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Abstract: In this article, we show that there is a one-to-one correspondence between the eigenfunctions
associated with the perturbed Laplacian operator 4, on a Schrédinger infinite network {X, ¢, ¢} with weight
function g(a) and the eigenfunctions associated with classical Laplacian operator A on the infinite network
X, t.
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1 Introduction

Eigenfunctions of the Laplacian operators and eigenfunctions of the Schrédinger operator are load-bearing

pillar of several area of physics and fluidodynamics problems (see, e.g., [1-3], and reference therein). In this
An(a)
na’
we show that a function ¢ is an eigenfunction of the Laplacian operator A with eigenvalue A if and only if o can
be written as the product of a positive function n and a modified harmonic function h, i.e., 2,_.t(a, b)n(b)
[h(b) = h(a)] = 0.

A function u is called a-harmonic on a Schrédinger infinite network {X, t, q} if A;u(a) = au(a). We show
that u is a-harmonic, if and only if a is an eigenvalue of A" associated with an eigenfunction v on the network

*k *k _ M
{X, t**}, where t**(a, b) = )

A similar relationship holds for a-superharmonic functions.

article, we involve both topics. If A is a constant and there exists a positive function n on X such that A >

t(a, b), and u can be expressed as the product of v and the positive function .

2 Preliminaries

An infinite network {X, t} is an infinite graph X with a countable number of vertices where every vertex has
a finite number of neighbors (locally finite), any two vertices can be connected by a path, and there are no
edges that connect a vertex to itself.

Transition function t(a, b) assigns a probability to each possible transition between vertices. It is only positive
if there is an edge between vertices a and b. By a function on a graph X, we mean a function on its set of vertices.
The Laplacian A of a function u on a network {X, t} at a is defined as Au(a) = 2, _,t(a, b)[u(b) - u(a)]. A function
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s(a) on {X, t} is said to be A-harmonic, A-superharmonic, or A-subharmonic at a if As(a) is equal to, at most,
or at least zero, respectively. The function is said to be A-harmonic, A-superharmonic, or A-subharmonic on {X, t}
if it is A-harmonic, A-superharmonic, or A-subharmonic at each a of the graph X.

A Schrodinger infinite network {X, t, q} is essentially an infinite network where each vertex or edge is

assigned a weight [4]. This weight, denoted by g, represents a real-valued function on X such that q > A?f for

some function ¢ > 0. Note that the function g(a) can take some negative values also. The operator 4, is defined
by Aqu(a) = Au(a) - q(a)u(a). Note that £(a) mentioned ealier is a positive A;-superharmonic function on

{X,t,q}.1fq = A;Ef)), then £(a) is a positive A;-harmonic function and the network {X, t, g} is called hyperbolic.

In hyperbolic networks, various potential-theoretic concepts, such as the minimum principle, domination
principle, balayage, Dirichlet solution, and the existence of a Green kernel, are established. When ¢ is non-
negative, the constant function 1 is A;-superharmonic.

It is proved that ([5], Theorem 4.1.9), there always exists a positive function h such that A;h(a) = 0.

A real-valued function u is a-superharmonic if A;u(a) < au(a).

For any b € X, there exists a positive function (g-Green’s function) Gy(a) = G(a,b) that satisfies
A,Gp(a) = —6p(a) and Gy(a) < Gy(b) for all a in X.

Note that if the transition function is non-symmetry (meaning the probability of moving from a to b may
differ from the probability of moving from b to a), a scalar product is not defined and potential-theoretic
methods are used instead [6].

When g 2 0, q # 0, the transition functions are symmetric, and the network is locally finite, Yamasaki [7]
provided a comprehensive analysis of A;-superharmonic functions.

Keller et al. [8,9] have introduced a new definition of subcritical networks that does not require a limit on
the number of neighbors each vertex can have. Using Hilbert space methods, they have developed a theory for
these networks. A network is considered uniformly subcritical if its Green function is bounded. They also
impose a condition on the function q to ensure that the network remains subcritical as follows: for any ¢

vanishing outside a finite set, %waat(a, ble(a@) - eb)P? + 3 q(@)[e(@] = 0.

3 Eigenfunctions of the Laplacian

Consider an infinite network {X, t}. If there is a real number A such that A > Ag(;a))

must be another positive function h that satisfies Ah(a) = Ah(a) ([5], Theorem 4.1.9, replacing the function q(a)
by A).

for some ¢ > 0, then there

Lemma 3.1. In a Schrédinger network {X, t, q}, assume that q = 0 and q # 0. If there is a non-negative bounded
function v such that v # 0 and Av(a) 2 q(a)v(a), then there exists a bounded function h >0 such that

Ah(a) = q(a)h(a).

Proof. Assume that v is bounded by k. Since ¢q 2 0, the constant function 1 is a A;-superharmonic. Hence, v is
Ag-subharmonic function majorized by the A;-superharmonic function k. Therefore, there exists a 4,-harmonic
function h, 0 < v < h < k [5, Theorem 4.1.1]. If h is zero at any vertex, it must be zero everywhere, which
contradicts the assumption that v is not identically zero. Therefore, h is positive on the entire network. [

Definition 3.2. A A-eigenfunction of the Laplacian operator A(4,) defined in the infinite network {X, t}({X, t, q})
is a nonzero function f on the graph X such that Af = Af(4,f = Af). The constant A is called the eigenvalue
of the eigenfunction f.

Proposition 3.3. If v is a non-negative bounded function such that v # 0 and Av = av, for a > 0, then any positive
number B < a is an eigenvalue of the Laplacian A with a corresponding positive, bounded eigenfunction v.
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Proof. We can use Lemma 3.1, which guarantees the existence of a positive, bounded function h satisfying
Ah(a) = Bh(a) on X. O

An(a)
n(a)
if 0 can be expressed as the product of n and a harmonic function h on the network {X,t*}, where

t*(a, b) = n(b)t(a, b).

Theorem 3.4. A function o is considered an eigenfunction associated with A = for some n > 0 if and only

Proof. If Ad(x) = Aa(a), then Ac(a) = A"(a)o(a) which implies n(a)Aa(a) - a(a)An(a) = 0. Hence,
] ab) a(a)
bzat(a, b)[n(a)a(b) - n(b)a(a)] = Zt(a bnbn(@)|—~ ORE )
=n(a)X )

=0.

a(a)

Since n > 0, A*[ = 0. Thus, the function o can be written as the product of two functions: h and . The

functionh = 2% is a A"- harmonic function. Therefore, the dimension of the eigenspace associated with a particular

( )
eigenvalue A with respect to 4 is equal to the dimension of the space of harmonic functions on the network {X, t'}.

Conversely, if o is the product of h and 1, where h is a A*-harmonic function, then
Ao(a) = Ah(a)n(a)
= ) t(a, b{h(b)n(b) - h(a)n(a)}
b~a

= ) t(a, bY{n()[h(b) - h(@)] + h(@)[n(b) - (@)}
b~a

= Nh(a) + h(a)[An(a)]
=0 + h(a)[An(a)]
= Aa(a) [

Remark 1. With minor adjustments to the proof, we can show that the inequality Ad(a) < Aa(a) holds if and
only if o(a) can be expressed as the product of two functions: s and n, where 4*s < 0 on {X, t*}.

4 Eigenfunctions of the Schrodinger operator

In this section, {X, t, q} is a Schrodinger network, where q > E >0 and n > 0 is a solution to the equa-
tion Aq(n) = 0.

Proposition 4.1. If a is an eigenvalue with a corresponding non-negative eigenfunction ¢ that is non-identically
zero, then ¢ > 0 and a > —[t(a) + q(a)] for all all points on the network {X, t, q}.

Ef((a)) which implies, [t(a) + q(a)] > 0. Now, 2,t(a, b)p(D) =

ap(a) + [t(a) + q(a)]p(a). Hence, if the eigenfunction is zero at any point ¢, then ¢(b) = 0 for all b ~ ¢ by the
connectedness of X, it must be zero everywhere, which contradicts the assumption ¢ # 0. Finally, since

Y t(a, byp(b) - [t(a) + q(a)]p(a) = ag(a),
b

Proof. To prove this, we can use the fact that q(a) =

_ o)
a+ [t(a) + q(a)] = %t(a, b) o

>0,

for all a. O
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We are ready to prove a necessary and sufficient condition to be eigenfunctions associated with the
modified Laplacian operator.

Theorem 4.2. A function u is an a-eigenfunction of the Schrédinger operator A if and only if a is an eigenvalue

of the modified Laplacian X" of the network {X, t**}, where t**(a, b) = "EZ;

the eigenfunctions of these two operators is given by the equation u(a) = v(a)n(a), where v is an eigenfunction
of X" associated with a.

t(a, b). The relationship between

Proof. Let Aqu(a) = au(a). Then,

Au(a) - q(a)u(a) = au(a),
n(a)Au(a) - An(a)u(a) = au(a)n(a),

Ze(a Dn@n®) o+ = 4| = au@n(a
If we divide both sides by [g(a)]?, we obtain
nb)ud)  u(a) u(a)
)b - = b
20@ by ey~ n@] @
n(a) n(a)|

wa) .
n(a)

On the other hand, if u(a) = v(a)n(a), where A™v = av, we want to prove that A,u(a) = au(a):
Aqu(a) = Ag[v(a)n(a)]
= Av(a)n(a)] - q(a)[v(a)n(a)]
= Zt(a, b)[v(b)n(b) - v(a)n(a)] - q(a)[v(a)n(a)]

Hence, v(a) = is an eigenfunction of A™* associated with a.

zn( a) t**(a, bY{n()[v(b) - v(a)] + v(@)[n() - (@]} - g(@)[v(a)n(a)]

n(b)
= Y@t (@ bvb) - va)] + Zv(a)"( %)
; n(b)

= @A v(a) + Y v(a)(a, b)['?(b) - n(@] - q(@[v(an(a)]
b

= n(@lav(a)] + v(a)[An(a)] - q(a@)[v(a)n(a)]
= au(a) + v(a)[q(a)n(a)] - q(a)[v(a)n(a)]
= au(a). O

t**(a, b)[n(b) - n(@)] - q(@)[v(a)n(a)]

Remark 2.

(1) By making minor adjustments to the proof, we can also show that the inequality Aqu(a) < au(a) holds on
{X, t, q} if and only if u = vn, where A™v < av. If v satisfies the inequality A™v < av, then the product of v
and n is an a-superharmonic function on the original Schrédinger network. a-superharmonic functions are
used to describe the lowest possible eigenvalue, as seen in the Agmon-Allegretto theorem. For more
information, you can refer to a related article, by Lennx and Stollmann [10].

(2) If a is a constant such that a = ? for a function v > 0 on {X, t*}, then there exist a-superharmonic

functions on the original Schrédinger network {X, t, q}. One example of such a function is u = vn, which
is positive on {X, t, q}.
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(3) There exists a positive eigenfunction of the Schrodinger operator 4, on {X, t, q}. As discussed earlier, there

is a positive function h such thata = L‘:V on {X, t**}. Using Theorem 4.2, we proved earlier, u(x) = h(x)n(x)
is a positive eigenfunction of 4, on {X, t, q}.
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