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Abstract: We deal with the existence and multiplicity of positive solutions for differential systems depending
on two parameters, λ λ,

1 2
, subjected to periodic boundary conditions. We establish the existence of a contin-

uous curve Γ that separates the first quadrant into two disjoint unbounded open sets �
1
and �

2
. Specifically,

we prove that the periodic system has no positive solutions if �( ) ∈λ λ,
1 2 1

, at least one positive solution
if ( ) ∈λ λ, Γ

1 2
, and at least two positive solutions if �( ) ∈λ λ,

1 2 2
. Our approach relies on the fixed point index

theory and the method of lower and upper solutions.
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1 Introduction

In this work, we study the existence and multiplicity of positive solutions for differential systems of form

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

⎧

⎨
⎪

⎩
⎪

− ″ + = ∈
− ″ + = ∈

= ′ = ′
= ′ = ′

u q x u λ μ x g u v x T

v q x v λ μ x g u v x T

u u T u u T

v v T v v T

, , 0, ,

, , 0, ,

0 , 0 ,

0 , 0 ,

1
1 1

2
2 2 (1.1)

where ([ ] [ ))∈ ∞q C T0, , 0, with ≢q 0, >λ λ, 0
1 2

are real parameters, ([ ] ( ))∈ ∞μ μ C T, 0, , 0,
1 2

and
[ ) [ ) [ )∞ × ∞ → ∞g g, : 0, 0, 0,

1 2

are continuous.
The periodic problem for a single equation has been studied in many papers over the last several years

[1–6]. Using different approaches, [7–10] generalized these results to differential systems, which describe new
and special phenomena. In [9], the existence, multiplicity, and nonexistence of positive solutions of systems

( ) ( ) ( )

( ) ( ) ( ) ( )

⎧
⎨
⎩

″ + = ∈
= ′ = ′

u m u λH x G u x

u u u u

, 0, 1 ,

0 1 , 0 1

2

have been established, where [ ]=u u u u, , …, n
T

1 2
, m is some positive constant, >λ 0 is a positive parameter,

and ( ) [ ( ) ( ) ( )]=H x h x h x h xdiag , , …, n1 2
, ( ) [ ( ) ( ) ( )]=G u g u g u g u, , …,

n
T

1 2

. Chu et al. [11] studied the n-dimen-
sional nonlinear system

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

⎧
⎨
⎩

″ + = ∈
= ′ = ′

u A x u λH x G u x

u u u u

, 0, 1 ,

0 1 , 0 1 ,

(1.2)
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where ( ) [ ( ) ( ) ( )]=A x a x a x a xdiag , , …, n1 2
. They provide sufficient conditions ensuring that the integral

operator corresponding to (1.2) has a positive fixed point, and they prove that for each λ within a specified
eigenvalue interval, (1.2) has at least one positive solution.

In view of the above, it appears as being natural to extend the previous study to more general, multi-
parameter, which does not have a variational structure. So, the main goal of this work is to extend a result of
non-existence, existence, and multiplicity from [12] for a single equation to the more general two-parameter
systems (1.1). Precisely, according to [12], there exist > >λ λ*

*

0 such that problem

( ) ( ) ( )

( ) ( ) ( ) ( )

⎧
⎨
⎩
− ″ + = ∈

= ′ = ′
u q x u λf x u x T

u u T u u T

, , 0, ,

0 , 0

has zero, at least one, or at least two positive solutions according to < <λ λ0

*

, ≤ ≤λ λ λ
*

*, or >λ λ*.
Based upon the lower and upper solutions method and fixed point index, we obtain that there exist
>λ λ˜

,
˜

0
1 2

, such that for all >λ λ˜
1 1

and >λ λ˜
2 2

, (1.1) has a positive solution ( )u v, , where both u and v are
positive in [ ]T0, . Moreover, we show the existence of a continuous curve Γ that divides the first quadrant
into two separate, unbounded, and open regions �

1
and �

2
. Specifically, there are zero positive solutions when

( )λ λ,
1 2

lies in �
1
, at least one positive solution when ( )λ λ,

1 2
is on Γ, and at least two positive solutions when

( )λ λ,
1 2

is in �
2
. Notably, the curve Γ approaches asymptotically to two lines that are parallel to the coordinate

axes λ0
1
and λ0

2
, while �

1
is located below Γ and adjacent to axes λ0

1
and λ0

2
.

The structure of this work is as follows. Section 2 introduces some preliminary results related to the
reformulation of system (1.1) and a theorem of cone expansion/compression type, which plays a crucial role in
our proof. The focus of Section 3 lies in the lower and upper solution method. We finally state and prove our
main result for a two-parameter periodic system in Section 4.

2 Preliminaries

Throughout this work, let [ ]≔C C T0, be endowed with the sup-norm ∣∣ ∣∣ ∣ ( )∣[ ]=∞ ∈u u xmaxx T0,
. [ ]=C C T0,

1 1

with the norm ∣∣ ∣∣ ∣ ( )∣ ∣ ( )∣[ ] [ ]= + ′∈ ∈u u x u xmax maxx T x T1 0, 0,
. While the product space ×C C1 1 will be understood

with the norm ∣∣( )∣∣ {∣∣ ∣∣ ∣∣ ∣∣ } {∣∣ ∣∣ ∣∣ ∣∣ }= + ′ ′∞ ∞ ∞ ∞u v u v u v, max , max , .
We denote by ( )G x s, Green’s function corresponding to

( ) ( ) ( )

( ) ( ) ( ) ( )

⎧
⎨
⎩
− ″ + = ∈

= ′ = ′
u q x u h x x T

u u T u u T

, 0, ,

0 , 0 .

According to Theorem 2.5 of [13], for all [ ]∈x s T, 0, , Green’s function ( )G x s, is positive, and the solution to the
problem is given by

( ) ( ) ( )∫=u x G x s h s s, d .

T

0

Denote

( ) ( )= = =
≤ ≤ ≤ ≤

m G x s M G x s σ
m

M
min , , max , , .

x s T x s T0 , 0 ,

Obviously, < <m M0 and < <σ0 1.
We consider the closed subspace

{( ) ( ) ( ) ( ) ( ) }( ) ( ) ( ) ( )= ∈ × = = =C u v C C u u T v v T i, : 0 , 0 , 0, 1M
i i i i1 1 1
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and its closed, convex cone

( ) ( ( ) ( )) (∣∣ ∣∣ ∣∣ ∣∣ )=
⎧
⎨
⎩

∈ ≥ + ≥ +
⎫
⎬
⎭≤ ≤

∞ ∞K u v C u v u x v x σ u v, : , 0, min .M
x T

1

0

Also, we denote ( ) {( ) ∣∣( )∣∣ }≔ ∈ <B ρ u v K u v ρ, : , .
We reduce problem (1.1) to an equivalent fixed point problem of the form

( ) ( ( ) ( ))→ =F K K F u v F u v F u v: , , , , , ,λ λ λ λ1, 2,

where ( ) ( ) ( ) ( ( ) ( ))∫=F u v λ G x s μ s g u s v s s, , , di λ i

T

i i,

0

. It is obvious that Fi λ, is completely continuous.
If A is a subset of K , we set

� � �( ) { ∣ }≔ →A A K: is a compact operator .

Also, given a bounded open (in K ) subset O of K , we denote by �( )i O K, , the fixed point index of the operator
� �( )∈ O onO with respect to K [14]. The following well-known lemma is very crucial in our arguments, refer
[15,16] for a proof and further discussion of the fixed point index.

Lemma 2.1. Let E be a Banach space and P a cone in E. For >r 0, define { ∣∣ ∣∣ }= ∈ <P x P x r:r . Assume that
� →P P: r r is completely continuous such that � ≠x x for { ∣∣ ∣∣ }∈ ∂ = ∈ =x P x P x r:r .
(i) If �∣∣ ∣∣ ∣∣ ∣∣≥x x for ∈ ∂x Pr , then �( ) =i P P, , 0r .
(ii) If �∣∣ ∣∣ ∣∣ ∣∣≤x x for ∈ ∂x Pr , then �( ) =i P P, , 1r .

3 Lower and upper solutions

Let us consider

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

⎧

⎨
⎪

⎩
⎪

− ″ + = ∈
− ″ + = ∈

= ′ = ′
= ′ = ′

u q x u f x u v x T

v q x v f x u v x T

u u T u u T

v v T v v T

, , , 0, ,

, , , 0, ,

0 , 0 ,

0 , 0 ,

1

2 (3.1)

where [ ] [ ) [ )× ∞ → ∞f f T, : 0, 0, 0,
1 2

2 are L1-Carathéodory functions.
In the terminology of [17,18], if a function ( ) [ ] [ ) [ )= × ∞ → ∞f f x s t T, , : 0, 0, 0,

2 satisfies that for fixed x ,

s (resp.x t, ),

( ) ( ) ( ( ) ( ) )≤ ≤ ≤ ≤f x s t f x s t t t f x s t f x s t s s, , , , as resp. , , , , as .
1 2 1 2 1 2 1 2

Then, it is said to be quasi-monotone nondecreasing with respect to t (resp. s).
A couple of nonnegative functions ( ) ∈ ×α α C C,u v

2 2 is a lower solution of (3.1) if

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

⎧

⎨
⎪

⎩
⎪

− ″ + ≤ ∈
− ″ + ≤ ∈

= ′ ≥ ′
= ′ ≥ ′

α q x α f x α α x T

α q x α f x α α x T

α α T α α T

α α T α α T

, , , 0, ,

, , , 0, ,

0 , 0 ,

0 , 0 .

u u u v

v v u v

u u u u

v v v v

1

2 (3.2)

An upper solution ( ) ∈ ×β β C C,
u v

2 2 is defined by reversing the first two inequalities in (3.2) and asking
( ) ( ) ( ) ( )′ ≤ ′ ′ ≤ ′β β T β β T0 , 0

u u v v
instead of ( ) ( ) ( ) ( )′ ≥ ′ ′ ≥ ′α α T α α T0 , 0u u v v .

Lemma 3.1. Suppose that (3.1) has an upper solution ( )β β,
u v

and a lower solution ( )α α,u v . Let ( )f x u v, ,
1

(resp.
( )f x u v, ,

2

) be quasi-monotone nondecreasing with respect to v (resp. u) and define

� {( ) }= ∈ ≤ ≤ ≤ ≤u v K α u β α v β, : , .α β u u v v,
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Then,
(i) there exists at least one solution of problem (3.1) in � α β, ;
(ii) if �( ) ∈u v, α β0 0 ,

is the unique solution of (3.1) and there exists >ρ 0
0

such that (( ) ) =B u v ρ, ,
0 0

0

�{( ) ∣∣( )∣∣ }∈ − − ≤ ⊂u v K u u v v ρ, : , α β0 0
0

,
, then

( (( ) ) ) = ≤ ≤i F B u v ρ K for all ρ ρ, , , , 1, 0 ,
0 0

0

where ( ) ( ( ) ( ))=F u v F u v F u v, , , ,
1 2

and →F K K:i defined by

( ) ( ) ( )∫=F u v G x r f r u v r, , , , d .i

T

i

0

Proof. (i) We define the continuous functions [ ] [ ) [ )× ∞ → ∞TΓ , Γ : 0, 0, 0,
1 2

2 ,

( ) ( ( ) ( )) ( )

( ) ( ( ) ( )) ( )

= − +
= − +

x s t f x γ x s γ x t s γ x s

x s t f x γ x s γ x t t γ x t

Γ , , , , , , , ,

Γ , , , , , , , ,

1
1 1 2 1

2
2 1 2 2

with γ
i
given by

( ) { ( ) } ( ) { ( ) }= =γ x s α x s γ x t α x t, max , , , max , .u v
1 2

And we consider the modified problem

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

⎧

⎨
⎪

⎩
⎪

− ″ + = ∈
− ″ + = ∈

= ′ = ′
= ′ = ′

u q x u x u v x T

v q x v x u v x T

u u T u u T

v v T v v T

Γ , , , 0, ,

Γ , , , 0, ,

0 , 0 ,

0 , 0 .

1

2 (3.3)

Next we write (3.3) as a system of integral equations

( ) ( ) ( )

( ) ( ) ( )

∫

∫

=

=

u x G x r r u v r

v x G x r r u v r

, Γ , , d ,

, Γ , , d .

T

T

0

1

0

2

The operator →F K K:i defined by

( ) ( ) ( )∫=F u v G x r r u v r, , Γ , , di

T

i

0

is completely continuous and bounded. By Schauder’s theorem, ( ) ( ( ) ( ))=F u v F u v F u v, , , ,
1 2

has a fixed point,
which is a solution of (3.3). We prove that any solution ( )u v, of (3.3) satisfies �( ) ∈u v, α β, . Here we only
establish the inequality ≤α uu on [ ]T0, (a similar argument can be made for ≤α vv ).

Suppose by contradiction that there exists [ ]∈x T0,
0

such that

( ) ( ) ( )− = − >
≤ ≤

α u α x u xmax 0.

x T
u u

0

0 0

If ( )∈x T0,
0

, then there exists a sequence { } ( )⊂x x0,k 0
converging to x

0
such that ( ) ( )′ = ′α x u xu 0 0

and
( ) ( )′ − ′ ≥α x u x 0u k k . This implies

( ) ( ) ( ) ( )′ − ′ ≥ ′ − ′α x α x u x u x ,u k u k0 0

which yields

( ) ( )″ ≤ ″α x u x .u 0 0

4  Liping Wei et al.



Since ( )α α,u v is a lower solution of (3.1) and f
1

is quasi-monotone nondecreasing with respect to v, we have

( ) ( ) ( ) ( ) ( ( ) ( ( ))) ( ) ( )

( ) ( ) ( ( ) ( ))

( ) ( ) ( ( ) ( ))

( )

″ ≤ ″ = − + −
< −
≤ −
≤ ″

α x u x q x u x f x α x γ x v x u x α x

q x u x f x α x α x

q x α x f x α x α x

α x

, , ,

, ,

, ,

,

u u u

u v

u u v

u

0 0 0 0
1

0 0
2

0 0 0 0

0 0
1

0 0 0

0 0
1

0 0 0

0

which is a contradiction. If ( ) ( ) ( ) ( ) ( )− = − = −≤ ≤ α u α u α T u Tmax 0 0x T u u u0
, then ( ) ( ) ( )′ − ′ ≤ ′α u α T0 0 0,u u

( )− ′ ≥u T 0. Using that ( ) ( )′ ≥ ′α α T0u u , we deduce that ( ) ( ) ( ) ( )′ − ′ = = ′ − ′α u α T u T0 0 0u u . Applying similar
reasoning as for =x 0

0
, we have

( ) ( )″ ≤ ″α u0 0 .u

Then, using the fact of ( ) ( )′ = ′α u0 0u and following a similar approach as in the case of ( )∈x T0,
0

, we can once
again get a contradiction. Therefore, ( ) ( )≤α x u xu for all [ ]∈x T0, and similarly, we can show that

( ) ( )≥β x u x
u

for all [ ]∈x T0, .
(ii) Observe that the operator =F F on � α β, and, by the result of (i), any fixed point ( )u v, of F satisfies

�( ) ∈u v, α β, . In particular, it is also a fixed point of F . Therefore, ( )u v,
0 0

is the unique fixed point of F . Since

( ) ( )( ( ) (( ) ))∉ −I F B d B u v ρ0,0 \ , ,
0 0

0

for sufficiently large d, and combining this fact with the excision property and [19], we obtain

( ( ) ) ( (( ) ) )= = < ≤i F B d K i F B u v ρ K ρ ρ1 , , , , , , , for all 0 .
0 0

0

Since =F F on � α β, and �(( ) ) ⊂B u v ρ, , α β0 0
0

,
, the conclusion is immediate. □

4 Non-existence, existence, and multiplicity

Now, we suppose that g g,
1 2

satisfy
(H1) ( )g u v,

1

(resp. ( )g u v,
2

) is quasi-monotone nondecreasing with respect to v (resp. u).

(H2) ( )

( )

( )

( )≔ = ≔ =→ + ∞ →∞ +g glim 0, lim 0
i u v

g u v

u v i u v

g u v

u v,0
, 0

,

,
,

,
i i . Setting

{( )∣ }≔ > ( )λ λ λ λΣ , , 0 and 1.1  has at least one positive solution .
1 2 1 2

Lemma 4.1. Assume that (H1) and (H2) hold. Then, the following are true:
(i) there exist >Λ , Λ 0

1 2
such that [ ) [ )⊂ +∞ × +∞Σ Λ , Λ ,

1 2
and for all ( ) ( ) ([ ) [ ))∈ +∞ +∞ × +∞λ λ, 0, \ Λ , Λ ,

1 2

2

1 2
,

problem (1.1) has no positive solution;
(ii) if ( ) ∈λ λ, Σ

1 2
, then [ ) [ )+∞ × +∞ ⊂λ λ, , Σ

1 2
;

(iii) if ( ) ∈λ λ, Σ
1 2

, then for all ( ) ( ) ( )∈ +∞ × +∞λ λ λ λ, , ,
1 2 1 2

, there exist at least two positive solutions of pro-
blem (1.1).

Proof. (i) For ( ) ∈u v K, and ∣∣( )∣∣ =u v p, , let

( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫=
⎧
⎨
⎩

⎫
⎬
⎭

m p G x s μ s g u v s G x s μ s g u v smin , , d , , , d .

T T

0

1 1

0

2 2

Choose a number >r 0
1

, let
( )

=λ
r

m r0
2

1

1

and set

{( ) ( ) ∣∣( )∣∣ }= ∈ <u v u v K u v rΩ , : , , , .r 1
1
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Then, for ≥λ λ λ,
1 2 0

and ( ) ∈ ∩ ∂u v K, Ωr
1

, we have

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

∫

∫

=

≥

≥

F u v λ G x s μ s g u v s

λ G x s μ s g u v s

λ m r

, , , d

, , d

,

i λ i

T

i i

T

i i

,

0

0

0

0 1

which implies

∣∣ ( )∣∣ ∣∣( )∣∣≥ =F u v r u v, ,λ 1

for ( ) ∈ ∩ ∂u v K, Ωr
1

. Hence, Lemma 2.1 implies

( ) =i F K, Ω , 0.λ r
1

(4.1)

Since =g 0
i,0

, we may choose ( )∈r r0,
2 1

so that ( ) ( )≤ +g u v η u v,
i

for < <u v r0 ,
2
, where the constant

>η 0 satisfies

( )∫ ≤λ ηM μ s s2 d 1.i

T

i

0

Set {( ) ( ) ∣∣( )∣∣ }= ∈ <u v u v K u v rΩ , : , , ,r 2
2

. If ( ) ∈ ∩ ∂u v K, Ωr
2

, we have

( ) ( ) ( ) ( )

( ) ( )( )

( ) ( ) ∣∣( )∣∣

∣∣( )∣∣

∫

∫

∫

=

≤ +

≤

≤

F u v λ G x s μ s g u v s

λ η G x s μ s u v s

λ η G x s μ s s u v

u v

, , , d

, d

, d ,

,

2

.

i λ i

T

i i

i

T

i

i

T

i

,

0

0

0

Hence, ∣∣ ( )∣∣ ∣∣ ( )∣∣ ∣∣ ( )∣∣ ∣∣( )∣∣= + ≤F u v F u v F u v u v, , , ,λ λ λ1, 2,
for ( ) ∈ ∩ ∂u v K, Ωr

2

. Using Lemma 2.1 once again,
we have

( ) =i F K, Ω , 1.λ r
2

(4.2)

Now, it follows from (4.1), (4.2), and the additivity of the fixed point index that for >λ λi 0
,

( ) = −i F K, Ω \Ω , 1.λ r r
1 2

Consider now the nonempty sets

{ ∣ ( ) }

{ ∣ ( ) }

≔ > ∃ > ∈
≔ > ∃ > ∈

λ λ λ λ

λ λ λ λ

Σ 0 0 such that , Σ ,

Σ 0 0 such that , Σ ,

1 1 2 1 2

2 2 1 1 2

and let

( ) ( )≔ <+∞ =iΛ infΣ 1, 2 .i i

It follows that [ ) [ )⊂ +∞ × +∞Σ Λ , Λ ,
1 2

and for all ( ) ( ) ([ ) [ ))∈ +∞ +∞ × +∞λ λ, 0, \ Λ , Λ ,
1 2

2

1 2
, system (1.1) has no

positive solution.
(ii) Let ( ) [ ) [ )∈ +∞ × +∞λ λ λ λ, , ,

1

0

2

0

1 2
be arbitrarily chosen and suppose that ( )α α,u v is a positive solution

of (1.1) when =λ λ
1 1

, and =λ λ
2 2

. Then, for fixed =λ λ
1 1

0 and =λ λ
2 2

0, ( )α α,u v is a lower solution of (1.1).

6  Liping Wei et al.



Similarly, let ( ) [ ) [ )∈ +∞ × +∞λ λ λ λ, , ,
1 2 1

0

2

0 be arbitrarily chosen and suppose that ( )β β,
u v

is a positive solution
for (1.1) when =λ λ

1 1
, and =λ λ

2 2
. Then, for fixed =λ λ

1 1

0 and =λ λ
2 2

0, ( )β β,
u v

is an upper solution of (1.1).
According to Lemma 3.1 (i) and the positivity of ( )α α,u v , we conclude that ( ) ∈λ λ, Σ

1

0

2

0 .
(iii) From (ii) we obtain that ( ) ( )+∞ × +∞ ⊂λ λ, , Σ

1 2
and let

( ) ( ) ( ) [ ) [ )∈ +∞ × +∞ +∞ × +∞λ λ λ λ λ λ, , , \ , , .
1

0

2

0

1 2 1 2

It remains to show that system (1.1) with =λ λ
1 1

0 and =λ λ
2 2

0 has a second positive solution. For this, we define
( )α α,u v as the lower solution and ( )β β,

u v
as the upper solution, both constructed as above. We fix ( )u v,

0 0

a positive solution of (1.1) with =λ λ
1 1

0 and =λ λ
2 2

0 such that �( ) ∈u v, α β0 0 ,
.

Now, we claim that there exists >ε 0 such that �(( ) ) ⊂B u v ε, , α β0 0 ,
. For all [ ]∈x T0, , we have

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

∫

∫

=

<

=

α x λ G x s μ s g u v s

λ G x s μ s g u v s

u x

, , d

, , d

.

u

T

T

1

0

1 1

1

0

0

1 1

0

Analogously, we obtain that ( ) ( )<α x v xv 0
on [ ]T0, . So, choose an >ε 0

1
such that if ( ) ∈u v K, , then

∣∣ ∣∣ ∣∣ ∣∣ [ ]− ≤ ⇒ ≤ − ≤ ⇒ ≤∞ ∞u u ε α u v v ε α v Tand on 0, .u v0 1 0 1
(4.3)

Alternatively, there is some ( )∈ε ε0,
2 1

such that if ( ) ∈u v K, , then

∣∣ ∣∣ ∣∣ ∣∣ [ ]− ≤ ⇒ ≤ − ≤ ⇒ ≤∞ ∞u u ε u β v v ε v β Tand on 0, .
u v0 2 0 2

(4.4)

The claim is a consequence of (4.3) and (4.4), by taking ( )∈ε ε0,
2
.

Furthermore, if � α β, contains a second solution of (1.1), then it is nontrivial, thereby concluding the proof.
Alternatively, if this is not the case, by Lemma 3.1 we infer that

( (( ) ) )( ) = < ≤i F B u v ρ K ρ ε, , , , 1 for all 0 ,λ λ, 0 0
1 1

1

0

2

0

where ( )F λ λ,
1

0

2

0 stands for the fixed point operator corresponding to (1.1) with =λ λ
1 1

0 and =λ λ
2 2

0. Also, from the

proof of (i) and =∞g g, 0
i i,0 ,

, we have

( )( ) = >i F K ρ, Ω , 1 for all 0 sufficiently large,λ λ ρ, 2
1

0

2

0

2

( )( ) = >i F K ρ, Ω , 1 for all 0 sufficiently small .λ λ ρ, 3
1

0

2

0

3

Choose ρ ρ,
1 3

to be sufficiently small and ρ
2

to be sufficiently large, such that (( ) ) ( )∩ = ∅B u v ρ B ρ, ,
0 0

1 3

and
(( ) ) ( ) ( )∪ ⊂B u v ρ B ρ B ρ, ,

0 0
1 3 2

. From the additivity-excision property of the fixed point index, it follows that

( ( ) [ (( ) ) ( )] )( ) ∪ = −i F B ρ B u v ρ B ρ K, \ , , , 1.λ λ, 2
0 0

1 3
1

0

2

0

Therefore, ( )F λ λ,
1

0

2

0 has a fixed point ( ) ( ) [ (( ) ) ( )]∈ ∪u v B ρ B u v ρ B ρ, \ , ,
2

0 0
1 3

. However, this implies the existence
of a second positive solution to (1.1). □

Now, considering ( )∈ ∕θ π0, 2 , we define

�( ) { ∣( ) }≔ > ∈θ λ λ θ λ θ0 cos , sin Σ ,

where �( )θ is known to be nonempty. Subsequently, we rewrite problem (1.1) as follows:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

⎧

⎨
⎪

⎩
⎪

− ″ + = ∈
− ″ + = ∈

= ′ = ′
= ′ = ′

u q x u λ θμ x g u v x T

v q x v λ θμ x g u v x T

u u T u u T

v v T v v T

cos , , 0, ,

sin , , 0, ,

0 , 0 ,

0 , 0 .

1 1

2 2 (4.5)
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Lemma 4.2. There exists a continuous function ( ) ( )∕ → ∞πΛ : 0, 2 0, such that

( ) ( )− = − =
→ → ∕

θ θ θ θlim Λ sin Λ 0, lim Λ cos Λ 0.

θ θ π0

2

2

1 (4.6)

Furthermore, for every ( )∈ ∕θ π0, 2 , the following hold true:
(i) �( ) ∈θΛ ;
(ii) system (1.1) has at least two positive solutions for all ( ) ( ( ) ) ( ( ) )∈ +∞ × +∞λ λ θ θ θ θ, Λ cos , Λ sin ,

1 2
.

Proof. Define

�( ) ( ) ( )≔ ∈ ∕θ θ θ πΛ inf , 0, 2 . (4.7)

According to Lemma 4.1 (i), � ≠ ∅ and ( )< < ∞θ0 Λ .
Step 1. Statements (i) and (ii) hold true.

(i) Suppose on the contrary that for every ( )∈ ∕θ π0, 2 , �( ) ∉θΛ . Then, there exists a sequence {( )}u v,n n

of solutions of (4.5) such that ∣∣ ∣∣ ∣∣ ∣∣ → → ∞u v n, 0, .n n

Let ∣∣ ∣∣ ∣∣ ∣∣= ∕ = ∕z u u w v v,n n n n n n , we have

( ) ( )
( )

∣∣ ∣∣
( )

( ) ( )
( )

∣∣ ∣∣
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

− ″ + = ∈

− ″ + = ∈

= ′ = ′
= ′ = ′

z q x z λ θμ x
g u v

u
x T

w q x w λ θμ x
g u v

v
x T

z z T z z T

w w T w w T

cos

,

, 0, ,

sin

,

, 0, ,

0 , 0 ,

0 , 0 ,

n n

n n

n

n n

n n

n

n n n n

n n n n

1

1

2

2

that is,

( ) ( ) ( )
( )

∣∣ ∣∣
∫=z x λ θ G x s μ s

g w y

w
scos ,

,

d .n

T

n n

n
0

1

1

Since =g 0
1,0

, we have that

( )

∣∣ ∣∣

(∣∣ ∣∣ ∣∣ ∣∣)

∣∣ ∣∣
[ ]≤ = ∈

→∞ →∞

g w y

w

g w y

w
x Tlim

,

lim

,

0, uniformly in 0, .

n

n n

n n

n n

n

1 1

Hence, =→∞zlim 0n n uniformly, yet this contradicts the fact that ∣∣ ∣∣ =z 1n for all �∈n .
(ii) This conclusion is a direct consequence of statement (iii) of Lemma 4.1.

Step 2. Λ is continuous at each ( )∈ ∕θ π0, 2
0

.
The remaining arguments are the same as that of Lemma 4.2 of [17] and Proposition 4.5 of [18]. Suppose by

contradiction that Λ is not continuous at some ( )∈ ∕θ π0, 2
0

, then there exists an ( ( ))∈ε θ0, Λ
0

such that for all
sufficiently large �∈n , ( ) ( )∈ − ∕ + ∕ ⊂ ∕θ θ n θ n π1 , 1 0, 2n 0 0

with ( ) ( ( ) ( ) )∉ − +θ θ ε θ εΛ Λ , Λn 0 0
. Assuming that

( ) ( )≥ +θ θ εΛ Λn 0
holds for infinitely many �∈n . Then, for a subsequence of { }θn (also denoted as { }θn for

simplicity), we have

( ) ( )⎛
⎝ − ⎞

⎠ ≥ ⎛
⎝ + ⎞

⎠θ
ε

θ θ
ε

θΛ

2

cos Λ

2

cos ,n n n0

respectively,

( ) ( )⎛
⎝ − ⎞

⎠ ≥ ⎛
⎝ + ⎞

⎠θ
ε

θ θ
ε

θΛ

2

sin Λ

2

sin .n n n0

Furthermore, there exists �∈n
0

such that for all ≥n n
0
, ( ( ) ) ( )+ ∕ >θ ε θ θ θΛ 2 cos Λ cosn0 0 0

, and ( ( ) )+ ∕θ ε θΛ 2 sin n0

( )> θ θΛ sin
0 0

. As a result, for all ≥n n
0
, it follows that

( ) ( )⎛
⎝ − ⎞

⎠ >θ
ε

θ θ θΛ

2

cos Λ cos ,n n 0 0

8  Liping Wei et al.



respectively,

( ) ( )⎛
⎝ − ⎞

⎠ >θ
ε

θ θ θΛ

2

sin Λ sin .n n 0 0

Using the fact that �( ) ( )∈θ θΛ
0 0

and combining it with Lemma 4.1 (ii), we have that (( ( )θΛ n

) ( ( ) ) )− ∕ − ∕ ∈ε θ θ ε θ2 cos , Λ 2 sin Σn n n , so �( ) ( )− ∕ ∈θ ε θΛ 2n n . However, this contradicts the definition of
( )θΛ n . Similarly, if we assume that ( ) ( )≤ −θ θ εΛ Λn 0

for infinitely many �∈n , we can employ a similar
reasoning to obtain the contradiction.
Step 3. ( ) − =→ θ θlim Λ sin Λ 0θ 0 2

, ( ) − =→ ∕ θ θlim Λ cos Λ 0θ π 2 1
.

Considering a sequence { } ( )⊂ ∕θ π0, 2n with → ∕θ π 2n , as → ∞n , we will show that
( ) → → ∞θ θ nΛ cos Λ , .n n 1

It suffices to prove that any subsequence of { }θn (also denoted by { }θn for simplicity), contains a subsequence
{ }θnk

such that
( ) → → ∞θ θ kΛ cos Λ , .n n 1k k

From the definition of Λ
1
, there exists a sequence { } ⊂λ Σ

k
1 1

with →λ Λ

k
1 1

, as → ∞k . Because → ∕θ π 2n ,
according to Lemma 4.1 (ii), we can find a sequence { } ( )⊂ ∞r 0,k and a subsequence ⊂θ θn nk

, which, for all
�∈k , satisfy

=r θ λcosk n
k
1k

(4.8)

and
( ) ∈r θ r θcos , sin Σ.k n k nk k

By the definition of the mapping Λ, we obtain ( ) ≤θ rΛ n kk
. Hence, ( ) ≤θ θ r θΛ cos cosn n k nk k k

. Because of (4.8)
and the definition of Λ

1
, we have

( )≤ ≤ = → → ∞θ θ r θ λ kΛ Λ cos cos Λ , as .n n k n
k

1 1 1k k k

Analogously, we can show that ( ) →θ θΛ sin Λn n 2
when →θ 0n as → ∞n . This completes the proof. □

Theorem 4.3. Assume (H1) and (H2). Then, there exist positive constants >Λ , Λ 0
1 2

and a continuous function
( ) ( )∕ → +∞πΛ : 0, 2 0, , generating the curve

( )
( ) ( ) ( )

( ) ( ) ( )

⎧
⎨
⎩

= ∈ ∕
= ∈ ∕

λ θ θ θ θ π

λ θ θ θ θ π
Γ

Λ cos , 0, 2 ,

Λ sin , 0, 2 ,

1

2

such that
(i) [ ) [ )⊂ +∞ × +∞Γ Λ , Λ , ;

1 2

(ii) ( ) ( )= +∞ =→ ∕ →λ θ λ θlim limθ π θ2 2 0 1
, ( ) ( )− = = −→ → ∕λ θ λ θlim Λ 0 lim Λ ;θ θ π0 2 2 2 1 1

(iii) The curve Γ divides the first quadrant ( ) ( )+∞ × +∞0, 0, into two disjoint sets �
1
and �

2
such that system

(1.1) has zero positive solutions if �( ) ∈λ λ,
1 2 1

, at least one positive solution if ( ) ∈λ λ, Γ
1 2

, or at least two
positive solutions if �( ) ∈λ λ,

1 2 2
.

Proof. We have shown the existence of the continuous function Λ in Lemma 4.2 and the constants Λ
1
and Λ

2

in Lemma 4.1 (i).
(i) This result follows from combining Lemma 4.2 (i) with Lemma 4.1 (i).
(ii) The equalities ( ) ( )= +∞ =→ ∕ →λ θ λ θlim limθ π θ2 2 0 1

are a direct consequence of the inequalities

( ) ( )≥ ≥θ
θ

θ
θ

Λ

Λ

cos

and Λ

Λ

sin

,

1 2

and ( ) ( )− = = −→ → ∕λ θ λ θlim Λ 0 lim Λθ θ π0 2 2 2 1 1
is a conclusion of Lemma 4.2.

(iii) Using Lemma 4.2 and the definition of ( )θΛ given in (4.7), we obtain the conclusion. □

Example 4.4. The functions ( ) { } { }= +g u v u u v v, min , min ,

p q p q
1

1 1 2 2 , ( ) { } { }= +g u v u u v v, min , min ,

p q p q
2

2 2 1 1 satisfy
the conditions of Theorem 4.3, where < <q q0 , 1

1 2

, < < ∞p p1 ,
1 2

.
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