

Research Article

Jinyun Qi and Victor Zhenyu Guo*

Carmichael numbers composed of Piatetski-Shapiro primes in Beatty sequences

<https://doi.org/10.1515/math-2025-0157>
received August 30, 2024; accepted April 28, 2025

Abstract: The Piatetski-Shapiro sequences are sequences of the form $(\lfloor n^c \rfloor)_{n=1}^{\infty}$ and the Beatty sequence is the sequence of integers $(\lfloor an + \beta \rfloor)_{n=1}^{\infty}$. We prove that there are infinitely many Carmichael numbers composed of entirely the primes from the intersection of a Piatetski-Shapiro sequence and a Beatty sequence for $c \in \left[1, \frac{19137}{18746}\right]$, $a > 1$ irrational and of finite type by investigating the Piatetski-Shapiro primes in arithmetic progressions in a Beatty sequence. Moreover, we also discuss the intersection of a Piatetski-Shapiro sequence and multiple Beatty sequences in arithmetic progressions.

Keywords: Beatty sequence, Piatetski-Shapiro prime, Carmichael number

MSC 2020: 11N05, 11L07, 11N80, 11B83

1 Introduction

The Piatetski-Shapiro sequences are sequences of the form

$$\mathcal{N}^{(c)} = (\lfloor n^c \rfloor)_{n=1}^{\infty} \quad (c > 1, c \notin \mathbb{N}),$$

where $\lfloor t \rfloor$ denotes the integer part of any $t \in \mathbb{R}$. Such sequences have been named in honor of Piatetski-Shapiro [1] who, in 1953, proved that $\mathcal{N}^{(c)}$ contains infinitely many primes provided that $c \in (1, \frac{12}{11})$. The range for c in which it is known that $\mathcal{N}^{(c)}$ contains infinitely many primes has been enlarged many times over the years and is currently known to hold for all $c \in (1, \frac{243}{205})$, thanks to Rivat and Wu [2].

For fixed real numbers α and β , the associated non-homogeneous Beatty sequence is the sequence of integers defined by

$$\mathcal{B}_{\alpha, \beta} = (\lfloor \alpha n + \beta \rfloor)_{n=1}^{\infty},$$

which are also called generalized arithmetic progressions. If α is irrational, it follows from a classical exponential sum estimate of Vinogradov [3] that $\mathcal{B}_{\alpha, \beta}$ contains infinitely many prime numbers.

Carmichael numbers are the composite natural numbers N with the property that $N|(a^N - a)$ for every integer a . In 1994, Alford et al. [4] proved that there exist infinitely many Carmichael numbers. Baker et al. [5] showed that for every $c \in (1, \frac{147}{145})$, there are infinitely many Carmichael numbers composed entirely of Piatetski-Shapiro primes. Banks and Yeager [6] showed that there are infinitely many Carmichael numbers composed solely of primes from the Beatty sequence $\mathcal{B}_{\alpha, \beta}$ for $\alpha, \beta \in \mathbb{R}$ with $\alpha > 1$ and α is irrational and of finite type.

* Corresponding author: Victor Zhenyu Guo, School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China, e-mail: guozyv@xjtu.edu.cn

Jinyun Qi: School of Information Engineering, Xi'an University, Xi'an 710065, Shaanxi, P. R. China, e-mail: qijinyun@hotmail.com

Since both Piatetski-Shapiro sequences and Beatty sequences produce infinitely many primes, Guo [7] investigated the intersection between a Piatetski-Shapiro sequence and a Beatty sequence by defining

$$\pi_{a,\beta}^{(c)}(x) := \#\{p \leq x : p \in \mathcal{N}^{(c)} \cap \mathcal{B}_{a,\beta}\}$$

and derived that

$$\pi_{a,\beta}^{(c)}(x) = \frac{x^{\frac{1}{c}}}{a \log x} + O\left(\frac{x^{\frac{1}{c}}}{\log^2 x}\right),$$

for $c \in (1, \frac{14}{13})$. Later, Guo et al. [8] extend the range of c in this theorem to $(1, \frac{12}{11})$.

Guo and Qi [9] considered the following generalized Piatetski-Shapiro sequences:

$$\mathcal{N}_{a,\beta}^{(c)} := (\lfloor \ln^c n + \beta \rfloor)_{n=1}^{\infty}$$

and proved that there are infinitely many Carmichael numbers composed solely of primes from the numbers of the set $\mathcal{N}_{a,\beta}^{(c)}$ for $c \in (1, \frac{64}{63})$.

In this article, we are interested in the relation between Carmichael numbers and the Piatetski-Shapiro primes in a Beatty sequence. For $(a, d) = 1$, let

$$\pi_{a,\beta}^{(c)}(x; d, a) := \#\{p \leq x : p \in \mathcal{N}^{(c)} \cap \mathcal{B}_{a,\beta} \quad \text{and} \quad p \equiv a \pmod{d}\}.$$

We prove the following theorem:

Theorem 1.1. *Let $a \geq 1$ and β be real numbers. Let a be irrational and of finite type. Let $c \in \left(1, \frac{12}{11}\right)$ and $\gamma = c^{-1}$.*

$$\pi_{a,\beta}^{(c)}(x; d, a) = a^{-1} \gamma x^{\gamma-1} \pi(x; d, a) + a^{-1} \gamma (1 - \gamma) \int_2^x u^{\gamma-2} \pi(u; d, a) du + O\left(x^{\frac{7}{13}\gamma + \frac{11}{26} + \varepsilon}\right),$$

where $\pi(x; d, a) := \#\{p \leq x : p \equiv a \pmod{d}\}$.

Theorem 1.2. *Let $c \in (1, \frac{19137}{18746})$, a be irrational and of finite type. There are infinitely many Carmichael numbers composed of entirely the primes from the set $\mathcal{N}^{(c)} \cap \mathcal{B}_{a,\beta}$.*

2 Preliminaries

2.1 Notation

We denote by $\lfloor t \rfloor$ and $\{t\}$ the integral part and the fractional part of t , respectively. As is customary, we put

$$\mathbf{e}(t) := e^{2\pi i t} \quad \text{and} \quad \{t\} := t - \lfloor t \rfloor.$$

Throughout the article, we make considerable use of the sawtooth function defined by

$$\psi(t) := t - \lfloor t \rfloor - \frac{1}{2} = \{t\} - \frac{1}{2}.$$

The notation $\|t\|$ is used to denote the distance from the real number t to the nearest integer; that is,

$$\|t\| = \min_{n \in \mathbb{Z}} |t - n|.$$

Let \mathbb{P} denote the set of primes in \mathbb{N} . The letter p always denotes a prime. For a Beatty sequence $(\lfloor \ln^c n + \beta \rfloor)_{n=1}^{\infty}$, we denote $\omega = a^{-1}$. We represent $\gamma = c^{-1}$ for the Piatetski-Shapiro sequence $(\lfloor n^c \rfloor)_{n=1}^{\infty}$. We use notation of the form $m \sim M$ as an abbreviation for $M < m \leq 2M$.

Throughout the article, ε always denotes an arbitrarily small positive constant, which may not be the same at different occurrences; the implied constants in symbols O , \ll and \gg may depend (where obvious) on the parameters a, β, c, ε but are absolute otherwise. For given functions F and G , the notations $F \ll G$, $G \gg F$ and $F = O(G)$ are all equivalent to the statement that the inequality $|F| \leq C|G|$ holds with some constant $C > 0$.

2.2 Type of an irrational number

For any irrational number α , we define its type $\tau = \tau(\alpha)$ by the following definition:

$$\tau = \sup \left\{ t \in \mathbb{R} : \liminf_{n \rightarrow \infty} n^t \|an\| = 0 \right\}.$$

Using Dirichlet's approximation theorem, one can see that $\tau \geq 1$ for every irrational number α . Thanks to the work of Khintchine [10] and Roth [11,12], it is known that $\tau = 1$ for almost all real numbers, in the sense of the Lebesgue measure, and for all irrational algebraic numbers, respectively. Moreover, if α is an irrational number of type $\tau < \infty$, then so are α^{-1} and $n\alpha^{-1}$ for all integer $n \geq 1$ [13].

2.3 Technical lemmas

We need the following well-known approximation of Vaaler [14].

Lemma 2.1. *For any $H \geq 1$, there exist numbers a_h, b_h such that*

$$\left| \psi(t) - \sum_{0 < |h| \leq H} a_h \mathbf{e}(th) \right| \leq \sum_{|h| \leq H} b_h \mathbf{e}(th), \quad a_h \ll \frac{1}{|h|}, b_h \ll \frac{1}{H}.$$

Lemma 2.2. *For an arithmetic function g and $N' \sim N$, we have*

$$\sum_{N < p \leq N'} g(p) \ll \frac{1}{\log N} \max_{N < N_1 \leq 2N} \left| \sum_{N < n \leq N_1} \Lambda(n)g(n) \right| + N^{1/2}.$$

Proof. See the argument on page 48 of [15]. □

Lemma 2.3. *Suppose that*

$$\alpha = \frac{a}{q} + \frac{\theta}{q^2},$$

with $(a, q) = 1$, $q \geq 1$, $|\theta| \leq 1$. Then there holds

$$\sum_{\substack{m \leq N \\ m \equiv a \pmod{d}}} \Lambda(m) \mathbf{e}(ma) \ll \left(Nqd^{-\frac{1}{2}} + N^{4/5} + N^{1/2}q^{1/2} \right) (\log N)^3.$$

Proof. It is a simplified and weakened version of a theorem of Balog and Perelli [16]. □

Lemma 2.4. *Suppose that α is a fixed irrational number of finite type $\tau < \infty$ and $h \geq 1$, m are integers. Then we have*

$$\sum_{\substack{m \leq M \\ m \equiv a \pmod{d}}} \Lambda(m) \mathbf{e}(ahm) \ll h^{1/2} M^{1-1/(2\tau)+\varepsilon} + M^{1-\varepsilon}.$$

Proof. For any sufficiently small $\varepsilon > 0$, we set $\varrho = \tau + \varepsilon$. Since a is of type τ , there exists some constant $c > 0$ such that

$$\|an\| > cn^{-\varrho}, \quad n \geq 1. \quad (2.1)$$

For given h with $0 < h \leq H$, let b/d be the convergent in the continued fraction expansion of ah , which has the largest denominator d not exceeding $M^{1-\eta}$ for a sufficiently small positive number η . Then we derive that

$$\left| ah - \frac{b}{d} \right| \leq \frac{1}{dM^{1-\eta}} \leq \frac{1}{d^2}, \quad (2.2)$$

which combined with (2.1) yields

$$M^{-1+\eta} \geq |ahd - b| \geq \|ahd\| > c(hd)^{-\varrho}.$$

Taking $C_0 = c^{1/\varrho}$, we obtain

$$d > C_0 h^{-1} M^{1/\varrho - \eta/\varrho}. \quad (2.3)$$

Combining (2.2) and (2.3), applying Lemma 2.3 and the fact that $d \leq M^{1-\eta}$, we deduce that

$$\begin{aligned} \sum_{\substack{m \leq M \\ m \equiv a \pmod{d}}} \Lambda(m) \mathbf{e}(ahm) &\ll (Md^{-1/2} + M^{4/5} + M^{1/2}d^{1/2})(\log M)^3 \\ &\ll (h^{1/2}M^{1-1/(2\varrho)+\eta/(2\varrho)} + M^{4/5} + M^{1-\eta/2})(\log M)^3 \\ &\ll h^{1/2}M^{1-1/(2\tau)+\varepsilon} + M^{1-\varepsilon}. \end{aligned}$$

This completes the proof of Lemma 2.4. \square

The following lemma gives a characterization of the numbers in the Beatty sequence $\mathcal{B}_{\alpha,\beta}$.

Lemma 2.5. *A natural number m has the form $\lfloor an + \beta \rfloor$ if and only if $X_{\alpha,\beta}(m) = 1$, where $X_{\alpha,\beta}(m) := \lfloor -\alpha^{-1}(m - \beta) \rfloor - \lfloor -\alpha^{-1}(m + 1 - \beta) \rfloor$.*

Proof. Note that an integer m has the form $m = \lfloor an + \beta \rfloor$ for some integer n if and only if

$$\frac{m - \beta}{\alpha} \leq n < \frac{m - \beta + 1}{\alpha}.$$

Finally, we use the following lemma, which provides a characterization of the numbers that occur in the Piatetski-Shapiro sequence $\mathcal{N}^{(c)}$.

Lemma 2.6. *A natural number m has the form $\lfloor n^c \rfloor$ if and only if $X^{(c)}(m) = 1$, where $X^{(c)}(m) := \lfloor -m^c \rfloor - \lfloor -(m + 1)^c \rfloor$. Moreover,*

$$X^{(c)}(m) = \gamma m^{c-1} + \psi(-(m + 1)^c) - \psi(-m^c) + O(m^{c-2}).$$

Proof. The proof of Lemma 2.6 is similar to that of Lemma 2.5, so we omit the details herein. \square

Lemma 2.7. *For $1 < c < \frac{2817}{2426}$, there holds*

$$\pi^{(c)}(x) = \sum_{p \leq x} X^{(c)}(p) = \frac{x^c}{\log x} + O\left(\frac{x^c}{\log^2 x}\right). \quad (2.4)$$

Proof. See Theorem 1 of Rivat and Sargos [17]. \square

Lemma 2.8. Suppose that

$$L(H) = \sum_{i=1}^m A_i H^{a_i} + \sum_{j=1}^n B_j H^{-b_j},$$

where A_i, B_j, a_i , and b_j are positive. Assume further that $H_1 \leq H_2$. Then there exists some H with $H_1 \leq H \leq H_2$ and

$$L(H) \ll \sum_{i=1}^m A_i H_1^{a_i} + \sum_{j=1}^n B_j H_2^{-b_j} + \sum_{i=1}^m \sum_{j=1}^n (A_i^{b_j} B_j^{a_i})^{1/(a_i+b_j)}.$$

The implied constant depends only on m and n .

Proof. See Lemma 3 of Srinivasan [18]. \square

Lemma 2.9. For real numbers m_1, m_2 , and $N < t \leq N_1$, we have

$$\left| \sum_{N < n \leq N_1} \Lambda(n) \mathbf{e}(hn^\gamma + m_1 n + m_2) \right| \ll N^\varepsilon \left(|h|^{\frac{1}{6}} N^{\frac{\gamma}{6} + \frac{3}{4}} + |h|^{-\frac{1}{3}} N^{1 - \frac{\gamma}{3}} + |h|^{\frac{1}{4}} N^{\frac{\gamma}{4} + \frac{5}{8}} + |h|^{-\frac{1}{4}} N^{1 - \frac{\gamma}{4}} + N^{\frac{22}{25}} \right).$$

Proof. See [8, Lemma 2.14]. \square

3 Proof of Theorem 1.1

For a Beatty sequence

$$\mathcal{B}_{a,\beta} := \lfloor an + \beta \rfloor,$$

recall that $\omega = \alpha^{-1}$. By the definition of $\pi_{a,\beta}^{(c)}(x)$, we have that

$$\pi_{a,\beta}^{(c)}(x; d, a) = \sum_{\substack{p \leq x \\ p \equiv a \pmod{d}}} \chi_{a,\beta}(p) \chi^{(c)}(p) = S_1 + S_2 + S_3,$$

where

$$\begin{aligned} S_1 &= \sum_{\substack{p \leq x \\ p \equiv a \pmod{d}}} \omega \chi^{(c)}(p); \\ S_2 &= \sum_{\substack{p \leq x \\ p \equiv a \pmod{d}}} (yp^{\gamma-1} + O(p^{\gamma-2}))(\psi(-\omega(p+1-\beta)) - \psi(-\omega(p-\beta))), \\ S_3 &= \sum_{\substack{p \leq x \\ p \equiv a \pmod{d}}} (\psi(-(p+1)^\gamma) - \psi(-p^\gamma))(\psi(-\omega(p+1-\beta)) - \psi(-\omega(p-\beta))). \end{aligned}$$

A partial summation gives

$$S_1 = \omega \gamma x^{\gamma-1} \pi(x; d, a) + \omega \gamma (1 - \gamma) \int_2^x u^{\gamma-2} \pi(u; d, a) du + O(x^{\gamma-1} + 1).$$

By applying Lemma 2.1, we take $H_1 = x^\varepsilon$ and let H_2 be chosen later. With a sufficiently small positive number ε , we have that

$$\begin{aligned} &\psi(-\omega(p+1-\beta)) - \psi(-\omega(p-\beta)) \\ &= \sum_{0 < |h_1| \leq H_1} a_{h_1} (\mathbf{e}(\omega h_1(p+1-\beta)) - \mathbf{e}(\omega h_1(p-\beta))) + O \left(\sum_{|h_1| \leq H_1} b_{h_1} (\mathbf{e}(\omega h_1(p+1-\beta)) + \mathbf{e}(\omega h_1(p-\beta))) \right) \end{aligned} \quad (3.1)$$

and

$$\begin{aligned} & \psi(-(p+1)^\gamma) - \psi(-p^\gamma) \\ &= \sum_{0 < |h_2| \leq H_2} a_{h_2} (\mathbf{e}(h_2(p+1)^\gamma) - \mathbf{e}(h_2 p^\gamma)) + O\left(\sum_{|h_2| \leq H_2} b_{h_2} (\mathbf{e}(h_2(p+1)^\gamma) + \mathbf{e}(h_2 p^\gamma))\right). \end{aligned} \quad (3.2)$$

We mention that for $j = 1, 2$ there holds

$$a_{h_j} \ll |h_j|^{-1} \quad \text{and} \quad b_{h_j} \ll H_j^{-1}.$$

3.1 Upper bounds of S_2

Let $N \leq x$ and $N_1 \leq 2N$. We write $S_2 = S_{21} + O(S_{22})$, where

$$S_{21} = \sum_{\substack{p \leq N \\ p \equiv a \pmod{d}}} \gamma p^{\gamma-1} (\psi(-\omega(p+1-\beta)) - \psi(-\omega(p-\beta)))$$

and

$$S_{22} = \sum_{\substack{p \leq N \\ p \equiv a \pmod{d}}} \gamma p^{\gamma-2} (\psi(-\omega(p+1-\beta)) - \psi(-\omega(p-\beta))).$$

By (3.1), Lemma 2.2 and a splitting argument, we obtain that $S_{21} = S_{23} + O(S_{24})$, where

$$S_{23} = \sum_{\substack{N < n \leq N_1 \\ n \equiv a \pmod{d}}} \sum_{0 < |h_1| \leq H_1} a_{h_1} n^{\gamma-1} \Lambda(n) (\mathbf{e}(\omega h_1(n+1-\beta)) - \mathbf{e}(\omega h_1(n-\beta))) \quad (3.3)$$

and

$$S_{24} = \sum_{\substack{N < n \leq N_1 \\ n \equiv a \pmod{d}}} \sum_{0 < |h_1| \leq H_1} b_{h_1} n^{\gamma-1} \Lambda(n) (\mathbf{e}(\omega h_1(n+1-\beta)) - \mathbf{e}(\omega h_1(n-\beta))). \quad (3.4)$$

First, we estimate S_{23} . Let

$$\theta_{h_1} = \mathbf{e}(\omega h_1) - 1. \quad (3.5)$$

It follows from partial summation and the trivial estimate $\theta_{h_1} \ll 1$ that

$$\begin{aligned} S_{23} &\ll \sum_{0 < h_1 \leq H_1} a_{h_1} \sum_{\substack{N < n \leq N_1 \\ n \equiv a \pmod{d}}} n^{\gamma-1} \Lambda(n) \theta_{h_1} \mathbf{e}(\omega h_1(n-\beta)) \\ &\ll N^{\gamma-1} \sum_{0 < h_1 \leq H_1} h_1^{-1} \max_{N_1 \leq 2N} \left| \sum_{\substack{N < n \leq N_1 \\ n \equiv a \pmod{d}}} \Lambda(n) \mathbf{e}(\omega h_1 n) \right|. \end{aligned} \quad (3.6)$$

Hence, we need to bound

$$T := \sum_{\substack{N < n \leq N_1 \\ n \equiv a \pmod{d}}} \Lambda(n) \mathbf{e}(\omega h_1 n). \quad (3.7)$$

By Lemma 2.4, we obtain

$$T \ll h_1^{\frac{1}{2}} N^{1-\frac{1}{2\tau}+\varepsilon} + N^{1-\varepsilon}, \quad (3.8)$$

for ε being a small positive number.

Now we work on the bound of S_{24} . The contribution of $h_1 = 0$ is

$$2b_0 \sum_{\substack{n \leq N \\ n \equiv a \pmod{d}}} \Lambda(n) n^{\gamma-1} \ll \frac{b_0 N^\gamma}{\phi(d)} \ll H_1^{-1} N^\gamma, \quad (3.9)$$

where the function $\phi(d)$ is the Euler function and $b_0 \ll H_1^{-1}$. The contribution from $h_1 \neq 0$ is

$$\ll N^{\gamma-1} H_1^{-1} \max_{N_1 \leq 2N} \sum_{0 < h_1 \leq H_1} \left| \sum_{\substack{N < n \leq N_1 \\ n \equiv a \pmod{d}}} \Lambda(n) \mathbf{e}(\omega h_1 n) \right|. \quad (3.10)$$

The right-hand side of (3.11) can be estimated by the same method of (3.7). Therefore, by inserting (3.8) into (3.6) and (3.11) and combining with (3.9), it follows that

$$S_{21} \ll S_{23} + S_{24} \ll H_1^{\frac{1}{2}} N^{\gamma - \frac{1}{2\tau} + \varepsilon} + N^{\gamma + \varepsilon} + H_1^{-1} N^{\gamma} \ll N^{\gamma + \varepsilon},$$

where we use $H_1 = N^{\varepsilon}$. Moreover, the bound of S_{22} can be estimated similarly. Hence, we obtain

$$S_2 \ll S_{21} + S_{22} \ll N^{\gamma + \varepsilon}. \quad (3.11)$$

3.2 Upper bounds of S_3

We only give the details of the estimation of S_3 . By (3.1) and (3.2), it is easy to see that

$$S_3 = S_{31} + O(S_{32} + S_{33} + S_{34}), \quad (3.12)$$

where

$$\begin{aligned} S_{31} &= \sum_{\substack{p \leq x \\ p \equiv a \pmod{d}}} \sum_{0 < |h_2| \leq H_2} a_{h_2} (\mathbf{e}(h_2(p+1)^\gamma) - \mathbf{e}(h_2 p^\gamma)) \\ &\quad \times \sum_{0 < |h_1| \leq H_1} a_{h_1} (\mathbf{e}(\omega h_1(p+1-\beta)) - \mathbf{e}(\omega h_1(p-\beta))), \\ S_{32} &= \sum_{\substack{p \leq x \\ p \equiv a \pmod{d}}} \sum_{0 < |h_2| \leq H_2} a_{h_2} (\mathbf{e}(h_2(p+1)^\gamma) - \mathbf{e}(h_2 p^\gamma)) \\ &\quad \times \sum_{|h_1| \leq H_1} b_{h_1} (\mathbf{e}(\omega h_1(p+1-\beta)) + \mathbf{e}(\omega h_1(p-\beta))), \\ S_{33} &= \sum_{\substack{p \leq x \\ p \equiv a \pmod{d}}} \sum_{|h_2| \leq H_2} b_{h_2} (\mathbf{e}(h_2(p+1)^\gamma) + \mathbf{e}(h_2 p^\gamma)) \\ &\quad \times \sum_{0 < |h_1| \leq H_1} a_{h_1} (\mathbf{e}(\omega h_1(p+1-\beta)) - \mathbf{e}(\omega h_1(p-\beta))), \\ S_{34} &= \sum_{\substack{p \leq x \\ p \equiv a \pmod{d}}} \sum_{|h_2| \leq H_2} b_{h_2} (\mathbf{e}(h_2(p+1)^\gamma) + \mathbf{e}(h_2 p^\gamma)) \\ &\quad \times \sum_{|h_1| \leq H_1} b_{h_1} (\mathbf{e}(\omega h_1(p+1-\beta)) + \mathbf{e}(\omega h_1(p-\beta))). \end{aligned}$$

3.2.1 Estimation of S_{31}

By Lemma 2.2 and a splitting argument, we estimate S_{31} by considering

$$\begin{aligned} &\sum_{\substack{N < n \leq N_1 \\ n \equiv a \pmod{d}}} \Lambda(n) \sum_{0 < |h_2| \leq H_2} a_{h_2} (\mathbf{e}(h_2(n+1)^\gamma) - \mathbf{e}(h_2 n^\gamma)) \\ &\quad \times \sum_{0 < |h_1| \leq H_1} a_{h_1} (\mathbf{e}(\omega h_1(n+1-\beta)) - \mathbf{e}(\omega h_1(n-\beta))). \end{aligned} \quad (3.13)$$

Define

$$\phi_{h_2}(t) := \mathbf{e}(h_2((t+1)^\gamma - t^\gamma)) - 1. \quad (3.14)$$

Then we have

$$\phi_{h_2}(t) \ll |h_2|t^{\gamma-1} \quad \text{and} \quad \frac{\partial \phi_{h_2}(t)}{\partial t} \ll |h_2|t^{\gamma-2}.$$

It follows from the aforementioned estimate, (3.5) and partial summation that the formula (3.13) is

$$\begin{aligned} &\ll \sum_{0 < |h_2| \leq H_2} \frac{1}{|h_2|} \left| \sum_{\substack{N < n \leq N_1 \\ n \equiv a \pmod{d}}} \Lambda(n) \phi_{h_2}(n) \mathbf{e}(h_2 n^\gamma) \sum_{0 < |h_1| \leq H_1} a_{h_1} \theta_{h_1} \mathbf{e}(\omega h_1(n - \beta)) \right| \\ &\ll \sum_{0 < |h_2| \leq H_2} \frac{1}{|h_2|} \left| \int_N^{N_1} \phi_{h_2}(t) \, dt \sum_{\substack{N < n \leq t \\ n \equiv a \pmod{d}}} \Lambda(n) \mathbf{e}(h_2 n^\gamma) \sum_{0 < |h_1| \leq H_1} a_{h_1} \theta_{h_1} \mathbf{e}(\omega h_1(n - \beta)) \right| \\ &\ll \sum_{0 < |h_2| \leq H_2} \frac{1}{|h_2|} |\phi_{h_2}(N)| \left| \sum_{\substack{N < n \leq N_1 \\ n \equiv a \pmod{d}}} \Lambda(n) \mathbf{e}(h_2 n^\gamma) \sum_{0 < |h_1| \leq H_1} a_{h_1} \theta_{h_1} \mathbf{e}(\omega h_1(n - \beta)) \right| \\ &\quad + \int_N^{N_1} \sum_{0 < |h_2| \leq H_2} \frac{1}{|h_2|} \left| \frac{\partial \phi_{h_2}(t)}{\partial t} \right| \left| \sum_{n \equiv a \pmod{d}} \Lambda(n) \mathbf{e}(h_2 n^\gamma) \sum_{0 < |h_1| \leq H_1} a_{h_1} \theta_{h_1} \mathbf{e}(\omega h_1(n - \beta)) \right| \, dt \quad (3.15) \\ &\ll N^{\gamma-1} \max_{N_1 \leq 2N} \sum_{0 < |h_2| \leq H_2} \left| \sum_{\substack{N < n \leq N_1 \\ n \equiv a \pmod{d}}} \Lambda(n) \mathbf{e}(h_2 n^\gamma) \sum_{0 < |h_1| \leq H_1} a_{h_1} \theta_{h_1} \mathbf{e}(\omega h_1(n - \beta)) \right| \\ &= N^{\gamma-1} \max_{N_1 \leq 2N} \sum_{0 < |h_2| \leq H_2} \left| \sum_{0 < |h_1| \leq H_1} a_{h_1} \theta_{h_1} \sum_{\substack{N < n \leq N_1 \\ n \equiv a \pmod{d}}} \Lambda(n) \mathbf{e}(h_2 n^\gamma + \omega h_1 n - \omega h_1 \beta) \right| \\ &\ll N^{\gamma-1} \sum_{0 < |h_1| \leq H_1} \frac{1}{|h_1|} \max_{N_1 \leq 2N} \sum_{0 < |h_2| \leq H_2} \left| \sum_{\substack{N < n \leq N_1 \\ n \equiv a \pmod{d}}} \Lambda(n) \mathbf{e}(h_2 n^\gamma + \omega h_1 n - \omega h_1 \beta) \right|. \end{aligned}$$

Note that

$$\begin{aligned} &\sum_{\substack{N < n \leq N_1 \\ n \equiv a \pmod{d}}} \Lambda(n) \mathbf{e}(h_2 n^\gamma + \omega h_1 n - \omega h_1 \beta) \\ &= \frac{1}{d} \sum_{m=1}^d \sum_{N < n \leq N_1} \Lambda(n) \mathbf{e}\left(h_2 n^\gamma + \omega h_1 n - \omega h_1 \beta + \frac{(n-a)m}{d}\right). \end{aligned}$$

Hence, we need to bound

$$T_1 := \sum_{N < n \leq N_1} \Lambda(n) \mathbf{e}\left(h_2 n^\gamma + \left(\omega h_1 + \frac{m}{d}\right) n + \frac{am}{d} - \omega h_1 \beta\right)$$

By Lemma 2.9, we have

$$T_1 N^{-\varepsilon} \ll |h_2|^{\frac{1}{6}} N^{\frac{\gamma}{6} + \frac{3}{4}} + |h_2|^{-\frac{1}{3}} N^{1 - \frac{\gamma}{3}} + |h_2|^{\frac{1}{4}} N^{\frac{\gamma}{4} + \frac{5}{8}} + |h_2|^{-\frac{1}{4}} N^{1 - \frac{\gamma}{4}} + N^{\frac{22}{25}}. \quad (3.16)$$

Recalling $H_1 = N^\varepsilon$ and inserting (3.16) to (3.15), we have

$$S_{31} N^{-\varepsilon} \ll H_2^{\frac{7}{6}} N^{\frac{7\gamma}{6} - \frac{1}{4}} + H_2^{\frac{2}{3}} N^{\frac{2\gamma}{3}} + H_2^{\frac{5}{4}} N^{\frac{5\gamma}{4} - \frac{3}{8}} + H_2^{\frac{3}{4}} N^{\frac{3\gamma}{4}} + H N^{\gamma - \frac{3}{25}}. \quad (3.17)$$

3.2.2 Estimations of S_{32} and S_{33}

We only give the proof of S_{32} since the bound of S_{33} can be obtained similarly. Let $N \leq x$ and $N_1 \leq 2N$. By Lemma 2.2 and a splitting argument, we can see

$$\begin{aligned} S_{32} &= \sum_{\substack{N < n \leq N_1 \\ n \equiv a \pmod{d}}} \Lambda(n) \sum_{0 < |h_2| \leq H_2} a_{h_2}(\mathbf{e}(h_2(n+1)^\gamma) - \mathbf{e}(h_2 n^\gamma)) \\ &\quad \times \sum_{0 < |h_1| \leq H_1} b_{h_1}(\mathbf{e}(\omega h_1(n+1-\beta)) - \mathbf{e}(\omega h_1(n-\beta))). \end{aligned}$$

By (3.14) and Lemma 2.9, the contribution of S_{32} from $h_1 = 0$ is

$$\begin{aligned} &\ll H_1^{-1} N^{\gamma-1} \sum_{0 < |h_2| \leq H_2} \max_{N_1 \leq 2N} \left| \sum_{\substack{N < n \leq N_1 \\ n \equiv a \pmod{d}}} \Lambda(n) (\mathbf{e}(\theta h_2 n^\gamma)) \right| \\ &\ll H_1^{-1} N^{\gamma-1} \sum_{0 < |h_2| \leq H_2} \max_{N_1 \leq 2N} \left| \frac{1}{d} \sum_{m=1}^d \sum_{N < n \leq N_1} \Lambda(n) \mathbf{e}\left(h_2 n^\gamma + \frac{m(n-a)}{d}\right) \right| \\ &\ll N^\varepsilon \left(H_2^{\frac{7}{6}} N^{\frac{7\gamma}{6}-\frac{1}{4}} + H_2^{\frac{2}{3}} N^{\frac{2\gamma}{3}} + H_2^{\frac{5}{4}} N^{\frac{5\gamma}{4}-\frac{3}{8}} + H_2^{\frac{3}{4}} N^{\frac{3\gamma}{4}} + H N^{\gamma-\frac{3}{25}} \right). \end{aligned} \tag{3.18}$$

The contribution of S_{32} from $h_1 \neq 0$ is

$$\begin{aligned} &\sum_{p \leq x} \sum_{\substack{0 < |h_2| \leq H_2 \\ p \equiv a \pmod{d}}} a_{h_2}(\mathbf{e}(h_2(p+1)^\gamma) - \mathbf{e}(h_2 p^\gamma)) \\ &\quad \times \sum_{0 < |h_1| \leq H_1} b_{h_1}(\mathbf{e}(\omega h_1(p+1-\beta)) + \mathbf{e}(\omega h_1(p-\beta))), \end{aligned}$$

which can be get the upper bound (3.18) by the same method of S_{31} . So we have

$$(S_{32} + S_{33})N^{-\varepsilon} \ll H_2^{\frac{7}{6}} N^{\frac{7\gamma}{6}-\frac{1}{4}} + H_2^{\frac{2}{3}} N^{\frac{2\gamma}{3}} + H_2^{\frac{5}{4}} N^{\frac{5\gamma}{4}-\frac{3}{8}} + H_2^{\frac{3}{4}} N^{\frac{3\gamma}{4}} + H N^{\gamma-\frac{3}{25}}. \tag{3.19}$$

3.2.3 Estimation of S_{34} and conclusions

The contribution of S_{34} from $h_1 = h_2 = 0$ is

$$\sum_{\substack{p \leq N \\ p \equiv a \pmod{d}}} H_2^{-1} H_1^{-1} \ll H_2^{-1} N^{1+\varepsilon}. \tag{3.20}$$

By (3.14) and Lemma 2.9, the contribution of S_{34} from $h_1 = 0$ and $h_2 \neq 0$ is

$$\begin{aligned} &2b_0 \sum_{p \leq x} \sum_{\substack{0 < |h_2| \leq H_2 \\ p \equiv a \pmod{d}}} b_{h_2}(\mathbf{e}(h_2(p+1)^\gamma) + \mathbf{e}(h_2 p^\gamma)) \\ &\ll H_1^{-1} H_2^{-1} \sum_{0 < |h_2| \leq H_2} \max_{N_1 \leq 2N} \left| \sum_{\substack{N < n \leq N_1 \\ n \equiv a \pmod{d}}} \Lambda(n) (\mathbf{e}(h_2 n^\gamma)) \right| \\ &\ll N^\varepsilon \left(H_2^{\frac{1}{6}} N^{\frac{\gamma}{6}+\frac{3}{4}} + H_2^{-\frac{1}{3}} N^{1-\frac{\gamma}{3}} + H_2^{\frac{1}{4}} N^{\frac{\gamma}{4}+\frac{5}{8}} + H_2^{-\frac{1}{4}} N^{1-\frac{\gamma}{4}} + N^{\frac{22}{25}} \right), \end{aligned} \tag{3.21}$$

where $H_1 = N^\varepsilon$ and $b_{h_1} \ll \frac{1}{H_1}$. Similarly, by (3.5) and Lemma 2.4, the contribution of S_{34} from $h_1 \neq 0$ and $h_2 = 0$ is

$$\begin{aligned} 2b_0 \sum_{\substack{p \leq x \\ p \equiv a \pmod{d}}} \sum_{0 < |h_1| \leq H_1} b_{h_1}(\mathbf{e}(\omega h_1(p + 1 - \beta)) + \mathbf{e}(\omega h_1(p - \beta))) \\ \ll H_1^{-1} H_2^{-1} \sum_{0 < |h_1| \leq H_1} \max_{N_1 \leq 2N} \left| \sum_{\substack{N < n \leq N_1 \\ n \equiv a \pmod{d}}} \Lambda(n)(\mathbf{e}(\omega h_1 n)) \right| \\ \ll H_2^{-1} (H_1^{\frac{1}{2}} N^{1 - \frac{1}{2\tau} + \varepsilon} + N^{1 - \varepsilon}) \ll H_2^{-1} N^{1 + \varepsilon}. \end{aligned} \quad (3.22)$$

The contribution of S_{34} from $h_1 \neq 0$ and $h_2 \neq 0$ is

$$\begin{aligned} \sum_{\substack{N < n \leq N_1 \\ n \equiv a \pmod{d}}} \Lambda(n) \sum_{0 < |h_2| \leq H_2} b_{h_2}(\mathbf{e}(h_2(n + 1)^\gamma) + \mathbf{e}(h_2 n^\gamma)) \\ \times \sum_{0 < |h_1| \leq H_1} b_{h_1}(\mathbf{e}(\omega h_1(n + 1 - \beta)) + \mathbf{e}(\omega h_1(n - \beta))), \end{aligned}$$

which can be estimated similarly. Now the estimation

$$S_{34} N^{-\varepsilon} \ll H_2^{\frac{1}{6}} N^{\frac{\gamma}{6} + \frac{3}{4}} + H_2^{-\frac{1}{3}} N^{1 - \frac{\gamma}{3}} + H_2^{\frac{1}{4}} N^{\frac{\gamma}{4} + \frac{5}{8}} + H_2^{-\frac{1}{4}} N^{1 - \frac{\gamma}{4}} + N^{\frac{22}{25}} + H_2^{-1} N. \quad (3.23)$$

follows from (3.20), (3.21), and (3.22). In the end, by combining (3.17), (3.19), (3.23), (3.12), and (3.11), one has

$$\begin{aligned} (S_2 + S_3) N^{-\varepsilon} \ll H_2^{\frac{1}{6}} N^{\frac{\gamma}{6} + \frac{3}{4}} + H_2^{-\frac{1}{3}} N^{1 - \frac{\gamma}{3}} + H_2^{\frac{1}{4}} N^{\frac{\gamma}{4} + \frac{5}{8}} + H_2^{-\frac{1}{4}} N^{1 - \frac{\gamma}{4}} + N^{\frac{22}{25}} + H_2^{\frac{7}{6}} N^{\frac{7\gamma}{6} - \frac{1}{4}} \\ + H_2^{\frac{2}{3}} N^{\frac{2\gamma}{3}} + H_2^{\frac{5}{4}} N^{\frac{5\gamma}{4} - \frac{3}{8}} + H_2^{\frac{3}{4}} N^{\frac{3\gamma}{4}} + H N^{\gamma - \frac{3}{25}} + H_2^{-1} N. \end{aligned}$$

By using Lemma 2.8, we obtain

$$\begin{aligned} (S_2 + S_3) N^{-\varepsilon} \ll N^{\frac{3\gamma}{4}} + N^{\gamma - \frac{3}{25}} + N^{\frac{5\gamma}{4} - \frac{3}{8}} + N^{\frac{7\gamma}{6} - \frac{1}{4}} + N^{\frac{\gamma}{6} + \frac{3}{4}} + N^{\frac{\gamma}{4} + \frac{5}{8}} + N^{\frac{22}{25}} \\ + N^{\frac{7\gamma}{13} + \frac{11}{26}} + N^{\frac{5\gamma}{9} + \frac{7}{18}} + N^{\frac{3\gamma}{7} + \frac{3}{7}} + N^{\frac{\gamma}{2} + \frac{11}{25}} + N^{\frac{\gamma}{7} + \frac{11}{14}} + N^{\frac{\gamma}{5} + \frac{7}{10}}. \end{aligned}$$

Note that $S_1 \ll x^\gamma$, so we need that $S_2 + S_3 \ll x^{\gamma - \varepsilon}$. Hence,

$$\gamma > \max\left(\frac{9}{10}, \frac{5}{6}, \frac{22}{25}, \frac{11}{12}, \frac{7}{8}, \frac{3}{4}\right) = \frac{11}{12}$$

and

$$S_2 + S_3 \ll x^{\frac{7\gamma}{13} + \frac{11}{26} + \varepsilon}.$$

4 Sketch of proof of Theorem 1.2

We sketch the proof of Theorem 1.2 because the idea of the proof is close to the proof in [9, Section 4]. We only give the changes that are necessary for our Theorem 1.2.

We set

$$\vartheta(x; d, a) := \sum_{\substack{p \leq x \\ p \equiv a \pmod{d}}} \log p$$

and consider a weighted counting function

$$\vartheta_{a,\beta}^{(c)}(x; d, a) := \sum_{\substack{p \leq x \\ p \in \pi_{a,\beta}^{(c)}(x) \\ p \equiv a \pmod{d}}} \log p = \sum_{\substack{p \leq x \\ p \equiv a \pmod{d}}} \chi_{a,\beta}(p) \chi^{(c)}(p) \log p.$$

By a similar argument as in the proof of Theorem 1.1, we conclude the following.

Theorem 4.1. *Let $\alpha \geq 1$ and β be real numbers. Let $c \in \left(1, \frac{12}{11}\right)$. Then*

$$\vartheta_{\alpha, \beta}^{(c)}(x; d, a) = \alpha^{-1} \gamma x^{\gamma-1} \vartheta(x; d, a) + \alpha^{-1} \gamma (1 - \gamma) \int_2^x u^{\gamma-2} \vartheta(u; d, a) du + O\left(x^{\frac{\gamma}{13} + \frac{11}{26} + \varepsilon}\right).$$

The proof of our Theorem 1.2 is similar to [9, Section 4] by switching the conditions

$$\begin{aligned} 1 < c < \frac{14}{13} &\quad \text{into} \quad 1 < c < \frac{12}{11}, \\ -\frac{13}{35} + \frac{2\gamma}{5} &\quad \text{into} \quad -\frac{11}{26} + \frac{6\gamma}{13}, \\ \mathcal{N}_{\alpha, \beta}^{(c)} &\quad \text{into} \quad \pi_{\alpha, \beta}^{(c)} \end{aligned}$$

and

$$\theta \quad \text{into} \quad \omega.$$

Let $\pi(x, y)$ be the number of those primes for which $p - 1$ is free of prime factors exceeding y . Let \mathcal{E} be the set of numbers E in the range $0 < E < 1$ for which

$$\pi(x, x^{1-E}) \geq x^{1+o(1)} \quad (x \rightarrow \infty),$$

where the function implied by $o(1)$ depends only on E . By a similar argument as in [5, Page 64–66], we conclude the following statement.

Lemma 4.2. *Let $\alpha \geq 1$ and β be real numbers. Let $c \in \left(1, \frac{38}{37}\right)$. Let B and B_1 be positive real numbers such that $B_1 < B < -\frac{11}{26} + \frac{6\gamma}{13}$. For any $E \in \mathcal{E}$, there is a number x_3 depending on c, B, B_1, E , and ε , such that for any $x \geq x_3$, there are at least $x^{EB+(1-B+B_1)(\gamma-1)-\varepsilon}$ Carmichael numbers up to x composed solely of primes from $\pi_{\alpha, \beta}^{(c)}$.*

Taking B and B_1 arbitrarily close to $-\frac{11}{26} + \frac{6\gamma}{13}$, Lemma 4.2 implies that there are infinitely many Carmichael numbers composed entirely of the primes from $\pi_{\alpha, \beta}^{(c)}$ with

$$\left(-\frac{11}{26} + \frac{6\gamma}{13}\right)E + \gamma - 1 > 0.$$

Taking $E = 0.7039$ from [19], we eventually have $\gamma > \frac{18746}{19137}$.

5 More Beatty sequences

Guo et al. [8] proved that there are infinitely many primes in the intersection of a Piatetski-Shapiro sequence and multiple Beatty sequences with some restrictions; see [8, Theorem 1.3] for more details. We mention that by the similar techniques in the proof of Theorem 1.1 and the proof of [8, Theorem 1.3], Piatetski-Shapiro primes in arithmetic progressions and the intersection of multiple Beatty sequences can also be detected. Therefore, we state the following theorem without proofs.

Theorem 5.1. *Suppose that ξ is a positive integer, and $\alpha_1, \dots, \alpha_\xi, \beta_1, \dots, \beta_\xi \in \mathbb{R}$. Let $\alpha_1, \dots, \alpha_\xi > 1$ be irrational and of finite type such that*

$$1, \alpha_1^{-1}, \dots, \alpha_\xi^{-1} \quad \text{are linearly independent over } \mathbb{Q}.$$

For $c \in (1, \frac{12}{11})$, the counting function

$$\pi_{a_1, \beta_1; \dots; a_\xi, \beta_\xi}^{(c)}(x; d, a) = \#\{\text{prime } p \leq x : p \equiv a \pmod{d}, p \in \mathcal{B}_{a_1, \beta_1} \cap \dots \cap \mathcal{B}_{a_\xi, \beta_\xi} \cap \mathcal{N}^{(c)}\}$$

satisfies

$$\begin{aligned} \pi_{a_1, \beta_1; \dots; a_\xi, \beta_\xi}^{(c)}(x; d, a) &= a_1^{-1} \dots a_\xi^{-1} \gamma x^{\gamma-1} \pi(x; d, a) \\ &+ a_1^{-1} \dots a_\xi^{-1} \gamma (1 - \gamma) \int_2^x u^{\gamma-2} \pi(u; d, a) du + O\left(x^{\frac{7}{13}\gamma + \frac{11}{26} + \varepsilon}\right), \end{aligned}$$

where the implied constant depends only on a_1, \dots, a_ξ and c .

Then by the same technique in the proof of Theorem 1.2, we state the following theorem without proofs.

Theorem 5.2. Suppose that ξ is a positive integer, and $a_1, \dots, a_\xi, \beta_1, \dots, \beta_\xi \in \mathbb{R}$. Let $a_1, \dots, a_\xi > 1$ be irrational and of finite type such that

$$1, a_1^{-1}, \dots, a_\xi^{-1} \text{ are linearly independent over } \mathbb{Q}.$$

For $c \in (1, \frac{19137}{18746})$, there are infinitely many Carmichael numbers composed entirely of the primes from the set

$$\mathcal{B}_{a_1, \beta_1} \cap \dots \cap \mathcal{B}_{a_\xi, \beta_\xi} \cap \mathcal{N}^{(c)}.$$

Acknowledgments: The authors express their gratitude to the reviewers for their helpful and detailed comments.

Funding information: The first author was supported in part by the Young Talent Fund of Xi'an Association for Science and Technology (No. 959202413080), the National Science Foundation of Shaanxi Province (No. 2025JC-YBQN-096) and the Undergraduate Talent Cultivation Development Project of Xi'an University (JY2025049). The second author was supported by the National Natural Science Foundation of China (No. 11901447), the Natural Science Foundation of Shaanxi Province (No. 2024JC-YBMS-029), and the Shaanxi Fundamental Science Research Project for Mathematics and Physics (No. 22JSY006).

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and consented to its submission to the journal, reviewed all the results and approved the final version of the manuscript. All authors wrote the manuscript and are considered to have equal contributions.

Conflict of interest: The authors state no conflict of interest.

Data availability statement: Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

- [1] I. I. Piatetski-Shapiro, *On the distribution of prime numbers in the sequence of the form $\lfloor f(n) \rfloor$* , Mat. Sb. **33** (1953), 559–566.
- [2] J. Rivat and J. Wu, *Prime numbers of the form $\lfloor n^c \rfloor$* , Glasg. Math. J. **43** (2001), no. 2, 237–254, DOI: <https://doi.org/10.1017/S0017089501020080>.
- [3] I. M. Vinogradov, *A new estimate of a certain sum containing primes (Russian)*, Rec. Math. Moscou, n. Ser. **2(44)** (1937), no. 5, 783–792, English translation: *New estimations of trigonometrical sums containing primes*, C. R. (Dokl.) Acad. Sci. URSS, n. Ser. **17** (1937), 165–166.
- [4] W. R. Alford, A. Granville, and C. Pomerance, *There are infinitely many Carmichael numbers*, Ann. of Math. (2) **139** (1994), no. 3, 703–722, DOI: <https://doi.org/10.2307/2118576>.
- [5] R. C. Baker, W. D. Banks, J. Brüdern, I. E. Shparlinski, and A. J. Weingartner, *Piatetski-Shapiro sequences*, Acta Arith. **157** (2013), no. 1, 37–68, DOI: <https://doi.org/10.4064/aa157-1-3>.
- [6] W. C. Banks and A. M. Yeager, *Carmichael numbers composed of primes from a Beatty sequence*, Colloq. Math. **125** (2011), no. 1, 129–137, DOI: <https://doi.org/10.4064/cm125-1-9>.
- [7] V. Z. Guo, *Piatetski-Shapiro primes in a Beatty sequence*, J. Number Theory **156** (2015), 317–330, DOI: <https://doi.org/10.1016/j.jnt.2015.05.001>.
- [8] V. Z. Guo, J. Li, and M. Zhang, *Piatetski-Shapiro primes in the intersection of multiple Beatty sequences*, Rocky Mountain J. Math. **52** (2022), no. 4, 1375–1394, DOI: <https://doi.org/10.1216/rmj.2022.52.1375>.
- [9] V. Z. Guo and J. Qi, *A generalization of Piatetski-Shapiro sequences*, Taiwanese J. Math. **26** (2022), no. 1, 33–47, DOI: <https://doi.org/10.11650/tjm/210901>.
- [10] A. Khintchine, *Zur metrischen Theorie der diophantischen Approximationen*, Math. Z. **24** (1926), no. 1, 706–714.
- [11] K. F. Roth, *Rational approximations to algebraic numbers*, Mathematika **2** (1955), 1–20, DOI: <https://doi.org/10.1112/S0025579300000644>.
- [12] K. F. Roth, *Corrigendum to Rational approximations to algebraic numbers*, Mathematika **2** (1955), 168.
- [13] J. Qi and V. Z. Guo, *The k -fold divisor function over Beatty sequences*, Ramanujan J. **66** (2025), no. 3, 54, DOI: <https://doi.org/10.1007/s11139-024-00875-w>.
- [14] J. D. Vaaler, *Some extremal functions in Fourier analysis*, Bull. Amer. Math. Soc. **12** (1985), no. 2, 183–216, DOI: <https://doi.org/10.1090/S0273-0979-1985-15349-2>.
- [15] S. W. Graham and G. Kolesnik, *Van der Corputas Method of Exponential Sums*, Cambridge University Press, Cambridge, 1991.
- [16] A. Balog and A. Perelli, *Exponential sums over primes in an arithmetic progression*, Proc. Amer. Math. Soc. **93** (1985), no. 4, 578–582, DOI: <https://doi.org/10.1090/S0002-9939-1985-0776182-0>.
- [17] J. Rivat and S. Sargos, *Nombres premiers de la forme $\lfloor n^c \rfloor$* , Canad. J. Math. **53** (2001), no. 2, 414–433, DOI: <https://doi.org/10.4153/CJM-2001-017-0>.
- [18] B. R. Srinivasan, *The lattice point problem of many-dimensional hyperboloids II*, Acta Arith. **8** (1963), 173–204.
- [19] R. C. Baker and G. Harman, *Shifted primes without large prime factors*, Acta Arith. **83** (1998), no. 4, 331–361, DOI: <https://doi.org/10.4064/aa-83-4-331-361>.