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Abstract: Recently, Shen et al. showed that the SI2-topology on aT0-space can be described completely in terms
of SI2-convergence, and the SI2-convergence is topological whenever the given space is SI2-continuous. In this
article, we give a characterization of T0-spaces for the SI2-convergence being topological by introducing the
notion of strongly I2-continuous spaces, which are strictly weaker than SI2-continuous spaces but are more closely
related to the SI2-convergence. Moreover, as a common generalization of the irr-convergence and the � -conver-
gence, we introduce the concept of SI*2 -convergence in T0-spaces and the related concept of SI*2 -continuous spaces.
It is proved that if a T0-space X is SI*2 -continuous, then the SI*2 -convergence in X is topological.
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1 Introduction

Convergence and convergence class play an important role in both order theory and general topology [1,2].
For a topological space X τ,( ) and a class � consisting of pairs ∈x x,i i I(( ) ), where ∈xi i I( ) is a net in X and x a point
of X , the topology τ can naturally induce a convergence class as follows:
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And we can define a topology on X associated with � :

= ⊆ ∈ ∈ ∈∈U X x x x U x U: , and imply eventually .i i I i� � �( ) { (( ) ) }

It is easy to verify that =τ τ� �( ( )). However, if � is not a convergence class in the sense of Kelley [2], then the
convergence class ≠� � � �( ( )) , that is, the class � is not topological.

Numerous researchers have studied various types of convergences [1,3–11]. With different convergence,
they have not only proposed the corresponding continuity of posets (more generally, topological spaces) but
also presented some links between order theory and topology. In [1], it was proved that the lim-inf conver-
gence in a dcpo P is topological iff the poset P is a continuous domain. This result was generalized to partially
ordered sets (posets) in [3]. In [4], using the cut operator instead of joins, Ruan and Xu introduced and
discussed � -convergence and �� -convergence in posets. They proved that a poset P is s2-continuous (resp.,
s2-quasicontinuous) iff the � -convergence (resp., the �� -convergence) in P is topological.

In the invited talk at the Sixth International Symposium on Domain Theory in 2013, Jimmie Lawson
emphasized the need to develop the core of domain theory directly in T0-spaces to instead posets. In this
direction, by using irreducible sets instead of directed sets, Zhao and Ho [12] introduced the SI-topology on
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T0-spaces as a generalization of the Scott topology on posets. In [5], Andradi et al. defined SI-convergence in
T0-spaces and proved that for anyT0-space X having condition (I*), X is an I-continuous space iff SI-convergence in
X is topological. Later, Lu and Zhao [6] gave a characterization ofT0-spaces for the SI-convergence being topological.
In [7], Zhao et al. provided a different way to define irreducible convergence in T0-spaces, which can be seen as
a topological counterpart of lim-inf convergence in posets, and presented a sufficient and necessary condition
for irreducible convergence to be topological in T0-spaces. By using the cut operator of irreducible sets and
the specialization order of a given T0-space, Shen et al. [8] defined the SI2-topology on T0-spaces and proved
that SI2-convergence on a T0-space X is topological whenever the space X is SI2-continuous. This naturally raises
a question whether there is a characterization of T0-spaces for the SI2-convergence to be topological.

In this article, we introduce a new way-below relation on T0-spaces, called the I2-way-below relation.
By using the I2-way-below relation, we introduce the notions of I2-continuity and strongly I2-continuity of
T0-spaces, both of them are strictly weaker than the SI2-continuity but are more closely related to the
SI2-convergence. We prove that the SI2-convergence in aT0-space X is topological iff X is strongly I2-continuous,
giving an positive answer to the aforementioned question. Moreover, we define and study the SI*2 -convergence
in T0-spaces, which can be seen as topological counterparts of the � -convergence and the irr-convergence
in posets. The related concept of SI*2 -continuous spaces is also introduced. It is proved that if a T0-space X

is SI*2 -continuous, then the SI*2 -convergence in X is topological.

2 Preliminaries

In this section, we briefly recall some basic concepts and results about ordered structures and T0-spaces that
will be used in the article. For further details, we refer the reader to [1–2,13–14].

For a poset P and ⊆A P, define ↑ = ∈ ≤ ∈A x P a x a A: for some{ } and ↓ = ∈ ≤A x P x a: for some{

∈a A}. For ∈x X , let ↑ = ↑x x{ } and ↓ = ↓x x{ }. A subset A is called a lower set (resp., an upper set) if = ↓A A

(resp., = ↑A A). Define = ∈ ⊆ ↓↑A u P A u:{ } (the sets of all upper bounds of A in P) and = ∈ ⊆ ↑↓A v P A v:{ }

(the sets of all lower bounds of A in P). The set = ↑ ↓A Aδ ( ) is called the cut of A in P. If the set of upper bounds of A

has a unique smallest element (that is, the set of upper bounds contains exactly one of its lower bounds), we call this
element the least upper bound and write it as ∨A or sup A (for supremum). Similarly the greatest lower bound is
written as ⋀A or inf A (for infimum).

The set of all natural numbers is denoted by �. When � is regarded as a poset (in fact, a chain), the order
on � is the usual order of natural numbers. A nonempty subset D of a poset P is called directed if every finite
subset of D has an upper bound in D. The set of all directed sets of P is denoted by P�( ). The poset P is called
a directed complete poset, or dcpo for short, if for any ∈D P�( ), ∨D exists in P .

Let P be a poset and ∈a b P, . We say that a isway below b, in symbols ≪a b, if for all ∈D P�( ) for which
∨D exists in P, ≤ ∨b D implies ∈ ↓a D. The poset P is called a continuous poset if for any ∈a P , the set
↡ ≔ ∈ ≪a b P b a:{ } is directed and = ∨ ↡a a. A subset U of P is Scott open if (i) = ↑U U , and (ii) for any
directed subset D for which ∨D exists, ∨ ∈D U implies ∩ ≠ ∅D U . The topology formed by all the Scott open
sets of P is called the Scott topology, written as σ P( ). The upper sets of P form the (upper) Alexandroff topology
α P( ). The topology generated by the collection of sets ↑P x\ (as subbasic open subsets) is called the lower
topology and denoted it by ω P( ); dually, the upper topology on a poset P, generated by the complements of the
principal ideals of P, is denoted by υ P( ).

A net ∈xi i I( ) in a set X is a mapping from a directed set I to X . For each ∈x X , one can define a constant net
with the value x by =x xi for all ∈i I . We denote this constant net by ∈x i I( ) . If Q x( ) is a property of the
elements ∈x X , we say that Q x( ) holds eventually in the net ∈xi i I( ) if there is a ∈i J0 such that Q xi( ) is true
whenever ≤i i0 .

Definition 2.1. [1] We say a net ∈xi i I( ) lim-inf converges to x in a poset P if there exists a directed subset D of P

such that
(i) ∨D exists and ≤ ∨x D, and
(ii) for every ∈d D, ≤d xi holds eventually, i.e., there exists ∈i I0 such that ≤d xi for all ≥i i0.
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Definition 2.2. [4] Let P be a poset and ∈xj j J( ) a net in P.
(1) A point ∈y P is called an eventual lower bound of a net ∈xj j J( ) in P, if there exists a ∈k J such that ≤y xj

for all ≥j k , i.e., ∈xj j J( ) is eventually in ↑ y.
(2) Let P�( ) denote the class of those pairs ∈x x,j j J(( ) ) such that ∈x Dδ for some directed set D of eventual

lower bounds of the net ∈xj j J( ) . For each such pair, we again say that x is an � -limit of ∈xj j J( ) or ∈xj j J( )

� -converges to x , and write ⟶∈x xj j J

�

( ) .

As in [9], an upper subset U of a poset P is called s2-open if for any directed subset D of P, ∩ ≠ ∅D Uδ

implies ∩ ≠ ∅D U . The collection of all s2-open subsets of P forms a topology, called s2-topology, and is

denoted by s P2( ). It is easy to see that = = ⊆s P P U P :2 � �( ) ( ( )) { whenever ⟶x xi

�

and ∈x U , then even-
tually ∈x Ui }. The way-below relation ≪2 on P is defined by ≪x y2 iff for any directed subset D of P , ∈y Dδ

implies ∈ ↓x D.

Lemma 2.3. [5] Let P be a poset, D a nonempty subset of P, and ∈xi i I( ) a net in P. Then the following conditions are
equivalent:
(1) D is a set of eventual lower bounds of ∈xi i I( ) .
(2) For every upper set U of P, ∩ ≠ ∅D U implies ∈x Ui eventually.

For a T0-space X , let ≤X denote the specialization order on X : ≤x yX iff ∈x y{ }. In the following, when
a T0-space X is considered as a poset, the order always refers to the specialization order if no other explana-
tion. The pair ≤X , X( ) is denoted by ΩX or simply by X if no confusion arises, and sometimes we briefly write ≤
instead≤X . Let X�( ) (resp., XΓ( )) be the set of all open subsets (resp., closed subsets) of X . Clearly, each open set
is an upper set and each closed set is a lower set with respect to the specialization order ≤X . For a subset of X ,
denote the closure of A in X by AclX or simply by Acl and the interior of A in X by AintX in X or simply by Aint .
We also simply use A to denote the the closure of A if no confusion arises.

A nonempty subset A of aT0-space X is called an irreducible set if for any ∈F F X, Γ1 2 ( ), ⊆ ∪A F F1 2 implies
⊆A F1 or ⊆A F2. We denote by XIrr( ) (resp., XcIrr ( )) the set of all irreducible (resp., irreducible closed) subsets

of X . Clearly, every subset of X that is directed under ≤X is irreducible and the nonempty irreducible sets of
a poset equipped with the Alexandroff topology are exactly the directed sets of P. And we said that X is
irreducible complete space if every irreducible subset of X has a sup.

Lemma 2.4. [15] If →f X Y: is continuous and ∈A XIrr( ), then ∈f A YIrr( ) ( ).

For a set X and a class � consisting of pairs ∈x x,i i I(( ) ), where ∈xi i I( ) is a net in X and x is a point of X , the
topology on X associated with � is denoted by � �( ), that is, = ⊆ ∈∈U X x x: ,i i I� � �( ) { (( ) ) and ∈x U imply

∈x Ui eventually}.

Definition 2.5. [5,7] Let X be a T0-space.
(1) A net ∈xi i I( ) of X is said to irreducibly converge to a point x of X , if there exists an irreducible set F of X

with ∨F existing such that ≤ ∨x F , and for each ∈e F , ≤e xi holds eventually. In this case, we

write ⟶∈x xi i I

Irr
( ) .

(2) A net ∈xi i I( ) of X is said to SI-converge to a point x of X , if there exists an irreducible set F of X with ∨F

existing such that ≤ ∨x F , and for every ∈U X�( ), ∩ ≠ ∅F U implies ∈x Ui eventually. In this case, we

write ⟶∈x xi i I

SI

( ) .

An open subsetU ofT0-space X is called SI-open if for any ∈F XIrr( ),∨ ∈F U implies ∩ ≠ ∅F U whenever
∨F exists. The collection of all SI-open sets, denoted by XSI� ( ), is a topology on X , called the irreducibly-derived
topology (shortly SI-topology). The space X X, SI�( ( )) will also be simply written as SI X( ). In [7], Zhao et al.
denoted by τIrr the topology induced by irr-convergence.

On SI2-convergence in T0-spaces  3



Proposition 2.6. [5] For any T0-space X, the SI-topology coincides with the topology induced by SI-convergence,

namely, ∈V XSI� ( ) iff for every net ∈xi i I( ) in X , ⟶∈x xi i I

SI

( ) and ∈x V imply ∈x Vi eventually.

Definition 2.7. [5,7,12] Let X be a T0-space and ∈x y X, . We say
(1) x is SI-way-below y, in symbols ≪x ySI , if for any irreducible set F of X , ≤ ∨y F implies ∈ ↓x F whenever

∨F exists.
(2) x is I-way-below y, in symbols ≪x yI , if for every irreducible set F of X with ∨F existing, ≤ ∨y F

implies ∈x Fcl .
(3) x is Irr-way-below y, in symbols ≪x yIrr , if for every net ∈xi i I( ) in X irreducibly converging to y, ≤x xi

holds eventually.

Definition 2.8. [8] Let X be a T0-space. A subset U of X is called SI2-open if the following two conditions are
satisfied:
(1) U is an open set in X , and
(2) for any ∈F XIrr( ), ∩ ≠ ∅F Uδ implies ∩ ≠ ∅F U .
The set of all SI2-open sets in X is denoted by XSI2

� ( ). It is straightforward to verify that XSI2
� ( ) is a topology

on X , called the SI2-topology. The space X X, SI2
�( ( )) will also be simply written as SI X2( ).

Definition 2.9. [8] Let X be a T0-space and ∈x y X, .
(1) We say that x is SI2-way-below y, in symbols ≪x ySI2

, if for all irreducible set F of X , the relation ∈y Fδ

always implies ∈ ↓x F . We write ↡ = ∈ ≪a x X x a:SI SI2 2
{ } and ↟ = ∈ ≪a x X a x:SI SI2 2

{ }.
(2) The space X is called SI2-continuous if for any ∈x X , ↟ ∈x XSI2

�( ), ↡ ∈x XSI2
Irr( ) and = ∨↡x xSI2

.

By Remark 5.1(1) and Proposition 5.6 of [8], we obtain the following result.

Proposition 2.10. For a T0-space X, the following conditions are equivalent:
(1) X is SI2-continuous.
(2) For all ∈x X , ↟ ∈x XSI2

�( ), ↡ ∈x XSI2
Irr( ), and = ↡x x δ

SI2
( ) .

(3) For all ∈x X , ↟ xSI2
is SI2-open, ↡ ∈x XSI2

Irr( ) and = ∨↡x xSI2
.

(4) For all ∈x X , ↟ xSI2
is SI2-open, ↡ ∈x XSI2

Irr( ) and = ↡x x δ
SI2

( ) .

Throughout this article, when we say X is a space, it always means X is a T0-space. For ∈x X and a net
∈xi i I( ) in X , we use the symbols ⟶∈x xi i I( ) to represent that the net ∈xi i I( ) converges to x in the space X .

3 I2-continuous spaces and strongly I2-continuous spaces

In this section, we introduce the notions of I2-continuous spaces and strongly I2-continuous spaces, and discuss
some basic properties of these spaces. Especially, we prove that a T0-space X is strongly I2-continuous iff SI2-
convergence on X is topological.

We first recall the definition of SI2-convergence and give some its properties.

Definition 3.1. [8] We say a net ∈xi i I( ) SI2-converges to a point x in aT0-space X if there exists an irreducible set
F in X such that
(i) ∈x Fδ and
(ii) for any ∈U X�( ), ∩ ≠ ∅F U implies ∈x Ui eventually.

And in this case, we write ⟶∈x xi i I

SI2
( ) . Let = ∈ ⟶∈ ∈ ∈X x x x X x X x x, : is a net in , andi i I i i I i i I2

SI2
�� ( ) {(( ) ) ( ) ( ) }.
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Remark 3.2. For a T0-space X , we have the following statements:
(1) The constant net ∈x i I( ) in X with value x SI2-converges to x .

(2) If ⟶∈x xi i I

SI2
( ) in X , then ⟶∈x yi i I

SI2
( ) for any ≤y x . Thus, the SI2-convergence points of a net are generally

not unique.
(3) Let P be a poset. Then the SI2-convergence in P α P,( ( )) coincides with the � -convergence in P.
(4) If X is irreducible complete, then for any net ∈xi i I( ) in X , ∈xi i I( ) SI-converges to ∈x X iff ∈xi i I( ) SI2-

converges to x .

Lemma 3.3. [8] For anyT0-space X, the two topologies X2� ��( ( )) and XSI2
� ( ) coincide, that is, = ⊆X U P :SI2

� ( ) {

whenever ⟶∈x xi i I

SI2
( ) and ∈x U , then eventually ∈x Ui }.

Recall that a net ∈y
j j J( ) is a subnet of ∈xi i I( ) if (i) there exists a function →g J I: such that =y x

j g j( ) for all
∈j J , and (ii) for each ∈i I there exists ′ ∈j J such that ≥g j i( ) whenever ≥ ′j j .

Proposition 3.4. Let X be a T0-space and ⊆A X . Then the following conditions are equivalent:
(1) A is an SI2-closed set.
(2) A is a closed subset of X, and for any irreducible set F in X, ⊆F A implies ⊆F Aδ .

(3) For any net ∈xi i I( ) in A, if ⟶∈x xi i I

SI2
( ) , then ∈x A.

Proof. (1) ⇔ (2): See [8, Proposition 3.6].

(1) ⇒ (3): Let ∈xi i I( ) be a net in A and ⟶∈x xi i I

SI2
( ) . If ∉x A, then ∈x X A\ . Since A is an SI2-closed set, X A\

is SI2-open, and hence, ∈X A X\ SI2
� ( ) by Lemma 3.3. Then the net ∈xi i I( ) must be eventually in X A\ , being

a contradiction with the fact that ∈xi i I( ) is in A. Thus, ∈x A.

(3) ⇒ (1): We show that X A\ is SI2-open. Let ∈x X A\ and ⟶∈x xi i I

SI2
( ) . Then the net ∈xi i I( ) is eventually

in X A\ . Otherwise, for each ∈i I , there exists a ∈φ i I( ) with ≥φ i i( ) such that ∈x Aφ i( ) . Let J be the subset

of I consisting of all ∈j I such that ∈x Aj . Then J is cofinal in I , and ∈xj j J( ) is a subnet of ∈xi i I( ) . As ⟶∈x xi i I

SI2
( ) ,

we have ⟶∈x xj j J

SI2
( ) , and hence, ∈x A by (3), which contradicts ∈x X A\ . Then we conclude that the net ∈xi i I( )

is eventually in X A\ . Hence, ∈X A X\ 2� ��( ( )). By Lemma 3.3, A is SI2-closed. □

Lemma 3.5. Let X be a T0-space and F be an irreducible set of X with ∈x Fδ. Then there exists a net ∈xi i I( ) in X
such that all of its terms are in F and ∈x SIi i I 2( ) -converges to x.

Proof. Let = ∈ × × ∈I U n e X F e U, , :��{( ) ( ) } and define an order on I by the lexicographic order on the
first two coordinates, that is, <U m a V n b, , , ,( ) ( ) iff V is a proper subset of U or =U V and <m n. For
any ∈U n e U n e I, , , , ,1 1 1 2 2 2( ) ( ) , we have ∈ ∩e F U1 1 and ∈ ∩e F U2 2. By the irreducibility of F , we have

∩ ∩ ≠ ∅F U U1 2 . Select ∈ ∩ ∩e F U U3 1 2. Then < ∩ + +U n e U n e U U n n e, , , , , , 1,1 1 1 2 2 2 1 2 1 2 3( ) ( ) ( ). Hence, I is
a directed set. We let =x eU n e, ,( ) for any ∈U n e I, ,( ) . Now we show that the net ∈e SIU n e I, , 2( )( ) -converges
to x . We firstly have that ∈F XIrr( ) and ∈x Fδ by the assumption. For any ∈U X�( ) with ∩ ≠ ∅F U , select
a ∈ ∩d F U . Then ∈U d I, 1,( ) and ∈e U for all ∈V n e I, ,( ) with ≥V n e U d, , , 1,( ) ( ), proving that

∈e SIU n e I, , 2( )( ) -converges to x . □

Proposition 3.6. Let X Y, be T0-spaces and f be a continuous mapping from X to Y. Then the following two
conditions are equivalent:
(1) f is a continuous mapping from XSI2( ) to YSI2( ).

(2) For any net ∈xi i I( ) and ∈x X , ⟶∈x xi i I

SI2
( ) in X implies ⟶∈f x f xi i I

SI2
( ) ( ) in Y .

Proof. (1)⇒ (2): First, f is order-preserving. In fact, if ≤x yX , i.e., ∈x ycl{ }, then we have ∈ ⊆f x f y f y( ) ({ }) ({ })

by the continuity of →f X Y: , whence ≤f x f yY( ) ( ). Suppose that ⟶∈x xi i I

SI2
( ) in X . Now we show that

On SI2-convergence in T0-spaces  5



⟶∈f x f xi i I

SI2
( ) ( ) in Y . As ⟶∈x xi i I

SI2
( ) , there exists an irreducible set F in X such that conditions (i) and (ii) of

Definition 3.1 are satisfied. Then ∈f F YIrr( ) ( ) by Lemma 2.3. Since f is order-preserving, we obtain
∈ = ⊆ ⊆ =↑ ↓ ↑ ↓ ↑ ↓f x f F f F f F f F f Fδ δ( ) ( ) (( ) ) ( ( )) ( ( ) ) ( ( )) . For ∈V Y�( ), if ∩ ≠ ∅f F V( ) , then ∩ ≠ ∅−F f V1 ( )

and ∈−f V X1 �( ) ( ) by the continuity of →f X Y: , and consequently, ∈ −x f Vi
1 ( ) eventually. Hence, ∈f x Vi( )

eventually. Thus, ⟶∈f x f xi i I

SI2
( ) ( ) in Y .

(2) ⇒ (1): Let ∈V YSI2
� ( ). By the continuity of →f X Y: , we have ∈−f V X1 �( ) ( ). For any ∈F XIrr( ),

if ∩ ≠ ∅−F f Vδ 1 ( ) , then we can select a point ∈ ∩ −a F f Vδ 1 ( ). By Lemma 3.5, there exists a net ∈ai i IF
( ) in F SI2-

converging to a. By the assumption, the net ∈f ai i IF
( ( )) SI2-converges to f a( ) and ∈f a V( ) . Hence, by Lemma

3.3, ∈f a Vi( ) eventually, or equivalently, ∈ −a f Vi
1 ( ) eventually. It follows that ∩ ≠ ∅−F f V1 ( ) . We conclude

that ∈−f V X1
SI2

�( ) ( ), and therefore, (1) holds. □

In [8], Shen et al. proved that the SI2-convergence in a T0-space X is topological whenever the space X is
SI2-continuous. This naturally raises a question whether there is a characterization of T0-spaces for the
SI2-convergence to be topological. In the remainder of this section, we shall give such a characterisation.

First, we introduce a new notion of way-below relation.

Definition 3.7. Let X be a T0-space and ∈x y X, . We say that x is I2-way-below y, in symbols ≪x yI2
, if for any

irreducible set F in X , ∈y Fδ implies ∈x Fcl .

For ∈a X , we write ↡ = ∈ ≪a x X x a:I I2 2
{ } and ↟ = ∈ ≪a x X a x:I I2 2

{ }.

Remark 3.8. For a T0-space X , the following statements hold for all ∈u x y z X, , , :
(i) ≪x yI2

implies ≤x y;
(ii) ≤ ≪ ≤u x y zI2

implies ≪u zI2
;

(iii) ≪x yI2
iff for every irreducible closed set F , ∈y Fδ implies ∈x F ;

(iv) ≪x ySI2
implies ≪x yI2

. Hence, ↡ ⊆ ↡ ⊆ ↓x x xSI I2 2
.

One can easily see that when X is a poset P endowed with the Alexandroff topology, the I2-way-below
relation is exactly the way-below relation ≪2 (cf. [15, Fact 2.6]). When X is irreducible complete, we have

≪x yI2
iff ≪x yI .

The following example shows that ≪I2
is different to ≪SI and also different to ≪I in general.

Example 3.9. Let = ∪ ∪Q a a a b b c, , …, , … ,n1 2 1 2{ } { } { } and define a partial order ≤ on Q as follows (see
Figure 1):
(i) < < < < <+a a a a… …n n1 2 1 ;
(ii) < <a b a b,n n1 2 for all ∈n �;
(iii) b1 and b2 are incomparable; and
(iv) <c b1 and <c b2.

Consider the Alexandroff topology space Q α Q,( ( )). Then =Q α Q Q,Irr �(( ( ))) ( ) (cf. [15, Fact 2.6]). It is easy
to verify that for any ∈D Q�( ), D has a largest element or ⊆ ∈+D a n:n 1 �{ } is countable infinite. Hence for
any ∈A Q α Q,Irr(( ( ))) for which ∨A exists, we have that ≤ ∨c A implies ∈ ↓c A. So ≪c cSI and hence ≪c cI .
Let = ∈+F a n:n 1 �{ }. Then ∈F Q α Q,Irr(( ( ))) and ∈ = ∪c F F cδ { } but ∉ =c A Acl . Thus, ≪c c̸ I2

.
Example 3.15 shows that ≪I2

is different to ≪SI2
in general.

Proposition 3.10. Let X be a T0-space and ∈x y X, . Then the following two conditions are equivalent:
(1) ≪x yI2

.

(2) For any net ∈xi i I( ) of X , ⟶∈x yi i I

SI2
( ) implies ⟶∈x xi i I( ) .
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Proof. (1)⇒ (2): Suppose that ≪x yI2
and ∈xi i I( ) is a net of X SI2-converging to y. We show that ∈xi i I( ) converges

to x in the space X . As ⟶∈x yi i I

SI2
( ) , there exists an ∈F XIrr( ) such that ∈y Fδ, and ∩ ≠ ∅F V implies ∈x Vi

eventually for any ∈V X�( ). Then we have ∈x Fcl by ∈y Fδ and ≪x yI2
. Hence, for any ∈U X�( ) with

∈x U , it holds that ∩ ≠ ∅F U , and then ∈x Ui eventually. Therefore, ⟶∈x xi i I( ) .
(2) ⇒ (1): Let ∈F XIrr( ) with ∈y Fδ. Then by Lemma 3.5, there exists a net ∈xi i IF

( ) such that all of its terms
are in F and it SI2-converges to y. So ⟶∈x xi i IF

( ) . Then for any ∈U X�( ) with ∈x U , we have ∈x Ui

eventually. Since ∈ ⊆x i I F:i{ } , it holds that ∈ ∩x F Ui eventually, and hence, ∩ ≠ ∅F U , proving that
∈x Fcl . Thus, ≪x yI2

. □

Definition 3.11. A T0-space X is called I2-continuous if for every ∈x X , ↡ ∈x XI2
Irr( ) and ∈ ↡x x δ

I2
( ) .

Remark 3.12. By Remark 3.8 (i), we can easily see that a T0-space X is I2-continuous iff for any ∈x X ,
↡ ∈x XI2

Irr( ) and = ∨↡x xI2
.

Proposition 3.13. For a T0-space X, the following two conditions are equivalent:
(1) X is I2-continuous.
(2) For any ∈x X , there exists ∈F XIrr( ) such that ⊆ ↡F xI2

and = ∨x F .

Proof. (1) ⇒ (2): Let = ↡F xI2
. Then ∈F XIrr( ) and = ∨x F .

(2) ⇒ (1): For ∈x X , by the assumption, there exists an irreducible subset ⊆ ↡F xI2
such that = ∨x F . Then

= ↓ ∨ = ↓F F xδ , and hence, ∈x Fδ. It follows that ⊆ ↡ ⊆F x FclI2
. So ↡ = ∈x F Xcl cl cI2

Irr ( ). Then ↡ ∈x XI2
Irr( )

and = ∨ = ∨ = ∨ ↡ = ∨↡x F F x xcl cl I I2 2
. Thus, X is I2-continuous. □

By Remark 3.8(iv) and Proposition 3.13, we directly obtain the following corollary.

Corollary 3.14. Every SI2-continuous space is I2-continuous.

However, I2-continuous spaces are not SI2-continuous in general, as shown in the following example.

Example 3.15. Let X be a countable infinite set and Xcof the space equipped with the co-finite topology
(the empty set and the complements of finite subsets of X are open). Then
(a) Xcof is a T1-space, and hence, its specialization order is the discrete order on X .
(b) = ∈ ∪X x x X A A X: : is a countable infinite set ofcofIrr( ) {{ } } { } and = ∈ ∪X x x X X:c cofIrr ( ) {{ } } { }.
(c) For any countable infinite set A of X , =A Xcl .
(d) For ∈x y X, , ≪x yI2

iff =x y by (b) and (c). So Xcof is I2-continuous.
(e) For any ∈x y X, , ≪x y̸ SI2

.

Figure 1: The poset Q in Example 3.9.
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In fact, if ≪x ySI2
, then as ∈ =y y y δ{ } { } , we have ∈ ↓ =x y y{ } { } and hence, =x y. By (b), ∈X x X\ cofIrr{ } ( )

and ∈ =x X X x\ δ( { }) , but ∉ ↓ =x X x X x\ \( { }) { }, which is a contradiction with ≪x ySI2
. Thus, ≪x ySI2

for
no ∈x y X, .
(f) Xcof is not SI2-continuous by (e).

Proposition 3.16. Let X be a T0-space, ∈y X and ∈xi i I( ) be a net in X. Consider the following two conditions:

(1) ⟶∈x yi i I

SI2
( ) .

(2) For any ≪x yI2
, ⟶∈x xi i I( ) .

Then (1) ⇒ (2), and two conditions are equivalent if X is I2-continuous.

Proof. (1) ⇒ (2): By Proposition 3.10.
(2) ⇒ (1): Suppose that X is I2-continuous. Then ↡ ∈y XI2

Irr( ) and ∈ ↡y y δ
I2

( ) . For any ∈U X�( ),
if ↡ ∩ ≠ ∅y UI2

, then there is ∈x U such that ≪x yI2
, and hence, ⟶∈x xi i I( ) by (2). So ∈x Ui eventually.

Thus, ⟶∈x yi i I

SI2
( ) . □

Proposition 3.17. Let X be a T0-space. If SI2-convergence in X is topological, then X is I2-continuous.

Proof. By Lemma 3.3, =X X2 SI2
� �� �( ( )) ( ). Thus, if SI2-convergence in X is topological, we must have

⟶∈ ∈x x x x Xiff converges to with respect to the topology .i i I i i I

SI

SI

2

2
�( ) ( ) ( )

Let ∈x X . Define

= ∈ × × ∈I U n a x X a U, , : ,SI2
�	{( ) ( ) }

where xSI2
	 ( ) consists of all open sets containing x in the space X X, SI2

�( ( )), and define an order on I

by the lexicographic order on the first two coordinates, that is, <U m a V n b, , , ,( ) ( ) iff V is a proper
subset of U or =U V and <m n. For any ∈U n a U n a I, , , , ,1 1 1 2 2 2( ) ( ) , we have ∩ ∈U U x1 2 SI2

	 ( ), and hence,
∩ + + ∈U U n n x I, 1,1 2 1 2( ) . Clearly, < ∩ + +U n a U U n n x, , , 1,1 1 1 1 2 1 2( ) ( ) and < ∩ + +U n a U U n n, , ,2 2 2 1 2 1 2( ) (

x1, ). Thus, I is a directed set. Let =x ai for = ∈i U n a I, ,( ) . It is easy to see that the net ∈xi i I( ) converges to x in

X X, SI2
�( ( )), and hence, ⟶∈x xi i I

SI2
( ) . So there exists an irreducible set ∈F XIrr( ) such that ∈xi i I( ) and F satisfy

conditions (i) and (ii) of Definition 3.1. Now we show that ⊆ ↡F xI2
.

Suppose that ∈s F . We verify that ≪s xI2
. Let ∈E XIrr( ) and ∈x Eδ. Then by Lemma 3.5, there exists

a net ∈ej j J( ) such that all of its terms are in E and ∈e SIj j J 2( ) -converges to x , and hence, it converges to x in
the space X X, SI2

�( ( )) by Lemma 3.3.
For ∈V X�( ) with ∈s V , we have ∈ ∩s F V , and hence, ∩ ≠ ∅F V . As ∈xi i I( ) and F satisfy conditions

(i) and (ii) of Definition 3.1, there is = ∈i U m z I, ,0 0 0( ) such that ∈x Vi for all ≥i i0. For any ∈t U0,
+ >U m t U m z, 1, , ,0 0 0 0( ) ( ), whence = ∈+t x VU m t, 1,0 0( ) . So ∈ ⊆x U V0 . Since ∈U x0 SI2

	 ( ) and ∈ej j J( ) converges
to x in X X, SI2

�( ( )), ∈e Uj 0 eventually, and consequently, ∈e Vj eventually. Hence, ∩ ≠ ∅E V (note that ∈ej j J( )

is a net in E), proving that ∈s EclX .
In summary, we have proved that for any ∈E XIrr( ) with ∈x Eδ, ∈s EclX . Hence, ≪s xI2

. Thus, ⊆ ↡F xI2
.

Therefore, ∈F FIrr( ), ⊆ ↡F xI2
and ∈x Fδ. So by Proposition 3.13, X is I2-continuous. □

Proposition 3.18. Let X be a T0-space. If SI2-convergence in X is topological, then for any ∈x y X, with ≪x yI2

and ∈U X�( ) with ∈x U , there exists an SI2-open set W such that ∈ ⊆y W U .

Proof. Suppose that ≪x yI2
, ∈U X�( ) and ∈x U . Then ∈ ↟ ⊆y x UI2

. Consider the net ∈y
j j J( ) similarly defined

in the proof of Proposition 3.17, where = ∈ × × ∈J V n b y X b V, , :SI2
�	{( ) ( ) } with the lexicographic order

on the first two coordinates and =y b
V n b, ,( ) for any ∈V n b I, ,( ) . Then ⟶∈y y

j j J

SI2
( ) (see the proof of Proposition

3.17). Hence, there exists an irreducible set M such that ∈y Mδ, and for any ∈O X�( ), ∩ ≠ ∅O M implies
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∈y O
j

eventually. By ≪x yI2
, we have ∈x MclX , and consequently, ∩ ≠ ∅U M . So ∈y U

j
eventually, more

precisely, there is = ∈j W l c J, ,
0

( ) such that ∈y U
j

for all ≥j j
0
. ThenW is SI2-open. For any ∈z W , we have

+ >W l z W l c, 1, , ,( ) ( ), whence = ∈+z y U
W l z, 1,( ) . So ∈ ⊆y W U . □

Motivated by Propositions 3.17 and 3.18, we introduce the following concept.

Definition 3.19. A T0-space X is called strongly I2-continuous if the following two conditions hold:
(i) for any ∈x X , ↡ ∈x XI2

Irr( ) and ∈ ↡x x δ
I2

( ) (i.e., X is I2-continuous), and
(ii) for any ∈x y X, with ≪x yI2

and ∈U X�( ) with ∈x U , there exists an SI2-open set W with ∈ ⊆y W U .

Proposition 3.20. Let X be an I2-continuous space such that ↟ xI2
is SI2-open for all ∈x X . Then X is a strongly

I2-continuous space.

Proof.We only need to verify condition (ii) of Definition 3.19. Let ∈x y X, with ≪x yI2
and ∈U x	( ). Then by

the assumption ↟ xI2
is SI2-open. By Remark 3.8(i), we obtain ∈ ↟ ⊆y x UI2

. Thus, X is strongly I2-contin-
uous. □

Proposition 3.21. If X is an SI2-continuous space, then X is strongly I2-continuous.

Proof. By Corollary 3.14, it is sufficient to verify condition (ii) of Definition 3.19. Let ∈x y X, with ≪x yI2
and

∈U x	( ). Since X is SI2-continuous, ↡ ∈y XSI2
Irr( ) and ∈ ↡y y δ

SI2
( ) (note that = ∨ ↡y ySI2

is equivalent to
∈ ↡y y δ

SI2
( ) ). As ≪x yI2

, we have ∈ ↡x yclX SI2
, and hence, ↡ ∩ ≠ ∅y USI2

by ∈U x	( ). Select a point
∈ ↡ ∩z y USI2

. Then ↟ ∈z XSI SI2 2
� ( ) by Proposition 2.10 and ∈ ↟ ⊆y z USI2

. So X is strongly I2-continuous. □

The converse of Proposition 3.21 may not be true, as shown in the following example.

Example 3.22. Let Xcof be the space in Example 3.15. Then by Example 3.15, we have the following conclusions:
(a) Xcof is an I2-continuous T1-space.
(b) Xcof is not SI2-continuous.
(c) = ∈ ∪X x x X A A X: : is a countable infinite set ofcofIrr( ) {{ } } { }.
(d) For any ∈s t X, , ≪s tI2

iff =s t.
Now we show that Xcof is strongly I2-continuous. Suppose that ≪x yI2

and ∈U x	( ). We first verify thatU

is SI2-open. For ∈F XcofIrr( ) with ∩ ≠ ∅F Uδ , by (c) =F z{ } for some ∈z X or F is a countable infinite set of X .
Then =F zδ { } or =F Xδ , and hence, ∈ ∩z F U or ∩ ≠ ∅F U by =F ω∣ ∣ and U is an co-finite open set. So U

is SI2-open, and by (d), we have = ∈ ⊆y x U U . Thus, X is strongly I2-continuous.

Proposition 3.23. If X is a strongly I2-continuous space, then SI2-convergence in X is topological.

Proof. Let ∈xi i I( ) be a net in X and ∈x X . Obviously, ⟶∈x xi i I

SI2
( ) implies that ∈xi i I( ) converges to x in

X X, 2� ��( ( ( ))). Conversely, suppose that ∈xi i I( ) converges to x in X X, 2� ��( ( ( ))). Then by Lemma 3.3,

∈xi i I( ) converges to x with respect to the topology XSI2
� ( ). We will show that ⟶∈x xi i I

SI2
( ) . Let = ↡F xx I2

.
Then by the strong I2-continuity of X , we have that ∈F Xx Irr( ) and ∈x Fx

δ . For any ∈U X�( ), if ∩ ≠ ∅F Ux ,
then we can select a ∈ ∩u F Ux . Hence, ≪u xI2

and ∈U u	( ). By the strong I2-continuity of X again, there is
an SI2-open set W such that ∈ ⊆x W U . Since ∈xi i I( ) converges to x in X X, SI2

�( ( )), there is ∈i I0 such that

∈ ⊆x W Ui for all ≥i i0, proving that ⟶∈x xi i I

SI2
( ) . Thus, SI2-convergence is topological. □

By Lemma 3.3, Propositions 3.17, 3.18, and 3.23, we obtain the main result of this article.
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Theorem 3.24. For a T0-space, the following conditions are equivalent:
(1) SI2-convergence X is topological.

(2) For any net ∈xi i I( ) in X and ∈x X , ⟶∈x xi i I

SI2
( ) iff ∈xi i I( ) converges to x with respect to the SI2-

topology XSI2
� ( ).

(3) X is strongly I2-continuous.

From Proposition 3.21 and Theorem 3.24 we directly deduce the following [8, Proposition 5.13].

Corollary 3.25. [8] If X is an SI2-continuous space, then the SI2-convergence in X is topological.

4 SI*
2
-continuous spaces

In this section, as a common generalization of the irr-convergence and the � -convergence, we introduce the
concept of SI*2 -convergence in T0-spaces and the related concept of SI*2 -continuous spaces. Some basic proper-
ties of them are discussed. It is proved that if X is SI*2 -continuous, then the SI*2 -convergence in X is topological.

Definition 4.1. We say a net ∈x SI*i i I 2( ) -converge to a point x in a T0-space X if there exists an irreducible set F

in X such that
(i) ∈x Fδ, and
(ii) for each ∈e F , ≤e xi holds eventually.

In this case, we write ⟶∈x xi i I

SI*
2

( ) . Let = ∈ ⟶∈ ∈ ∈X x x x X x X x x* , : is a net in , andi i I i i I i i I2

SI*
2

�� ( ) {(( ) ) ( ) ( ) }.

Remark 4.2. For a T0-space X a net ∈xi i I( ) in X , we have the following statements:
(1) The constant net ∈x j J( ) in X with value x SI*2 -converges to x .

(2) If ⟶∈x xi i I

SI*
2

( ) in X , then ⟶∈x yi i I

SI*
2

( ) for any ≤y x . So the SI*2 -convergence points of a net are generally not
unique.

(3) ⟶∈x xi i I

SI*
2

( ) implies ⟶∈x xi i I

SI2
( ) . In fact, if ⟶∈x xi i I

SI*
2

( ) , then there exists an irreducible set F of eventual
lower bounds of ∈xi i I( ) such that ∈x Fδ. For any ∈U X�( ), if ∩ ≠ ∅F U , then we can select an ∈ ∩e F U .

Hence, ≤e xi holds eventually, and consequently, ∈ ↑ =x U Ui eventually. Thus, ⟶∈x xi i I

SI2
( ) .

(4) Let P be a poset and ∈sj j J( ) be a net in P. Then ∈sj j J( ) SI*2 -converges to s in P α P,( ( )) iff ∈sj j J �( ) -converges
to s iff ∈sj j J( ) SI2-converges to s by Lemma 2.3.

Definition 4.3. Let X be T0-space. Then

= ⊆ ⟶ ∈ ∈∈X U X x x x U x U* : whenever and , then eventuallyi i I i2

SI*
2

� ��( ( )) { ( ) }

is a topology, called the SI*2 -topology on X . A subsetU of X is said to be SI*2 -open if ∈U *
2� ��( ). Complements

of SI*2 -open sets are called SI*2 -closed sets.

Lemma 4.4. Let X be T0-space and ⊆A X . Then the following two conditions are equivalent:
(1) A is SI*2 -closed.

(2) For any net ∈xi i I( ) in A, ⟶∈x xi i I

SI*
2

( ) implies ∈x A.

Proof. (1) ⇒ (2): Let ∈xi i I( ) be a net in A and ⟶∈x xi i I

SI*
2

( ) . If ∉x A, then ∈ ∈x X A O X\ *
2��( ( )). Hence, the net

∈xi i I( ) must be eventually in X A\ , being a contradiction with the fact that ∈xi i I( ) is in A. Thus, ∈x A.
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(2)⇒ (1): We show that X A\ is SI*2 -open. Let ⟶∈x xi i I

SI*
2

( ) and ∈x X A\ . Then ∈x X A\i eventually. Otherwise,
for each ∈i I , there exists a ∈φ i I( ) with ≥φ i i( ) such that ∈x Aφ i( ) . Let J be the subset of I consisting of all

∈j I such that ∈x Aj . Then J is cofinal in I and ∈xj j J( ) is a subnet of ∈xi i I( ) . As ⟶∈x xi i I

SI*
2

( ) , we have ⟶∈x xj j J

SI*
2

( ) ,
and hence, ∈x A by the assumption, which contradicts ∈x X A\ . So ∈x X A\i eventually. Hence, ∈X A\

X*
2� ��( ( )), that is, A is SI*2 -closed. □

Remark 4.5. For a T0-space X , we have the following statements:
(1) If ⊆U X is an SI2-open set, then U is SI*2 -open, that is, ⊆X X*SI 22

� � ��( ) ( ( )).

(2) If ⟶∈x xi i I

SI*
2

( ) , then ∈xi i I( ) converges to x with respect to the topology XSI2
� ( ).

Proof. (1) Let ∈U XSI2
� ( ). Then ∈U X2� ��( ( )) by Lemma 3.3. It follows from Remark 4.2(3) that ∈U X*

2� ��( ( )).

(2) Suppose ⟶∈x xi i I

SI*
2

( ) . Then ∈xi i I( ) converges to x in X X, *
2� ��( ( ( ))). By (1), we have that ∈xi i I( ) con-

verges to x with respect to the topology XSI2
� ( ). □

The following example shows that for a T0-space X , XSI2
� ( ) generally does not agree with X*

2� ��( ( )).

Example 4.6. Let Xcof be the space in Example 3.15. Then we have the following conclusions:
(a) Xcof is a T1-space and hence the specialization order of Xcoc is the discrete order.
(b) = ∈ ∪X x x X A A X: : is a countable infinite set ofcofIrr( ) {{ } } { }.
(c) For any ∈x X , x{ } is not open in Xcof , and hence, ∉x XSI2

�{ } ( ).
(d) For any ∈x X , ∈x X*

2� ��{ } ( ( )).

Suppose ⟶∈x xi i I

SI*
2

( ) . Then there exist an ∈F XcofIrr( ) such that conditions (i) and (ii) of Definition 4.1 hold.
For any two points ∈e e F,1 2 , since F satisfies condition (ii) of Definition 4.1, there is ∈ ×i i I I,1 2( ) such that

≤e xi1 and ≤e xj2 for any ≥i i1 and ≥j i2. As I is directed, there is ∈i I3 such that ∈ ↑ ∩ ↑i i i3 1 2. Then for any
≥i i3, = =e x ei1 2 (note that the specialization order of Xcoc is the discrete order). Hence, F is a single point set.

So ∈ =x F Fδ and ∈x xi { } eventually. Thus, ∈x X*
2� ��{ } ( ( )).

Now we give an example to show that for a T0-space X , O X*
2��( ( )) generally does not agree with X�( ).

Example 4.7. Let = ∪ ⊤L � { }, where � is the set of all natural numbers = n1, 2, 3, …, , …� { }, as a poset
with the partial order defined by for any ∈n �, < +n n 1 and < ⊤n . We consider the Alexandroff topological
spaces L α L,( ( )). Obviously, ⊤ = ↑ ⊤ ∈ α L{ } ( ). For any ∈n �, let =x nn . Set = ∈F n n: �{ }. Then ∈F

L α L,Irr( ( )), ⊤ ∈ =L Fδ, and for each ∈n F , ≤n xm holds eventually. Thus, ⟶ ⊤∈xn n

SI*
2

�( ) . But ∉ ⊤xn { } for
any ∈n �. So ⊤ ∉ X*

2� ��{ } ( ( )).

Lemma 4.8. Let X be an SI2-continuous space, ∈x X and ∈xi i I( ) be a net in X. Then the following three condition
are equivalent:

(1) ⟶∈x xi i I

SI*
2

( ) .

(2) ⟶∈x xi i I

SI2
( ) .

(3) ∈xi i I( ) converges to x with respect to the topology XSI2
� ( ).

Proof. (1) ⇒ (2): By Remark 4.5.
(2) ⇔ (3): By Proposition 3.21 and Theorem 3.24.
(3)⇒ (1): Let = ↡F xSI2

. Then ∈F XIrr( ) and ∈x Fδ by the SI2-continuity of X . For any ∈e F , by Proposition
2.10, we have ∈ ↟ ∈x e XSI SI2 2

� ( ). As ∈xi i I( ) converges to x in X X, SI2
�( ( )), ∈ ↟x ei SI2

eventually. Since ↟ ⊆ ↑e eSI2
,

we obtain that ≥x ei eventually. Thus, ⟶∈x xi i I

SI*
2

( ) . □
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By Lemmas 3.3 and 4.8, we obtain the following.

Corollary 4.9. For any SI2-continuous space X , = =O X O X X*
2 2 SI2

�� �� �( ( )) ( ( )) ( ).

Lemma 4.10. Let X be a T0-space and ∈x y X, . If ≪x ySI2
, then for any net ∈xi i I( ) in X , ⟶∈x yi i I

SI*
2

( ) implies ≥x xi

eventually.

Proof. Suppose that ≪x ySI2
and ∈xi i I( ) is a net of X SI*2 -converging to y. We show that ≤x xi holds eventually.

Since ⟶∈x yi i I

SI*
2

( ) , there is an ∈F XIrr( ) such that ∈y Fδ, and for each ∈e F , ≤e xi eventually. By ≪x ySI2
and

∈y Fδ, we have ∈ ↓x F , and hence, there is ∈e Fx such that ≤x ex . Consequently, ≤x xi eventually. □

Proposition 4.11. Let X be a T0-space, ∈y X and ∈xi i I( ) be a net in X. Consider the following two conditions:

(1) ⟶∈x yi i I

SI*
2

( ) .
(2) For any ≪x ySI2

, ≥x xi eventually.

Then (1) ⇒ (2), and two conditions are equivalent if X is SI2-continuous.

Proof. (1) ⇒ (2): By Lemma 4.10.
(2) ⇒ (1): Suppose that X is SI2-continuous. Let = ↡F ySI2

. Then by the SI2-continuity of X , ∈F XIrr( ) and

∈y Fδ. For any ∈e F , ≥x ei eventually by the assumption. Thus, ⟶∈x yi i I

SI*
2

( ) . □

Definition 4.12. A T0-space X is called SI*2 -continuous if for every ∈x X , the following two conditions hold:
(1) ↟ xSI2

is an SI*2 -open set in X .
(2) ↡ xSI2

is irreducible and = ∨↡x xSI2
(equivalently, ∈ ↡x x δ

SI2
( ) ).

Theorem 4.13. If X is an SI*2 -continuous space, then SI*2 -convergence in X is topological.

Proof. Suppose that ∈xi i I( ) converging to x in X X, *
2� ��( ( ( ))). We need to show ⟶∈x xi i I

SI*
2

( ) . Let = ↡F xSI2
. Then

∈F XIrr( ) and ∈x Fδ by the SI*2 -continuity of X . For any ∈e F , by the SI*2 -continuity of X again, we have
∈ ↟ ∈x e X*SI 22

� ��( ( )). As ∈xi i I( ) converges to x in X X, *
2� ��( ( ( ))), ∈ ↟x ei SI2

eventually. Since ↟ ⊆ ↑e eSI2
,

we obtain that ≥x ei eventually. Thus, ⟶∈x xi i I

SI*
2

( ) . □

But we do not know whether the converse of Theorem 4.13 is true. So naturally we asks the following
question.

Question 4.14. Characterize those T0-spaces X for which the SI*2 -convergence in X is topological.

Theorem 4.15. For a T0-space X, the following conditions are equivalent:
(1) X is SI2-continuous.
(2) X is SI*2 -continuous and =X X*

2 SI2
� �� �( ( )) ( ).

(3) X is SI*2 -continuous, and for any net ∈xi i I( ) in X and ∈x X , ⟶∈x xi i I

SI*
2

( ) iff ∈xi i I( ) converges to x with respect
to the topology XSI2

� ( ).

(4) X is SI*2 -continuous, and for any net ∈xi i I( ) in X and ∈x X , ⟶∈x xi i I

SI*
2

( ) iff ⟶∈x xi i I

SI2
( ) .

Proof. (1) ⇒ (2): Suppose that X is SI2-continuous. Then by Proposition 2.10 and Remark 4.5 (1), X is
SI*2 -continuous. By Corollary 4.9, = =O X O X X*

2 2 SI2
�� �� �( ( )) ( ( )) ( ).

(2) ⇒ (1): Trivial.

12  Yang and Xu



(2)⇒ (3): If ⟶∈x xi i I

SI*
2

( ) , then ⟶∈x xi i I

SI2
( ) by Remark 4.5(2), and hence, ∈xi i I( ) converges to x with respect to

the topology XSI2
� ( ) by Lemma 3.3. Conversely, if ∈xi i I( ) converges to x with respect to the topology XSI2

� ( ),
then it converges to x with respect to the topology XSI*2

� ( ) by =O X X*
2 SI2

�� �( ( )) ( ). Then by Theorem 4.13,

we obtain ⟶∈x xi i I

SI*
2

( ) .

(3) ⇒ (4): Suppose ⟶∈x xi i I

SI*
2

( ) . Then ∈xi i I( ) converges to x with respect to the topology X*
2� ��( ( )).

It follows from Remark 4.5(1) that ∈xi i I( ) converges to x with respect to the topology XSI2
� ( ). Conversely,

if ⟶∈x xi i I

SI2
( ) , then ∈xi i I( ) converges to x with respect to the topology XSI2

� ( ) by Lemma 3.3. By (3),

we obtain ⟶∈x xi i I

SI*
2

( ) .
(4) ⇒ (2): By (4) and Lemma 3.3, we have that = =X X X*

2 2 SI2
� �� � �� �( ( )) ( ( )) ( ). □

By Theorems 4.13 and 4.15, we obtain the following corollary.

Corollary 4.16. If X is an SI2-continuous space, then SI*2 -convergence in X is topological.
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