma 2.3, we may assume a; = 0, which implies that a; = -1, a4 = 2, a; =1, and
M(as) = M(a4) = N(a;) = N(ay) = —1. Then, we have
MOX)=cx+Dx-2)-1=cx*-cx-2c-1, c#0.
Now,
POO)=(cx*-cx-2c-Ix(x-1) +1

=cxt-2ex3 - (c+ Dx2+ Qe+ Dx+1
= B(x).

Hence, P ~ P, c¢c=%0.
Similarly, we obtain for case (2b) that, for some integer ¢ # 0,
P(x)=cx*-6cx®+ (lc+ Dx% - (6c + 3)x + 1
~-Px+1)
=-cxt+ 203+ (c- DX+ (1-20)x+1
rext-203 - (c+ DX+ Qe+ Dx+ 1
= R(x),

where the last ~ is obtained by replacing ¢ by —c.
(iii) Note that R(0) = R(1) =1 and E.(-1) = R(2) = -1. It follows from Lemma 2.5 that u = 4. Hence,
P. is fit. O

4 Fit polynomials withd =3

In this section, we study fit polynomials of degree d = 3.

Table 2: Values of Q and R at q;

0(a) 1 -1 1 -1
R(a) 1 -1 -1 1
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Lemma 4.1. Suppose P is a fit polynomial with d = 3. Then, the following statements hold:
() P is irreducible.
@) Ifu, =0 or 3, then
PO~ Q) =cx(x-a)x-g)+1, 0<¢0<q<q(ca6)*113).

Conversely, each Q in the aforementioned family is fit.
(iit) Ifu. =1 or 2, then P is equivalent to one of the following polynomials:

cxd-x-(1+c)x+1, c¢#0,1;
exd+2x2-cx-1, ¢=22
exd+(d+e)x2+(1-20x-1, c¢c#0,1

Conversely, each polynomial that belongs to the aforementioned three families is irreducible and fit with
u,=1or2.

Proof. (i) Suppose P is reducible and P = MN with f(M) = f(N). Then, by Lemmas 2.8 (ii) and 2.6 (i),
f(M) =d(M) = 2. Since u = 3, there exist distinct a; € Z, 1 < i < 3, such that

M(a)N(a;) = P(a;) = +1, fori=1,23.

Thus, N(x) takes value *1 at three different arguments x = a,, a,, az. This is impossible since d(N) = d(P) -
d(M) = 3 - 2 = 1. Therefore, P is irreducible.

(ii) Similar to the proof of Lemma 3.1, we obtain that P ~ Q. Note that Q (withc > 0and 0 < ¢ < @) is fit if
and only if u-(Q) =0, ie, if and only if cx(x — g)(x - ¢) = -2 has no integer roots, ie. if and only
if(c,q,6) # (1,1, 3).

(iii) Suppose u, = 2 (if u, = 1 then consider —P). Assume A.(P) = (a;, a;) and A_(P) = (az). Then,

P(x) = MX)(X — a)(x - @) +1=NOO(x - a3) - 1,

such that M(x) does not have integer roots other than a,, a;, and N(x) does not have integer roots other than
az. Hence, we have
M(as)(az - a1)(az — ap) = —2.
Thus, we have the following five cases to consider:
Ba) a3- a1 =2,a3 - a; = 1, M(a3) = -1,
@Bb) a3 -y =-1, 43— a,=-2,M(az) = -1;
B as-a=La-a=-1M(a) =2
Gl as-a=2,a-a=-1,Ma)=1
Be) s—-a;=1,a3 - ay=-2, M(a3) = 1.

For case (3a), by Lemma 2.3, we may assume a; = 0, which implies a; = 2, a, = 1. Since M(as) = M(2) = -1,
we may suppose M(x) = c(x - 2) — 1 for some ¢ # 0. By our assumption, M(x) does not have integer roots
other than 0 and 1 and N(x) does not have integer roots other than 2. Thus, ¢ # 1. Now,

PxX)=(c(x-2)-Dx(x-1)+1
=3 -Be+Dx?+ (2c+ Dx+1
=cx-1P-(x-1D)2P-QQ+o)(x-1)+1
rex3-xP-(A+ox+1, c=#0,1

Similar to case (3a), we obtain that

(3b): P(xX)=cx®-x2+(1-co)x+1
~—exd-xtP-(1-cox+1, c¢c#0,-1,
=cx3-xP-(1+c)x+1, ¢ =01,



DE GRUYTER Classification and irreducibility of integer polynomials

where the second = is obtained by replacing —c by c’.

(3c): P(X)=cx®+(2-3c)x*+ (2c-4)x +1
=c(x-1P¥+2x-12%-cx-1D -1
~ex3+2x2-cx-1, c#0,+l.

Forc <0,

P(X)~P(-x) = (mo)x3 + 2x%2 - (-c)x -1
=cx3+2x%2-¢x-1, ¢ =-c=2.
(3d): P(x)=cx3+ (1 -5c)x*+ (6c-3)x+1
=cx-2P+A+)x-22%+(1-200(x-2)-1
~exd+ d+exd+(A-200x-1, c#0,1.
(3e): POO=cx®+(1-4c)x2+@Bc-3)x+1
~—ex®+(1-40)x2-GBc-3)x+1, c=0,-1,
~exB+ (1+40)x2+ @Bc+3)x+1, c¢#0,1,
~e(x - 1P+ 1+ 40 - D2+ Be+3)(x - +1
=+ A+ox2+(1-20)x-1, ¢#0,1
We list all the five cases in Table 3, where
Q) =-(c+x-1,
Q) =-1+o)x +2,
Q;00=(2-2c)x -2,
Q,(x)=(1-3c)x-1,
Q;00)=(1-3c)x - 2,
Pi(x)=-x*-(1+c)x+1,
Py(x)=2x%2 - cx - 1,
Ps)=(1+c)x*+(1-20)x-1.

The converse direction is easy to check.

5 Fit polynomials with d < 3
In this section, we study fit polynomials of degree d < 3. First, we consider the case d = 2.
Lemma 5.1. Suppose P is a fit polynomial with d = 2.

(i) Suppose u. = 0 or 2. Then, P is equivalent to one of the following polynomials:

x(x-¢a)+1, ¢>0,6>0,(c,q)=*13)or(22);
cx(x-¢)-1, ¢>0,g>0,(c,q) # (1,1).

Conversely, each polynomial in the aforementioned list is fit.
(i) Suppose u. = 0 or 2. Then, P is reducible if and only if P = +Q?, Q € J(2x — 1) U J(x).
(ii)) Ifu. =1, then P is irreducible and equivalent to one of the following polynomials:
cx?-x-¢, cz2,
ex2-(c+2Dx+1, c=3.

Conversely, each polynomial in the aforementioned two families is irreducible and fit.

9
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Table 3: Fit polynomials with d = 3 and u, = 2

(3a) (3b) (3¢) (3d) (3e)
- o 2 -1 1 2 1
a3 - a 1 -2 -1 -1 -2
M(az) -1 -1 2 1 1
a;, az, 3 0,1,2 0,1-1 0,21 0,32 0,31
M(x) cx- 2c-1 ex+c- 1 cXxX- c+2 cx—- 2c+1 cx—-c+1
N() ox® + Q o+ Q, X+ Q, o+ Q, ox® + Qs
P(x) cox3+ Py o3+ Py cx3+ Py
c c#01 cz2 c+01

Proof. (i)-(ii) It is similar to Lemmas 3.2 and 4.1.
(iii) Suppose P is reducible and P = QR. Assume that

PX)=MX)(x-a) +1=N0X)x - ap) -1, )

where a; < a;, M(x) does not have integer roots other than @;, and N(x) does not have integer roots other than
a,. Then, Q(a;)R(a;) = P(a) = 1 and Q(ay)R(a;) = P(ay) = —1. Similar to the proof of Lemma 4.1, we have the
following four cases:

(Ba) @ - a1 =2, M(az) = -1, N(@) = -1;

@Bb) a; - a1 =-2, M(az) =1, N(ay) = 1;

B0 @ - a1 =1, M(a) = -2, N(ay) = =2;

(3d) aQy— M= —1, M(az) = 2, N(al) =2.

In a similar way to the proof of Lemma 4.1, we can deal with the aforementioned cases and the results are
listed in Table 4, where the last row (the restriction on ¢) follows from the assumption on the roots of M and N
in equation (9). The converse direction is easy to check. O

Similar to Lemma 4.1, we have the following lemma for fit polynomials of degree 1.

Lemma 5.2. Suppose P is a fit polynomial with d = 1. then P(x) ~ cx + 1 for some integer c > 3. Conversely,
cx + 1 withc 23 is fit.

6 Proofs of theorems
Now we are ready to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Suppose P is a fit polynomial of degree d. We gather the nine items (i)-(ix) into five
groups:
(GD): (1)—(ii). It follows from Lemmas 3.1, 3.2, 4.1, and 5.1 that P is equivalent to a polynomial in (i)-(@i) ifu. = d
oru-=d.
(G2): (ii)). Ifu, = 3and u- = 1, oru, = 1 and u- = 3, then, by Lemma 3.3, P is equivalent to a polynomial in (iii).
(G3): (iv). If us+ = u- = 2, by Lemma 3.4, P is equivalent to a polynomial in (iv).
(G4): (V)—(vii). If u, =2 and u- =1, or u, =1 and u- = 2, by Lemma 4.1, P is equivalent to a polynomial
in (v)—(vii).
(G5): (viiD)—(ix). If u+ = u- = 1, by Lemma 5.1, P is equivalent to a polynomial in (viii)-(ix).

Conversely, it follows from Lemmas 3.1, 3.2, 3.3, 3.4, 41, 5.1, and 2.4 (i) that each polynomial that is
equivalent to one listed in (i)-(ix) is fit.

Now suppose P and Q are both in (i)-(ix) and P ~ Q. Then, it follows from Lemma 2.4 that d(P) = d(Q),
either u.(P) = u.(Q) or u.(P) = u-(Q), and either P and Q or P and -Q have the same leading coefficient. Thus,
P» Q if they are in different groups. It remains to consider the case where P and Q are in the same group.
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Table 4: Fit polynomials withd = 2 and u, = 1

(3a) (3b) (3¢c) (3d)
Q- @ 2 -2 1 -1
M(ay) -1 1 -2 2
N(a) -1 1 -2 2
a, ay 0,2 0,-2 0,1 0,-1
M(x) cx- 2c- 1 cx+2c+1 cx-c- 2 cx+c+2
N(x) cx- 1 cx+1 cx - 2 X + 2
P(x) ot- x- ¢ ox2- (c+2)x+1
c c=2 cx3

b'¢ 0 1 -1 2 -2 3 -3 4 -4 5 -5

P(x) -1 -1 1 1 77 77 3N 3N 1099 1099 2549

Suppose P and Q are both in (G1). Note that P ~ Q if and only if either P € I(Q) or P € I(—Q). Since all
polynomials in (G1) have positive leading coefficients, P & I(-Q). Thus, P € I(Q). By Lemma 2.3 (iv), we have
that P = Q.

Suppose P and Q are both in (G2). Assume P(x) = P.(x) = cx* + (1 + 2c)x3 + (2 - ¢)x® - (2c + Dx - 1 for
some ¢ # 0. If P # Q, then Q(x) = P.(x). Now we have that R~P.. Since d(P) = 4 is even, we have that
P. = -P.(xx + b), for some b € Z. 1t is easy to check that P. # -P.(+x + b) for all c € Z\{0} and b € Z.
This contradiction shows that P = Q.

In a similar way, one can prove that if P and Q are both in (G3) (resp. (G4), (G5)), then P = Q. O

Proof of Theorem 1.2. It follows from Lemmas 3.2, 3.3, 3.4, 4.1, and 5.1 that a fit polynomial P is irreducible
if and only if P = +Q? for some Q € Z[x]. Furthermore, if it is the case, then Q ~x*+ x - 1,2x - 1, or x.
That means (i) © (i) © (iii). It is obvious that (iii) © (iv). O

7 Example

Example 7.1. Let us investigate the irreducibility of
P(x)=3x*-6x3-2x*+5x-1.

First, by solving P(x) =1 and P(x) = -1, we obtain that u. = u- = 2, and thus, P is fit. Since the leading
coefficient of P is 3, we have that P # +Q? for all Q € Z[x], and thus P is irreducible by Theorem 1.2. It is
worth mentioning that P(x) = —-P3(x), where P.(x) is defined in equation (5).

Note that Eisenstein’s criterion and Perron’s criterion cannot be applied directly to P here. Brown-
Graham’s criterion [7] works for P, while the computation is not obvious. Table 5 gives the values of P(x)
with |x| < 5, where the only prime is P(-5) = 2,549. Hence, we obtain p 2 1, u > 4, and thus, p + 2u - d > 4.
Therefore, P is irreducible by Lemma 2.7. We also note that Murty’s criterion [6] is also applicable to P in the
example.
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