

Research Article

Ibtesam Bajunaid, Madhu Venkataraman*, and Varadha Raj Manivannan

Eigenfunctions on an infinite Schrödinger network

<https://doi.org/10.1515/math-2025-0158>

received November 18, 2024; accepted April 28, 2025

Abstract: In this article, we show that there is a one-to-one correspondence between the eigenfunctions associated with the perturbed Laplacian operator Δ_q on a Schrödinger infinite network $\{X, t, q\}$ with weight function $q(a)$ and the eigenfunctions associated with classical Laplacian operator Δ on the infinite network $\{X, t\}$.

Keywords: Schrödinger infinite network, Laplace operator on an infinite network, eigenfunctions

MSC 2020: 15A18, 31C20, 35P05, 35R02

1 Introduction

Eigenfunctions of the Laplacian operators and eigenfunctions of the Schrödinger operator are load-bearing pillar of several area of physics and fluidodynamics problems (see, e.g., [1–3], and reference therein). In this article, we involve both topics. If λ is a constant and there exists a positive function η on X such that $\lambda \geq \frac{\Delta\eta(a)}{\eta(a)}$, we show that a function σ is an eigenfunction of the Laplacian operator Δ with eigenvalue λ if and only if σ can be written as the product of a positive function η and a modified harmonic function h , i.e., $\sum_{b \sim a} t(a, b)\eta(b)[h(b) - h(a)] = 0$.

A function u is called α -harmonic on a Schrödinger infinite network $\{X, t, q\}$ if $\Delta_q u(a) = \alpha u(a)$. We show that u is α -harmonic, if and only if α is an eigenvalue of Δ^{**} associated with an eigenfunction v on the network $\{X, t^{**}\}$, where $t^{**}(a, b) = \frac{\eta(b)}{\eta(a)}t(a, b)$, and u can be expressed as the product of v and the positive function η .

A similar relationship holds for α -superharmonic functions.

2 Preliminaries

An infinite network $\{X, t\}$ is an infinite graph X with a countable number of vertices where every vertex has a finite number of neighbors (locally finite), any two vertices can be connected by a path, and there are no edges that connect a vertex to itself.

Transition function $t(a, b)$ assigns a probability to each possible transition between vertices. It is only positive if there is an edge between vertices a and b . By a function on a graph X , we mean a function on its set of vertices. The Laplacian Δ of a function u on a network $\{X, t\}$ at a is defined as $\Delta u(a) = \sum_{b \sim a} t(a, b)[u(b) - u(a)]$. A function

* Corresponding author: **Madhu Venkataraman**, Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore - 632 014, Tamil Nadu, India, e-mail: madhu.v@vit.ac.in

Ibtesam Bajunaid: Department of Mathematics, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia, e-mail: bajunaid@ksu.edu.sa

Varadha Raj Manivannan: Department of Mathematics, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya, Kanchipuram - 631561, Tamil Nadu, India, e-mail: varadharaj.m219@gmail.com

$s(a)$ on $\{X, t\}$ is said to be Δ -harmonic, Δ -superharmonic, or Δ -subharmonic at a if $\Delta s(a)$ is equal to, at most, or at least zero, respectively. The function is said to be Δ -harmonic, Δ -superharmonic, or Δ -subharmonic on $\{X, t\}$ if it is Δ -harmonic, Δ -superharmonic, or Δ -subharmonic at each a of the graph X .

A Schrödinger infinite network $\{X, t, q\}$ is essentially an infinite network where each vertex or edge is assigned a weight [4]. This weight, denoted by q , represents a real-valued function on X such that $q \geq \frac{\Delta\xi}{\xi}$ for some function $\xi > 0$. Note that the function $q(a)$ can take some negative values also. The operator Δ_q is defined by $\Delta_q u(a) = \Delta u(a) - q(a)u(a)$. Note that $\xi(a)$ mentioned earlier is a positive Δ_q -superharmonic function on $\{X, t, q\}$. If $q = \frac{\Delta\xi(a)}{\xi(a)}$, then $\xi(a)$ is a positive Δ_q -harmonic function and the network $\{X, t, q\}$ is called hyperbolic. In hyperbolic networks, various potential-theoretic concepts, such as the minimum principle, domination principle, balayage, Dirichlet solution, and the existence of a Green kernel, are established. When q is non-negative, the constant function 1 is Δ_q -superharmonic.

It is proved that ([5], Theorem 4.1.9), there always exists a positive function h such that $\Delta_q h(a) = 0$.

A real-valued function u is a -superharmonic if $\Delta_q u(a) \leq au(a)$.

For any $b \in X$, there exists a positive function (q -Green's function) $G_b(a) = G(a, b)$ that satisfies $\Delta_q G_b(a) = -\delta_b(a)$ and $G_b(a) \leq G_b(b)$ for all a in X .

Note that if the transition function is non-symmetry (meaning the probability of moving from a to b may differ from the probability of moving from b to a), a scalar product is not defined and potential-theoretic methods are used instead [6].

When $q \geq 0, q \neq 0$, the transition functions are symmetric, and the network is locally finite, Yamasaki [7] provided a comprehensive analysis of Δ_q -superharmonic functions.

Keller et al. [8,9] have introduced a new definition of subcritical networks that does not require a limit on the number of neighbors each vertex can have. Using Hilbert space methods, they have developed a theory for these networks. A network is considered uniformly subcritical if its Green function is bounded. They also impose a condition on the function q to ensure that the network remains subcritical as follows: for any φ vanishing outside a finite set, $\frac{1}{2}\sum_{b \sim a} t(a, b)[\varphi(a) - \varphi(b)]^2 + \sum_a q(a)[\varphi(a)]^2 \geq 0$.

3 Eigenfunctions of the Laplacian

Consider an infinite network $\{X, t\}$. If there is a real number λ such that $\lambda \geq \frac{\Delta\xi(a)}{\xi(a)}$ for some $\xi > 0$, then there must be another positive function h that satisfies $\Delta h(a) = \lambda h(a)$ ([5], Theorem 4.1.9, replacing the function $q(a)$ by λ).

Lemma 3.1. *In a Schrödinger network $\{X, t, q\}$, assume that $q \geq 0$ and $q \neq 0$. If there is a non-negative bounded function v such that $v \neq 0$ and $\Delta v(a) \geq q(a)v(a)$, then there exists a bounded function $h > 0$ such that $\Delta h(a) = q(a)h(a)$.*

Proof. Assume that v is bounded by k . Since $q \geq 0$, the constant function 1 is a Δ_q -superharmonic. Hence, v is a Δ_q -subharmonic function majorized by the Δ_q -superharmonic function k . Therefore, there exists a Δ_q -harmonic function h , $0 \leq v \leq h \leq k$ [5, Theorem 4.1.1]. If h is zero at any vertex, it must be zero everywhere, which contradicts the assumption that v is not identically zero. Therefore, h is positive on the entire network. \square

Definition 3.2. A λ -eigenfunction of the Laplacian operator $\Delta(\Delta_q)$ defined in the infinite network $\{X, t\}(\{X, t, q\})$ is a nonzero function f on the graph X such that $\Delta f = \lambda f$ ($\Delta_q f = \lambda f$). The constant λ is called the eigenvalue of the eigenfunction f .

Proposition 3.3. *If v is a non-negative bounded function such that $v \neq 0$ and $\Delta v \geq av$, for $a > 0$, then any positive number $\beta \leq a$ is an eigenvalue of the Laplacian Δ with a corresponding positive, bounded eigenfunction v .*

Proof. We can use Lemma 3.1, which guarantees the existence of a positive, bounded function h satisfying $\Delta h(a) = \beta h(a)$ on X . \square

Theorem 3.4. A function σ is considered an eigenfunction associated with $\lambda = \frac{\Delta\eta(a)}{\eta(a)}$ for some $\eta > 0$ if and only if σ can be expressed as the product of η and a harmonic function h on the network $\{X, t^*\}$, where $t^*(a, b) = \eta(b)t(a, b)$.

Proof. If $\Delta\sigma(x) = \lambda\sigma(a)$, then $\Delta\sigma(a) = \frac{\Delta\eta(a)}{\eta(a)}\sigma(a)$, which implies $\eta(a)\Delta\sigma(a) - \sigma(a)\Delta\eta(a) = 0$. Hence,

$$\begin{aligned} \sum_{b \sim a} t(a, b)[\eta(a)\sigma(b) - \eta(b)\sigma(a)] &= \sum_{b \sim a} t(a, b)\eta(b)\eta(a)\left[\frac{\sigma(b)}{\eta(b)} - \frac{\sigma(a)}{\eta(a)}\right] \\ &= \eta(a)\Delta^*\left[\frac{\sigma(a)}{\eta(a)}\right] \\ &= 0. \end{aligned}$$

Since $\eta > 0$, $\Delta^*\left[\frac{\sigma(a)}{\eta(a)}\right] = 0$. Thus, the function σ can be written as the product of two functions: h and η . The function $h = \frac{\sigma(a)}{\eta(a)}$ is a Δ^* -harmonic function. Therefore, the dimension of the eigenspace associated with a particular eigenvalue λ with respect to Δ is equal to the dimension of the space of harmonic functions on the network $\{X, t^*\}$.

Conversely, if σ is the product of h and η , where h is a Δ^* -harmonic function, then

$$\begin{aligned} \Delta\sigma(a) &= \Delta h(a)\eta(a) \\ &= \sum_{b \sim a} t(a, b)\{h(b)\eta(b) - h(a)\eta(a)\} \\ &= \sum_{b \sim a} t(a, b)\{\eta(b)[h(b) - h(a)] + h(a)[\eta(b) - \eta(a)]\} \\ &= \Delta^*h(a) + h(a)[\Delta\eta(a)] \\ &= 0 + h(a)[\lambda\eta(a)] \\ &= \lambda\sigma(a) \end{aligned} \quad \square$$

Remark 1. With minor adjustments to the proof, we can show that the inequality $\Delta\sigma(a) \leq \lambda\sigma(a)$ holds if and only if $\sigma(a)$ can be expressed as the product of two functions: s and η , where $\Delta^*s \leq 0$ on $\{X, t^*\}$.

4 Eigenfunctions of the Schrödinger operator

In this section, $\{X, t, q\}$ is a Schrödinger network, where $q \geq \frac{\Delta\xi}{\xi}$, $\xi > 0$ and $\eta > 0$ is a solution to the equation $\Delta_q(\eta) = 0$.

Proposition 4.1. If α is an eigenvalue with a corresponding non-negative eigenfunction φ that is non-identically zero, then $\varphi > 0$ and $\alpha > -[t(a) + q(a)]$ for all all points on the network $\{X, t, q\}$.

Proof. To prove this, we can use the fact that $q(a) \geq \frac{\Delta\xi(a)}{\xi(a)}$ which implies, $[t(a) + q(a)] > 0$. Now, $\sum_b t(a, b)\varphi(b) = \alpha\varphi(a) + [t(a) + q(a)]\varphi(a)$. Hence, if the eigenfunction is zero at any point c , then $\varphi(b) = 0$ for all $b \sim c$ by the connectedness of X , it must be zero everywhere, which contradicts the assumption $\varphi \not\equiv 0$. Finally, since

$$\begin{aligned} \sum_b t(a, b)\varphi(b) - [t(a) + q(a)]\varphi(a) &= \alpha\varphi(a), \\ \alpha + [t(a) + q(a)] &= \sum_b t(a, b)\frac{\varphi(b)}{\varphi(a)} \\ &> 0, \end{aligned}$$

for all a . \square

We are ready to prove a necessary and sufficient condition to be eigenfunctions associated with the modified Laplacian operator.

Theorem 4.2. *A function u is an α -eigenfunction of the Schrödinger operator Δ_q if and only if α is an eigenvalue of the modified Laplacian Δ^{**} of the network $\{X, t^{**}\}$, where $t^{**}(a, b) = \frac{\eta(b)}{\eta(a)}t(a, b)$. The relationship between the eigenfunctions of these two operators is given by the equation $u(a) = v(a)\eta(a)$, where v is an eigenfunction of Δ^{**} associated with α .*

Proof. Let $\Delta_q u(a) = \alpha u(a)$. Then,

$$\begin{aligned}\Delta u(a) - q(a)u(a) &= \alpha u(a), \\ \eta(a)\Delta u(a) - \Delta\eta(a)u(a) &= \alpha u(a)\eta(a), \\ \sum_b t(a, b)\eta(a)\eta(b) \left[\frac{u(b)}{\eta(b)} - \frac{u(a)}{\eta(a)} \right] &= \alpha u(a)\eta(a).\end{aligned}$$

If we divide both sides by $[\eta(a)]^2$, we obtain

$$\begin{aligned}\sum_b t(a, b) \frac{\eta(b)}{\eta(a)} \left[\frac{u(b)}{\eta(b)} - \frac{u(a)}{\eta(a)} \right] &= \alpha \left[\frac{u(a)}{\eta(a)} \right], \\ \Delta^{**} \left[\frac{u(a)}{\eta(a)} \right] &= \alpha \left[\frac{u(a)}{\eta(a)} \right].\end{aligned}$$

Hence, $v(a) = \frac{u(a)}{\eta(a)}$ is an eigenfunction of Δ^{**} associated with α .

On the other hand, if $u(a) = v(a)\eta(a)$, where $\Delta^{**}v = \alpha v$, we want to prove that $\Delta_q u(a) = \alpha u(a)$:

$$\begin{aligned}\Delta_q u(a) &= \Delta_q [v(a)\eta(a)] \\ &= \Delta[v(a)\eta(a)] - q(a)[v(a)\eta(a)] \\ &= \sum_b t(a, b)[v(b)\eta(b) - v(a)\eta(a)] - q(a)[v(a)\eta(a)] \\ &= \sum_b \frac{\eta(a)}{\eta(b)} t^{**}(a, b) \{ \eta(b)[v(b) - v(a)] + v(a)[\eta(b) - \eta(a)] \} - q(a)[v(a)\eta(a)] \\ &= \sum_b \eta(a) t^{**}(a, b) [v(b) - v(a)] + \sum_b v(a) \frac{\eta(a)}{\eta(b)} t^{**}(a, b) [\eta(b) - \eta(a)] - q(a)[v(a)\eta(a)] \\ &= \eta(a) \Delta^{**}v(a) + \sum_b v(a) t(a, b) [\eta(b) - \eta(a)] - q(a)[v(a)\eta(a)] \\ &= \eta(a) [\alpha v(a)] + v(a) [\Delta\eta(a)] - q(a)[v(a)\eta(a)] \\ &= \alpha u(a) + v(a) [q(a)\eta(a)] - q(a)[v(a)\eta(a)] \\ &= \alpha u(a).\end{aligned}$$

□

Remark 2.

- (1) By making minor adjustments to the proof, we can also show that the inequality $\Delta_q u(a) \leq \alpha u(a)$ holds on $\{X, t, q\}$ if and only if $u = v\eta$, where $\Delta^{**}v \leq \alpha v$. If v satisfies the inequality $\Delta^{**}v \leq \alpha v$, then the product of v and η is an α -superharmonic function on the original Schrödinger network. α -superharmonic functions are used to describe the lowest possible eigenvalue, as seen in the Agmon-Allegretto theorem. For more information, you can refer to a related article, by Lennx and Stollmann [10].
- (2) If α is a constant such that $\alpha \geq \frac{\Delta^{**}v}{v}$ for a function $v > 0$ on $\{X, t^{**}\}$, then there exist α -superharmonic functions on the original Schrödinger network $\{X, t, q\}$. One example of such a function is $u = v\eta$, which is positive on $\{X, t, q\}$.

(3) There exists a positive eigenfunction of the Schrödinger operator Δ_q on $\{X, t, q\}$. As discussed earlier, there is a positive function h such that $\alpha = \frac{\Delta^* v}{v}$ on $\{X, t^*\}$. Using Theorem 4.2, we proved earlier, $u(x) = h(x)\eta(x)$ is a positive eigenfunction of Δ_q on $\{X, t, q\}$.

Funding information: This work was supported by Ongoing Research Funding Program [ORF-2025-771], King Saud University, Riyadh, Saudi Arabia.

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and consented to its submission to the journal, reviewed all the results, and approved the final version of the manuscript.

Conflict of interest: The authors state no conflicts of interest.

References

- [1] A. Aberqi, J. Bennouna, O. Benslimane and M. A. Ragusa, *Existence results for double phase problem in Sobolev-Orlicz spaces with variable exponents in complete manifold*, *Mediterr. J. Math.* **19** (2022), 158.
- [2] E. K. Arpat, N. Yokus, and N. Coskun, *Spectral properties of the finite system of Klein Gordon s-wave equations with general boundary condition*, *Filomat* **37** (2023), no. 6, 1907–1914, DOI: <https://doi.org/10.2298/FIL2306907A>.
- [3] C. Arauz, A. Carmona, and A. M. Encinas, *Dirichlet-to-Robin maps on finite networks*, *Appl. Anal. Discrete Math.* **9** (2015), no. 1, 85–102, <http://www.jstor.org/stable/43666209>.
- [4] E. Bendito, A. Carmona, and A. M. Encinas, *Potential theory for Schrödinger operators on finite networks*, *Rev. Mat. Iberoam.* **21** (2005), 771–818.
- [5] V. Anandam, *Harmonic Functions and Potentials on Finite or Infinite Networks*, Lecture Notes of the Unione Matematica Italiana, vol. 12, Springer-Verlag, Berlin Heidelberg, 2011.
- [6] M. Brelot, *Éléments de la Théorie Classique du Potentiel*, CDU, Paris, 1965.
- [7] M. Yamasaki, *The equation $\Delta u = qu$ on an infinite network*, *Mem. Fac. Sci. Shimane Univ.* **21** (1987), 31–46, <https://api.semanticscholar.org/CorpusID:126013663>.
- [8] M. Keller, Y. Pinchover and F. Pogorzelski, *Criticality theory for Schrödinger operators on graphs*, *J. Spectr. Theory* **10** (2020), no. 1, 73–114, DOI: <https://doi.org/10.48550/arXiv.1708.09664>.
- [9] M. Keller, D. Lenz, and R. K. Wojciechowski, *Graphs and Discrete Dirichlet Spaces*, Grundlehren der mathematischen Wissenschaften, vol. 358, Springer, Nature Switzerland, 2021.
- [10] D. Lenz and P. Stollmann, *On the decomposition principle and a Persson type theorem for general regular Dirichlet forms*, *J. Spectr. Theory* **9** (2019), no. 6, 1089–1113, DOI: <https://doi.org/10.48550/arXiv.1705.10398>.