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Abstract: The Piatetski-Shapiro sequences are sequences of the form (Ln°J);-; and the Beatty sequence is the
sequence of integers (Lan + S1);-,. We prove that there are infinitely many Carmichael numbers composed
of entirely the primes from the intersection of a Piatetski-Shapiro sequence and a Beatty sequence for
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progressions in a Beatty sequence. Moreover, we also discuss the intersection of a Piatetski-Shapiro sequence
and multiple Beatty sequences in arithmetic progressions.
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, a >1 irrational and of finite type by investigating the Piatetski-Shapiro primes in arithmetic
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1 Introduction

The Piatetski-Shapiro sequences are sequences of the form
N = (nDr.y (c>1,c&N),

where | t] denotes the integer part of any ¢t € R. Such sequences have been named in honor of Piatetski-

12

Shapiro [1] who, in 1953, proved that .4#"(©) contains infinitely many primes provided that ¢ € (1, 7)- The range

for ¢ in which it is known that .4" contains infinitely many primes has been enlarged many times over the

243

years and is currently known to hold for all ¢ € (1, 2—05), thanks to Rivat and Wu [2].

For fixed real numbers a and S, the associated non-homogeneous Beatty sequence is the sequence of
integers defined by

By = (Lan + BDy-1,

which are also called generalized arithmetic progressions. If « is irrational, it follows from a classical expo-
nential sum estimate of Vinogradov [3] that 8,4 contains infinitely many prime numbers.

Carmichael numbers are the composite natural numbers N with the property that N|(a¥ - a) for every
integer a. In 1994, Alford et al. [4] proved that there exist infinitely many Carmichael numbers. Baker et al.

[5] showed that for every ¢ € (1, ﬁ—;
Piatetski-Shapiro primes. Banks and Yeager [6] showed that there are infinitely many Carmichael numbers
composed solely of primes from the Beatty sequence B, for a, f € R with @ > 1 and a is irrational and of

finite type.

), there are infinitely many Carmichael numbers composed entirely of
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Since both Piatetski-Shapiro sequences and Beatty sequences produce infinitely many primes, Guo [7]
investigated the intersection between a Piatetski-Shapiro sequence and a Beatty sequence by defining

Mad(X) = #H{p < x:p € VO N Bygh
and derived that

1
Xc¢

1
X<
TafOx) = + 0l 3o stx

alogx

>

forc € (1, %). Later, Guo et al. [8] extend the range of ¢ in this theorem to (1, % .

Guo and Qi [9] considered the following generalized Piatetski-Shapiro sequences:
NGy = (Lant + D7y

and proved that there are infinitely many Carmichael numbers composed solely of primes from the numbers
of the set NE,";; forc € (1, %).

In this article, we are interested in the relation between Carmichael numbers and the Piatetski-Shapiro
primes in a Beatty sequence. For (a, d) = 1, let

néfg(x; da)=#p<x:p€ NONByz and p=amodd}.

We prove the following theorem:

12

L 1

Theorem 1.1. Let a > 1 and f be real numbers. Let a be irrational and of finite type. Let ¢ € andy = c.

X
7906 d, @) = ayxn(x; d, @) + aly(l - y)juv-zn(u; d, a)du + 0 x%w%w],
2

where ni(x; d,a) = #{p < x : p = amod d}.
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composed of entirely the primes from the set /"© N By p.

Theorem 1.2. Letc € (1 ), a be irrational and of finite type. There are infinitely many Carmichael numbers

2 Preliminaries

2.1 Notation
We denote by Lt] and {t} the integral part and the fractional part of ¢, respectively. As is customary, we put
e(t) =e¥t and {t}=t-Ltl
Throughout the article, we make considerable use of the sawtooth function defined by
1 1
H=t-Lltl--={t}- 7.
YO ==Lt - 5 = {8 -
The notation ||¢|| is used to denote the distance from the real number ¢ to the nearest integer; that is,
[|t]| = min|t - n|.
nez

Let P denote the set of primes in N. The letter p always denotes a prime. For a Beatty sequence
(Lan + BDn-1, we denote w = a™'. We represent y = ¢! for the Piatetski-Shapiro sequence (Ln¢));-,. We use
notation of the form m ~ M as an abbreviation for M < m < 2M.
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Throughout the article, € always denotes an arbitrarily small positive constant, which may not be the same
at different occurrences; the implied constants in symbols O, < and > may depend (where obvious) on the
parameters a, f3, ¢, € but are absolute otherwise. For given functions F and G, the notations F < G,G > F and
F = O(G) are all equivalent to the statement that the inequality |[F| < C|G| holds with some constant C > 0.

2.2 Type of an irrational number

For any irrational number a, we define its type 7 = 7(a) by the following definition:
7 = supit € R : liminf n!||an|| = 0.
n—o

Using Dirichlet’s approximation theorem, one can see that 7 > 1 for every irrational number a. Thanks to the
work of Khintchine [10] and Roth [11,12], it is known that 7 = 1 for almost all real numbers, in the sense of the
Lebesgue measure, and for all irrational algebraic numbers, respectively. Moreover, if a is an irrational
number of type 7 < «, then so are a™! and na™! for all integer n > 1 [13].

2.3 Technical lemmas
We need the following well-known approximation of Vaaler [14].

Lemma 2.1. For any H 2 1, there exist numbers ay, by, such that

1 1
< ) bye(th), an< —, by < —.

YO - ) ape(th) 2 m i

0<|h|<H

Lemma 2.2. For an arithmetic function g and N’ ~ N, we have

1
8(p) < max A(n)g(n)| + N2
N<pzs N logN N<n<an N<§s N

Proof. See the argument on page 48 of [15]. O
Lemma 2.3. Suppose that

a 0

a=—+ —
qa q

with (a,q) =1,q = 1, 10| < 1. Then there holds

Y A(m)e(ma) < [Nqd™z + N4/5 + N1/2qU/2|(logN)® .
<N
msrt;[modd

Proof. It is a simplified and weakened version of a theorem of Balog and Perelli [16]. O
Lemma 2.4. Suppose that a is a fixed irrational number of finite type 7 < « and h > 1, m are integers. Then
we have

Y A(m)e(ahm) < hV2p1-1@D+e 4 ppie,
msM
m=a mod d
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Proof. For any sufficiently small € > 0, we set @ = 7 + €. Since a is of type 7, there exists some constant ¢ > 0
such that

lan|| > en™?, n=z=1 21
For given h with 0 < h < H, let b/d be the convergent in the continued fraction expansion of ah, which has the

largest denominator d not exceeding M1 for a sufficiently small positive number . Then we derive that

b
h__
=y

1 1
< AV < F, 2.2)

which combined with (2.1) yields
M1 > |ahd - b| = ||ahd|| > c(hd)™.
Taking Cy = ¢'/?, we obtain
d > Coh'MVenle, 23
Combining (2.2) and (2.3), applying Lemma 2.3 and the fact that d < M'™7, we deduce that

> A(m)e(ahm) < (Md™/2 + M*/5 + MY2dY/2)(logM )3

msM
m=a mod d
< (hV2M-Y @120 + pA/S + Ml"’/z)(logM)3
< h1/2M1—1/(2r)+s + Ml—s.
This completes the proof of Lemma 2.4. O

The following lemma gives a characterization of the numbers in the Beatty sequence B g.

Lemma 25. A natural number m has the form Lan + Bl if and only if X,p(m) =1, where Xqpg(m) =
l~a¥(m - B)] - L-a¥(m +1 - B)1.
Proof. Note that an integer m has the form m = Lan + ] for some integer n if and only if

- - B+
Ul AR
a a

O

Finally, we use the following lemma, which provides a characterization of the numbers that occur in the
Piatetski-Shapiro sequence .4,

Lemma 2.6. A natural number m has the form Ln¢] if and only if X©(m) =1, where X©(m) =-m]
- L-(m + 1) 1. Moreover,

XOm) = ymt + Y(=(m + 1) = Y(-n) + O(mv ).
Proof. The proof of Lemma 2.6 is similar to that of Lemma 2.5, so we omit the details herein. O

Lemma 2.7. For1<c < %, there holds

xY
log? x

xV
nOx) = Y XO(p)=——+0
pex logx

. 2.4)

Proof. See Theorem 1 of Rivat and Sargos [17]. O
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Lemma 2.8. Suppose that

m n
L(H) = YAH% + Y BHY,
i=1 j=1
where A;, Bj, a;, and b; are positive. Assume further that Hy < H,. Then there exists some H with Hy < H < H, and
m n pomn
L) <« TAH{ + TBH" + 3 3 (4B,
=1 j=1 i=1j=1

The implied constant depends only on m and n.
Proof. See Lemma 3 of Srinivasan [18]. O

Lemma 2.9. For real numbers my, my, and N < t < N;, we have

S Aehn? + mn + my)| < Ns[|h|%N%+% + |R[SNT5 + |R[ENT*S + [R[INTE + N5 |,

N<ngN;

Proof. See [8, Lemma 2.14]. O

3 Proof of Theorem 1.1

For a Beatty sequence
Bap = Lan + B,

recall that w = a™ . By the definition of ng(fé(x), we have that

QG d @)= Y Xep(P)XO(P) = S1+ S5+ Ss,

PSX
p=a mod d

where

Sl = Z wX(C)(p),
psx
p=amodd

S= 2 P 0P IC-w(p +1- B) - Y(-wlp - B,
psX
p=a mod d

3= Y W-(p+ D) = YEPNEC0(p + 1= ) - Y(-w(p - B).
p<x
p=amodd

A partial summation gives

X
S1 = wyx'n(x; d, a) + wy(l - y)JuV‘Zn(u; d,a)du + O(x*"1 +1).
2
By applying Lemma 2.1, we take H; = x® and let H; be chosen later. With a sufficiently small positive
number &, we have that

Y(-w(p +1-B) - ¥(-w(p - B)

(€X))
2 an(e(@h(p +1-p) - e(@h(p - B)) +0| Y bpe(@h(p+1-p))+e(wh(p - B))

0<|h|<H; |hi|<H;
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and

Y(=(p + D) - ¥(-p")

(3.2)
= ) ap(e(hy(p + 1)) - e(lyp?)) + O Y br(e(ha(p + 1)) + e(hyp")|.
0<|hy|<H, |h2|<Hp
We mention that for j = 1, 2 there holds
ap, < [Kf™ and by < H;'.
3.1 Upper bounds of S,
Let N £ x and N; < 2N. We write S; = Sy + O(Sy), where
Sn= )y W@ +1-B) - v(-w(p - )
PN
p=a mod d
and
Sp= ) ypHY(-w(p +1-B) - Y(-w(p - B)).
psN
p=amodd
By (3.1), Lemma 2.2 and a splitting argument, we obtain that Sy; = Sy3 + O(S24), where
Sp= ) ) aAm)(e(wh(n + 1~ B)) - e(why(n - B)))
N<n<N; 0<|h|<H; (3'3)
n=a mod d
and
Su= Y 3 bunAm)(e(why(n +1- ) - ewh(n - B))). 4
N<n<N; 0<|hj|<H; *
n=a mod d
First, we estimate S,3. Let
Oy, = e(why) - 1. 3.5)
It follows from partial summation and the trivial estimate 8, < 1 that
Sy ) ap Q) nWTAMOe(wh(n - B))
0<hi<H; N<nsM
n=a mod d
(3.6)
< N1 ) h'max | ) An)e(whn)|.
o<m<H; NSV | Nenewy
n=a mod d
Hence, we need to bound
T= Y Ane(whn).
N<nsN; 3.7
n=a mod d
By Lemma 2.4, we obtain
1
T « hlle—%ﬂe + N1-¢, (3.8)
for £ being a small positive number.
Now we work on the bound of S3,. The contribution of Sy4 from h; = 0 is
boN? _
2b A1 <« < H NV,
o, Mg < 9

n=a mod d
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where the function ¢(d) is the Euler function and by < H;. The contribution from h; # 0 is

<NVH'max ) > Ame(whn)|. (3.10)
NS2N g<py<hy | N<nsh
n=a mod d

The right-hand side of (3.11) can be estimated by the same method of (3.7). Therefore, by inserting (3.8) into (3.6)
and (3.11) and combining with (3.9), it follows that

1
So1 < Sy + Sy < HENV-2:*€ + NV*€ + HINY <« NV*¢,
where we use H; = N¢. Moreover, the bound of Sy, can be estimated similarly. Hence, we obtain

Sy K 8y + Sy < NV*E, 3.11)

3.2 Upper bounds of S3

We only give the details of the estimation of Ss, By (3.1) and (3.2), it is easy to see that
S3= 831+ O(S3 + Sz3 + S4), (312

where

Sa= Y 2 an(e(h(p + D) - e(hpp?)
psx  0<|hy|<H;
p=amodd

x ) ap(e(wh(p +1-P) - e(wh(p - ),

0<|hy|<H;
Sp= ) 2 an(ehy(p + 1)) - e(hyp")

psX 0<|hz|<H,
p=amodd

x Y by(e(wh(p +1-p)) + e(wh(p - B)),

[h|<H

Ss= 3 Y buleh(p+ 1Y)+ e(hp?))
psx  |hy|<H,
p=amod d

x ) ap(e(wh(p +1-P) - e(wh(p - P,

0<|hy|<H;

Su= Y 2 bue(h(p+ DY)+ e(hop?)
p<x  |hy|<H,
p=amodd

x Y by(e(wh(p +1-B) + e(wh(p - B))).

[h|<H

3.2.1 Estimation of S3;

By Lemma 2.2 and a splitting argument, we estimate Sz by considering

2 A Y ap(e(hy(n + 1)) - e(hn?))
N<ns©h; 0<|hy|<H,
n=a mod d (313)

x ) ap(e(@h(n+1-p) - e(wh®n - B)).

0<|hy|<Hy
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Define
0, (1) = e(hy((t + 1)) - 7)) - 1. (3.14)

Then we have

)
¢, (D) < |yt and L -« |yt

It follows from the aforementioned estimate, (3.5) and partial summation that the formula (3.13) is

1
Wl 2 A metn) Y anbne(wh(n - B)
o<|h2|st| 2] N<ngN 0<|hy|<H;
n=a mod d
. I%(t)d > Ameun) 3 anbue(@h(n - B)
0<|h2|<H2| 2 N<nst 0<|hy|<H;

n=a mod d

> |h2| 19, Ml 2 Ae() Y apfre(wh(n - B))

0<|hz|<H, N<n<M 0<|h1|<H;
n=a mod d
N
1 6¢h ®
2 o o Y Aehn’) Y apfre(wh(n - )| dt (3.15)
1\]0<|hz|$Hz| 2l t N<nsh; 0<|hy|<H;
n=a mod d

< Nlmax ) > Amethn’) Y apfne(whi(n - B))
NS2N o<\ hy|<H, | N<nshy 0<|hy|<H;
n=a mod d

= N’1max Z Z an,Ohn, Z An)e(hyn? + whin — whyB)

MS2N 0<|hy|<Hy | 0<|hy|<Hy N<n<h;
n=a mod d
1
< Nty —max ) Y An)e(hn? + whin - whiP)|.
0<|hi|<H; |hal vi<2v 0<|hy|<Hy | N<nshN;
n=a mod d
Note that
> A(n)e(hn’ + whin - whyP)
N<nsh;
n=a mod d
d
1 n-am
= = Z z A(n)elh,n? + whin — whyf + g .
d m=1N<n<sN; d
Hence, we need to bound
m am
= » An)ehn +|wh+—n+— - whlﬁ]
N<ngN; d d
By Lemma 2.9, we have
TN < |hpfsNe*i + [y 5N173 + |RyiNT*5 + |hy[iN1"1 + N%. (3.16)

Recalling H; = N¢ and inserting (3.16) to (3.15), we have

7 2 5 3
SuN“¢ < HSN© i + H}NG + HEN:-% + HENT + HNV-5 (3.17)
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3.2.2 Estimations of S3; and Ss3

We only give the proof of Ss; since the bound of S33 can be obtained similarly. Let N < x and N; < 2N.
By Lemma 2.2 and a splitting argument, we can see

Sp= ) AM) Y aple(hy(n + 1)) - e(hn))

N<n<N 0<|hz|<H,

n=a mod d

x ) byle(wh(n+1-PB)) - e(wh(n - B))).
0<|hy|<H;

By (3.14) and Lemma 2.9, the contribution of S3; from h; = 0 is

<HNYT Y max | ) A(n)(e(6hn))
0<|hy|<H,MS2N | N<nsy
n=a mod d

d _
1 > > A(n)e[hznV + w

m=1N<n<N;

(3.18)
< H{'Nv1 ) max
0<|hy| <H,NISZN

7 2 5 3
= Ty a2y -5y -3y
< NS[HZGNs-i + H3N3 + HEN1 s + HiN+ + HNV'zssy,

The contribution of Sz, from h; # 0 is

> 2 an(e(hy(p + 1)) - e(hyp))
PsX 0<|hy|<H,
p=a mod d

x ) Dby(e(wh(p +1- )+ e(wh(p - P))),

0<|h|<H
which can be get the upper bound (3.18) by the same method of S3;. So we have

7 2 5 3
(Sp + S)N¢ < HSNE i + HANS + HENT -3 + HENT + HNV-5, (3.19)

3.2.3 Estimation of S3; and conclusions

The contribution of S3; from h; = hy = 0 is

Y H;'H'< H;'N'*e
or® (3.20)

p=amodd

By (3.14) and Lemma 2.9, the contribution of S3; from h; = 0 and h; # 0 is

2bp Y Y bpe(h(p + 1Y) + e(hyp)
psXx 0<|hy|<Hy
p=a mod d

< H'H;' ) max | Y An)(e(hn')) (3.21)
0<hy|<H,MIS2N | N<ns,
n=a mod d
1 y,3 -1 4 1 Y,5 -1 Y 2
<« Nef|HSNs*s + Hy N3 + H}Ns*s + H, *N1"s + N5,
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where H; = N€ and bh]. < % Similarly, by (3.5) and Lemma 2.4, the contribution of Ss4 from h; # 0 and h; = 0 is

D 2 bi(e(@h(p +1- B) + e(whi(p - )

DsXx 0<|h|<H

p=a mod d
< HUH7' Y max| Y A(m)(e(whn) (322)
0<|h1|$H1N1$2N N<nsh;
n=a mod d
1 1
< H; (HZN' e + N17¢) « HyIN*e,
The contribution of S3; from h; # 0 and hy # 0 is
2 A Y bufelhy(n + 1)) + e(hn?))
N<ns©h; 0<|hy|<H;
n=a mod d
x ) by(e(wh(n+1- )+ e(whn - B))),
0<|h|<H;
which can be estimated similarly. Now the estimation
N NTE R NP SRS S O S N S S (3.23)
S3uN¢ < HfNs*1 + H,3N'"3 + H!N+*s + H, *N'"7 + N5 + H;'N. :

follows from (3.20), (3.21), and (3.22). In the end, by combining (3.17), (3.19), (3.23), (3.12), and (3.11), one has

Y

1 1 1 1 7
(Sy + S3)N& < HENs*i + Hy 3N1=5 + HAN*S + H, *N1™1 + N% + HSN

7y
o

Ll

+ HZ%N%V + HZ%NS%-% + HZ%N%V + HNV-% + H;'N.
By using Lemma 2.8, we obtain
(83 + SN e N%TV + NV‘% + N%‘% + N%V‘% + N%*% + N%*% + N%
+ Ng’fgs + N59V+17s + Nsvy"g + NZ*% + N§+}1 + N)5/+170_
Note that S; < x?, so we need that S; + S3 < x’7¢. Hence,

5273 1
Y 10°6°25°12°8°4) 12
and

ven,
Sy + 83 K x137267E,

4 Sketch of proof of Theorem 1.2

We sketch the proof of Theorem 1.2 because the idea of the proof is close to the proof in [9, Section 4]. We only
give the changes that are necessary for our Theorem 1.2.
We set

dx; d,a) = Z logp

13
p=a mod d

and consider a weighted counting function

AW day= Y logp= Y Xep(p)XO(p)logp.

P<X PSX
pEﬂa(,C,f);(X) p=amodd
p=a mod d
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By a similar argument as in the proof of Theorem 1.1, we conclude the following.

Theorem 4.1. Let a > 1 and B be real numbers. Let ¢ € [1, %] Then

X
ﬁéf/}(x; d,a) = alyx"9(x; d, a) + aly(1 - y)IuV‘Zﬁ(u; d,a)du + O
2

ven
X136 tE|,

The proof of our Theorem 1.2 is similar to [9, Section 4] by switching the conditions

1<c<E into 1<c<E
13 1’

13 2 | 1 6y

-+ =2 to - — + —,
355 MO T3

N into 7

and

6 into w.

Let 7z(x, y) be the number of those primes for which p - 1is free of prime factors exceeding y. Let & be the set
of numbers E in the range 0 < E < 1 for which

m(x, xX1E) 2 x1*o0  (x > ),

where the function implied by o(1) depends only on E. By a similar argument as in [5, Page 64-66], we conclude
the following statement.

Lemma 4.2. Let a > 1 and B be real numbers. Let ¢ € [1, % . Let B and B, be positive real numbers such that
B <B< —% + % For any E € &, there is a number x; depending on ¢, B, By, E, and €, such that for any x > x,

there are at least xE8+*(-B*B(y~D=¢ Carmichael numbers up to x composed solely of primes from ﬂo(f,;

6
+l

Taking B and B; arbitrarily close to —% 13

Lemma 4.2 implies that there are infinitely many Carmichael

numbers composed entirely of the primes from ng(fg with

[—£+6—V]E+ “1>0
2% 13T '

18746

Taking E = 0.7039 from [19], we eventually have y > 5.

5 More Beatty sequences

Guo et al. [8] proved that there are infinitely many primes in the intersection of a Piatetski-Shapiro sequence
and multiple Beatty sequences with some restrictions; see [8, Theorem 1.3] for more details. We mention that
by the similar techniques in the proof of Theorem 1.1 and the proof of [8, Theorem 1.3], Piatetski-Shapiro
primes in arithmetic progressions and the intersection of multiple Beatty sequences can also be detected.
Therefore, we state the following theorem without proofs.

Theorem 5.1. Suppose that ¢ is a positive integer, and a, ..., g, B, ..., Bf € R.Letw,..., a; > 1 beirrational and of
finite type such that

1

1,a L az~ are linearly independent over Q.
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Forc € (1, %), the counting function
ﬂéi)ﬁl;m;a&ﬁf(x; d,a) = #{primep < x : p = amodd,p € Byp N..N Bagp, N Ny
satisfies

néf,)ﬁl;___;a&ﬁf(x; da)=a’.. aglyxy-ln(x; d,a)

X
+a . agy(1 - y)JuV‘Zn(u; d,a)du + 0 x%l“%ﬂ?],
2

where the implied constant depends only on @, ..., ag and c.
Then by the same technique in the proof of Theorem 1.2, we state the following theorem without proofs.

Theorem 5.2. Suppose that ¢ is a positive integer, and ai, ..., @z, By, ..., b € R. Let y,..., az > 1 be irrational and
of finite type such that

1, a7%,..., az" are linearly independent over Q.

For ce(1 BTy there are infinitely many Carmichael numbers composed entirely of the primes from

> 187467
the set

Baypy, NN B, N N©,
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