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1 Introduction

Convergence and convergence class play an important role in both order theory and general topology [1,2].
For a topological space (X, 7) and a class £ consisting of pairs ((X;);cz, X), where (x;);e; is a netin X and x a point
of X, the topology 7 can naturally induce a convergence class as follows:

C(1) = {((X)ier, X) : (x)ier isanetin X,x € X and forany U € 7,

Xx € U implies that (x;);e; is eventually in U}.

And we can define a topology on X associated with £:
O(L)={UCX:((X)ier,x) € L and x € U imply x; € U eventually}.

It is easy to verify that 7 = O(C(7)). However, if £ is not a convergence class in the sense of Kelley [2], then the
convergence class C(O(L£)) # L, that is, the class £ is not topological.

Numerous researchers have studied various types of convergences [1,3-11]. With different convergence,
they have not only proposed the corresponding continuity of posets (more generally, topological spaces) but
also presented some links between order theory and topology. In [1], it was proved that the lim-inf conver-
gence in a dcpo P is topological iff the poset P is a continuous domain. This result was generalized to partially
ordered sets (posets) in [3]. In [4], using the cut operator instead of joins, Ruan and Xu introduced and
discussed S-convergence and GS-convergence in posets. They proved that a poset P is s,-continuous (resp.,
sp,-quasicontinuous) iff the S-convergence (resp., the GS-convergence) in P is topological.

In the invited talk at the Sixth International Symposium on Domain Theory in 2013, Jimmie Lawson
emphasized the need to develop the core of domain theory directly in Ty-spaces to instead posets. In this
direction, by using irreducible sets instead of directed sets, Zhao and Ho [12] introduced the SI-topology on
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To-spaces as a generalization of the Scott topology on posets. In [5], Andradi et al. defined SI-convergence in
Tp-spaces and proved that for any Ty-space X having condition (I*), X is an I-continuous space iff SI-convergence in
X is topological. Later, Lu and Zhao [6] gave a characterization of Ty-spaces for the SI-convergence being topological.
In [7], Zhao et al. provided a different way to define irreducible convergence in Ty-spaces, which can be seen as
a topological counterpart of lim-inf convergence in posets, and presented a sufficient and necessary condition
for irreducible convergence to be topological in Ty-spaces. By using the cut operator of irreducible sets and
the specialization order of a given Ty-space, Shen et al. [8] defined the SI-topology on Ty-spaces and proved
that SI-convergence on a Ty-space X is topological whenever the space X is SI,-continuous. This naturally raises
a question whether there is a characterization of Ty-spaces for the SI-convergence to be topological.

In this article, we introduce a new way-below relation on T-spaces, called the L-way-below relation.
By using the L-way-below relation, we introduce the notions of I,-continuity and strongly I,-continuity of
Ty-spaces, both of them are strictly weaker than the SI,-continuity but are more closely related to the
SI,-convergence. We prove that the SI,-convergence in a Ty-space X is topological iff X is strongly I,-continuous,
giving an positive answer to the aforementioned question. Moreover, we define and study the SI;-convergence
in Ty-spaces, which can be seen as topological counterparts of the S-convergence and the irr-convergence
in posets. The related concept of SI3-continuous spaces is also introduced. It is proved that if a Ty-space X
is SI5-continuous, then the SI3-convergence in X is topological.

2 Preliminaries

In this section, we briefly recall some basic concepts and results about ordered structures and Ty-spaces that
will be used in the article. For further details, we refer the reader to [1-2,13-14].

For a poset P and A C P, define 1A ={x € P: a < xforsomea € A} and ! A = {x € P: x < afor some
a € A}. For x € X, let 1 x = t{x} and ! x = }{x}. A subset A is called a lower set (resp., an upper set) if A= 1A
(resp., A = 1 A). Define A" = {u € P: A C | u} (the sets of all upper bounds of AinP)and A' ={veP:AC v}
(the sets of all lower bounds of A in P). The set A® = (A")" is called the cut of A in P. If the set of upper bounds of A
has a unique smallest element (that is, the set of upper bounds contains exactly one of its lower bounds), we call this
element the least upper bound and write it as VA or sup A (for supremum). Similarly the greatest lower bound is
written as AA or inf A (for infimum).

The set of all natural numbers is denoted by N. When N is regarded as a poset (in fact, a chain), the order
on N is the usual order of natural numbers. A nonempty subset D of a poset P is called directed if every finite
subset of D has an upper bound in D. The set of all directed sets of P is denoted by D(P). The poset P is called
a directed complete poset, or dcpo for short, if for any D € D(P), vD exists in P.

Let P be aposetand a, b € P. We say that a is way below b, in symbolsa < b, if for all D € D(P) for which
VD exists in P, b < vD implies a € | D. The poset P is called a continuous poset if for any a € P, the set
ta={b€P:b<a}isdirected and a = v { a. A subset U of P is Scott open if (i) U = 1 U, and (i) for any
directed subset D for which VD exists, vD € U implies D N U # &. The topology formed by all the Scott open
sets of P is called the Scott topology, written as a(P). The upper sets of P form the (upper) Alexandroff topology
a(P). The topology generated by the collection of sets P\t x (as subbasic open subsets) is called the lower
topology and denoted it by w(P); dually, the upper topology on a poset P, generated by the complements of the
principal ideals of P, is denoted by v(P).

A net (x;);er in a set X is a mapping from a directed set I to X. For each x € X, one can define a constant net
with the value x by x; = x for all i € I. We denote this constant net by (x);e;. If Q(x) is a property of the
elements x € X, we say that Q(x) holds eventually in the net (x;);g; if there is a iy € J such that Q(x;) is true
whenever ij < 1.

Definition 2.1. [1] We say a net (x;);e; lim-inf converges to x in a poset P if there exists a directed subset D of P
such that

(i) vD exists and x < vD, and

(ii) for everyd € D, d < x; holds eventually, i.e., there exists iy € I such thatd < x; for all i > i.
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Definition 2.2. [4] Let P be a poset and (X;);je; a net in P.

(1) Apoint y € P is called an eventual lower bound of a net (x;);; in P, if there exists a k € J such that y < x;
for all j = k, i.e, (Xj);; is eventually in 1 y.

(2) Let S(P) denote the class of those pairs ((x;);s, X) such that x € DS for some directed set D of eventual
lower bounds of the net (x;);;. For each such pair, we again say that x is an S-limit of (x;)je; or (X))je;

, S
S-converges to X, and write (X;)je;f — X.

As in [9], an upper subset U of a poset P is called s,-open if for any directed subset D of P, D N U + @
implies D N U # &. The collection of all s,-open subsets of P forms a topology, called s,-topology, and is

denoted by s,(P). It is easy to see that s,(P) = O(S(P)) = {U C P : whenever x; 5, x and x € U, then even-
tually x; € U}. The way-below relation <, on P is defined by x <, y iff for any directed subset D of P, y € D%
implies x € | D.

Lemma 2.3. [5] Let P be a poset, D a nonempty subset of P, and (X;);; a net in P. Then the following conditions are
equivalent:

(1) D is a set of eventual lower bounds of (X;)ie;-

(2) For every upper set U of P, D N U # & implies x; € U eventually.

For a Ty-space X, let <y denote the specialization order on X: x <x y iff x € {y}. In the following, when
a Ty-space X is considered as a poset, the order always refers to the specialization order if no other explana-
tion. The pair (X, <y) is denoted by 2X or simply by X if no confusion arises, and sometimes we briefly write <
instead <x. Let O(X) (resp., (X)) be the set of all open subsets (resp., closed subsets) of X. Clearly, each open set
is an upper set and each closed set is a lower set with respect to the specialization order <y. For a subset of X,
denote the closure of A in X by clyA or simply by clA and the interior of A in X by intxA in X or simply by intA.
We also simply use A to denote the the closure of A if no confusion arises.

A nonempty subset A of a Ty-space X is called an irreducible set if for any Fy, F, € I'(X), A C F; U F, implies
A C Fyor A C F,. We denote by Irr(X) (resp., Ir(X)) the set of all irreducible (resp., irreducible closed) subsets
of X. Clearly, every subset of X that is directed under <y is irreducible and the nonempty irreducible sets of
a poset equipped with the Alexandroff topology are exactly the directed sets of P. And we said that X is
irreducible complete space if every irreducible subset of X has a sup.

Lemma 2.4. [15] If f: X = Y is continuous and A € Irr(X), then f(A) € Irr(Y).

For a set X and a class £ consisting of pairs ((x;)ies, X), Where (x;);es is a net in X and x is a point of X, the
topology on X associated with £ is denoted by O(L), thatis, O(L) = {U € X : (X;)ier, X) € L and x € U imply
X; € U eventually}.

Definition 2.5. [5,7] Let X be a Ty-space.
(1) A net (x;);er of X is said to irreducibly converge to a point x of X, if there exists an irreducible set F of X
with VF existing such that x < VF, and for each e € F, e < x; holds eventually. In this case, we

I
write (X;)ier 5 x.

(2) A net (x;)ie; of X is said to SI-converge to a point x of X, if there exists an irreducible set F of X with VF
existing such that x < VF, and for every U € O(X), F N U # & implies x; € U eventually. In this case, we

) st
write (X;)ier — X.

An open subset U of Ty-space X is called SI-open if for any F € Irr(X), VF € U implies F N U # & whenever
VF exists. The collection of all SI-open sets, denoted by Og(X), is a topology on X, called the irreducibly-derived
topology (shortly SI-topology). The space (X, Og(X)) will also be simply written as SI(X). In [7], Zhao et al.
denoted by 7, the topology induced by irr-convergence.
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Proposition 2.6. [5] For any Ty-space X, the SI-topology coincides with the topology induced by SI-convergence,

namely, V € Os(X) iff for every net (x))ie; in X, (Xp)ier & x and x € V imply x; € V eventually.

Definition 2.7. [5,7,12] Let X be a Ty-space and x,y € X. We say

(1) x is SI'way-below y, in symbols x <g; y, if for any irreducible set F of X, y < VF implies x € | F whenever
VF exists.

(2) x is I'way-below y, in symbols x <y, if for every irreducible set F of X with VF existing, y < VF
implies x € clIF.

(3) x is Irr-way-below y, in symbols x <, y, if for every net (x;);e; in X irreducibly converging to y, x < x;
holds eventually.

Definition 2.8. [8] Let X be a Ty-space. A subset U of X is called SI,-open if the following two conditions are
satisfied:

(1) U is an open set in X, and

(2) for any F € Irr(X), FS N U # @ implies FN U # @.

The set of all SI,-open sets in X is denoted by Og,(X). It is straightforward to verify that Og,(X) is a topology
on X, called the SI-topology. The space (X, Os,(X)) will also be simply written as SIy(X).

Definition 2.9. [8] Let X be a Ty-space and x, y € X.

(1) We say that x is SI,-way-below y, in symbols X <g, y, if for all irreducible set F of X, the relation y € F¢
always implies x € { F. We write {s, a = {X € X : x <g, a} and %5, a = {x € X : a <, x}.

(2) The space X is called SI>-continuous if for any x € X, %5, x € O(X), {s, X € Irr(X) and x = Vg, X.

By Remark 5.1(1) and Proposition 5.6 of [8], we obtain the following result.

Proposition 2.10. For a Ty-space X, the following conditions are equivalent:
(1) X is SI,-continuous.

(2) Forall x € X, %, x € O(X), s, x € Irr(X), and x = (s, X)°.

(3) For all x € X, 151, x is SI-open, i1, X € Irr(X) and x = Vg, X.

(4) For all x € X, %, x is SIy-open, {55, x € Irr(X) and x = (ds1,%)°.

Throughout this article, when we say X is a space, it always means X is a Ty-space. For x € X and a net
(x)ier in X, we use the symbols (x;);c; — x to represent that the net (x;);c; converges to x in the space X.

3 I,-continuous spaces and strongly I,-continuous spaces

In this section, we introduce the notions of I-continuous spaces and strongly I,-continuous spaces, and discuss
some basic properties of these spaces. Especially, we prove that a Ty-space X is strongly I,-continuous iff SI,-
convergence on X is topological.

We first recall the definition of SI,-convergence and give some its properties.

Definition 3.1. [8] We say a net (x;);e; SI,-converges to a point x in a Ty-space X if there exists an irreducible set
F in X such that

@i x € Fé and

(ii) for any U € O(X), F N U # & implies x; € U eventually.

SI, SI.
And in this case, we write (x;)ie; — X. Let ST(X) = {((x)ier, X) : (X)ier isanetin X, x € X and (x)ie; — x}.
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Remark 3.2. For a Ty-space X, we have the following statements:
(1) The constant net (x);e; in X with value x SI,-converges to x.

2) If (X)ier % x in X, then (x)ier & y for any y < x. Thus, the SI,-convergence points of a net are generally
not unique.

(3) Let P be a poset. Then the SI,-convergence in (P, a(P)) coincides with the S-convergence in P.

(4) If X is irreducible complete, then for any net (x;)ic; in X, (X;);e; SI-converges to x € X iff (x;)ie; SIo-
converges to X.

Lemma 3.3. [8] For any Ty-space X, the two topologies O(SI,(X)) and Os;,(X) coincide, that is, Og,(X) ={UC P :

SI.
whenever (x)ie; — x and x € U, then eventually x; € U}.

Recall that a net (y]-)je] is a subnet of (x;);e; if (i) there exists a function g : J — I such that Vi = Xe(j) for all
j €], and (ii) for each i € I there exists j* € J such that g(j) = i whenever j 2 j".

Proposition 3.4. Let X be a Ty-space and A € X. Then the following conditions are equivalent:
(1) A is an SIy-closed set.
(2) Ais a closed subset of X, and for any irreducible set F in X, F C A implies F® C A.

Sl
(3) For any net (x))iey in A, if (X)ier =3 x, then x € A.

Proof. (1) © (2): See [8, Proposition 3.6].
Sl
@) = (3): Let (x;)ie; be anetin A and (x;)ier = x.If x & A, then x € X\A. Since A is an SI,-closed set, X\A

is SI-open, and hence, X\A € Og,(X) by Lemma 3.3. Then the net (x;)ic; must be eventually in X\A, being
a contradiction with the fact that (x;);e; is in A. Thus, x € A.

Sl
(3) = (): We show that X\A is SL-open. Let x € X\A and (X))es =3 x. Then the net (Xier is eventually
in X\A. Otherwise, for each i € I, there exists a ¢(i) € I with ¢(i) = i such that X, € A. Let ] be the subset

Sl
of I consisting of all j € I such thatx; € A. Then J is cofinal in I, and (x;);e; is a subnet of (x;)ier. AS (Xpier = x,

SI
we have (x;)je; — X, and hence, x € A by (3), which contradicts x € X\A. Then we conclude that the net (x;)es
is eventually in X\A. Hence, X\A € O(SIy(X)). By Lemma 3.3, A is SI,-closed. ]

Lemma 3.5. Let X be a Ty-space and F be an irreducible set of X with x € FS. Then there exists a net (x;)ie; in X
such that all of its terms are in F and (X;)ie; Sl,-converges to x.

Proof. Let I = {(U,n,e) € O(X) x N x F: e € U} and define an order on I by the lexicographic order on the
first two coordinates, that is, (U, m,a) < (V,n,b) iff V is a proper subset of U or U=V and m < n. For
any (U, ny, 1), (Uy, Ny, €5) € I, we have e; € FN U; and e; € F N U,. By the irreducibility of F, we have
FNUNU,# Q. Select e3 € FN Uy N Uy. Then (Uy, my, €y), (Uy, Ny, €3) < (Uy N Uy, ng + ny + 1, €3). Hence, I is
a directed set. We let Xy ne) = € for any (U, n, e) € I. Now we show that the net (), ne)erSh-converges
to x. We firstly have that F € Irr(X) and x € F® by the assumption. For any U € O(X) with F N U # @, select
adeFNU. Then (U,1,d) €I and e€ U for all (V,n,e) €I with (V,n,e) = (U,1,d), proving that
(e)w,neer Sh-converges to X. O

Proposition 3.6. Let X,Y be Ty-spaces and f be a continuous mapping from X to Y. Then the following two
conditions are equivalent:
(D fis a continuous mapping from SL(X) to SI(Y).

SI. SI.
(2) For any net (x;)ie; and x € X, (X;)ier SxinX implies f(X)ier = f(x)inY.

Proof. (1) = (2): First, f is order-preserving. In fact, if x <y y, i.e., x € cl{y}, then we have f(x) € f({y}) € fF({y})
by the continuity of f: X — Y, whence f(x) <y f(y). Suppose that (x;)ies = x in X. Now we show that
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Fier % fOO)InY. As (x)ier X X, there exists an irreducible set F in X such that conditions (i) and (ii) of
Definition 3.1 are satisfied. Then f(F) € Irr(Y) by Lemma 2.3. Since f is order-preserving, we obtain
fO) € F(FS) = f(FN) € (FEN) S (FF)) = (F(F))°. For VE O(Y), if f(F)NV # @, then FN f1(V) # &
and (V) € O(X) by the continuity of f: X — Y, and consequently, x; € f~(V) eventually. Hence, f(x;) € V

eventually. Thus, f(x)ier ki fX)inY.

(2) = (1): Let V € Ogp,(Y). By the continuity of f: X - ¥, we have f1(V) € O(X). For any F € Irr(X),
if F¥ N f~1(V) # @, then we can select a pointa € F N f~1(V). By Lemma 3.5, there exists a net (a;)ej, in F SI,-
converging to a. By the assumption, the net (f(a;))ics. SIo-converges to f(a) and f(a) € V. Hence, by Lemma
3.3, f(a;) € V eventually, or equivalently, a; € f~(V) eventually. It follows that F N f~1(V) # @. We conclude
that (V) € Og,(X), and therefore, (1) holds. O

In [8], Shen et al. proved that the SI-convergence in a Ty-space X is topological whenever the space X is
SI,-continuous. This naturally raises a question whether there is a characterization of Tj-spaces for the
SI,-convergence to be topological. In the remainder of this section, we shall give such a characterisation.

First, we introduce a new notion of way-below relation.

Definition 3.7. Let X be a Ty-space and x, y € X. We say that x is I,-way-below y, in symbols x <, y, if for any
irreducible set F in X, y € F¢ implies x € cIF.

Fora € X, we write {,a={x EX: x <y a} andf, a = {x € X: a <, x}.

Remark 3.8. For a Ty-space X, the following statements hold for all u, x,y, z € X:
() x <,y implies x < y;

(i) u < x <,y <z implies u <y, z;

(iii) x <, y iff for every irreducible closed set F, y € F$ implies x € F;

(iv) x <, y implies x <, y. Hence, {g, x € {,x € | x.

One can easily see that when X is a poset P endowed with the Alexandroff topology, the I,-way-below
relation is exactly the way-below relation <, (cf. [15, Fact 2.6]). When X is irreducible complete, we have
X <, yiff x < y.

The following example shows that <, is different to «g; and also different to <«; in general.

Example 3.9. Let Q = {ay, ay, ...,ay, ...} U {by, by} U {c} and define a partial order < on Q as follows (see
Figure 1):
(1) ag<ay<..< Ay < Aps1 <...;
(ii) ap < b, ap<byforalln €N;
(iii) b; and b, are incomparable; and
(iv) ¢ < by and c < b,.

Consider the Alexandroff topology space (Q, a(Q)). Then Irr((Q, a(Q))) = D(Q) (cf. [15, Fact 2.6]). It is easy
to verify that for any D € D(Q), D has a largest element or D C {a,.; : n € N} is countable infinite. Hence for
any A € Irr((Q, a(Q))) for which VA exists, we have that ¢ < VA implies ¢ € | A. So ¢ <g ¢ and hence ¢ < c.
Let F = {ap+1 : n € N} Then F € Irr((Q, a(Q))) and ¢ € FS = F U {c} but ¢ & clA = A. Thus, ¢ ¥, c.

Example 3.15 shows that <, is different to <g, in general.

Proposition 3.10. Let X be a Ty-space and x,y € X. Then the following two conditions are equivalent:
D x < y.

S . .
(2) For any net (X1 of X, (Xp)ier =3 y implies (X;)ie; — X.
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Figure 1: The poset Q in Example 3.9.

Proof. (1) = (2): Suppose that x <, y and (x;);e; is a net of X SI,-converging to y. We show that (x;);e; converges

to x in the space X. As (X)ies X y, there exists an F € Irr(X) such that y € Fé, and F N V # @& implies x; € V
eventually for any V € O(X). Then we have x € cIF by y € FS and x <, y. Hence, for any U € O(X) with
x € U, it holds that F N U # &, and then x; € U eventually. Therefore, (x;)ic; — x.

(2= (D: Let F € Irr(X) with y € F®. Then by Lemma 3.5, there exists a net (x;);er, such that all of its terms
are in F and it SI,-converges to y. So (X)ie;, — x. Then for any U € O(X) with x € U, we have ; € U
eventually. Since {x; : i € I} C F, it holds that x; € F N U eventually, and hence, F N U # &, proving that
X € cIF. Thus, x <, y. ]

Definition 3.11. A Ty-space X is called I-continuous if for every x € X, {;,x € Irr(X) and x € (;,x)°.

Remark 3.12. By Remark 3.8 (i), we can easily see that a Ty-space X is L-continuous iff for any x € X,
iLx € Irr(X) and x = Vigx.

Proposition 3.13. For a Ty-space X, the following two conditions are equivalent:
1) X is I,-continuous.
(2) For any x € X, there exists F € Irr(X) such that F C {,x and x = VF.

Proof. (1) = (2): Let F = {;,x. Then F € Irr(X) and x = VF.
(2)= (): For x € X, by the assumption, there exists an irreducible subset F C i;,x such that x = VF. Then

Fé =1 VF = lx, and hence, x € F4, It follows that F C {},x C clF. So cl i;,x = cIF € Ir(X). Then ¥1,x € Irr(X)
and x = VF = VclF = vl §;,x = vigx. Thus, X is L-continuous. ]

By Remark 3.8(iv) and Proposition 3.13, we directly obtain the following corollary.
Corollary 3.14. Every Shy-continuous space is I-continuous.
However, I,-continuous spaces are not SI,-continuous in general, as shown in the following example.

Example 3.15. Let X be a countable infinite set and X, the space equipped with the co-finite topology
(the empty set and the complements of finite subsets of X are open). Then

(@) Xcor is a Ti-space, and hence, its specialization order is the discrete order on X.

(b) Irr(Xeor) = {{x} : x € X} U {A : A is a countable infinite set of X} and Irr,(Xof) = {{x} : x € X} U {X}.

(c) For any countable infinite set A of X, clA = X.

(d) For x,y € X, x <y, y iff x = y by (b) and (c). So X, is I,-continuous.

(e) For any x,y € X, x Kgj, V.
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In fact, if x <g, y, then as y € {y} = {y}%, we have x € {y} = {y} and hence, x = y. By (b), X\{x} € Irr(Xcf)
and x € X = (X\{x})?, but x € I(X\{x}) = X\{x}, which is a contradiction with x <g1, y. Thus, x <, y for
nox,y € X.

() Xcof is not SIy-continuous by (e).

Proposition 3.16. Let X be a Ty-space, y € X and (X;);c; be a net in X. Consider the following two conditions:

SI.
D OQier — Y-
(2) For any x <y, (X))ier — X.

Then (1) = (2), and two conditions are equivalent if X is L,-continuous.

Proof. (1) = (2): By Proposition 3.10.
(2) = (1): Suppose that X is L-continuous. Then 5,y € Irr(X) and y € (4, y)°. For any U € O(X),
if 4, y N U # &, then there is x € U such that x <y, y, and hence, (x;)icr — x by (2). So x; € U eventually.

SI
Thus, (X))ier — Y- U
Proposition 3.17. Let X be a Ty-space. If Sl-convergence in X is topological, then X is ,-continuous.

Proof. By Lemma 3.3, O(SIy(X)) = Og,(X). Thus, if SL-convergence in X is topological, we must have
(Xier it x iff (x;)ier convergesto x with respect to the topology Osp,(X).
Let x € X. Define
I={U,n,a) € Ng,(x) xN x X :a € U},

where Ngp,(x) consists of all open sets containing x in the space (X, Og,(X)), and define an order on I
by the lexicographic order on the first two coordinates, that is, (U, m,a) < (V,n, b) iff V is a proper
subset of U or U = V and m < n. For any (U}, my, @y), (Uy, ny, a3) € I, we have U; N U; € Ng(x), and hence,
(U1 N Uz, n+n+ 1, X) e]. Clearly, (Ul, ny, al) < (U1 n Uz, n+n+ 1, X) and (Ug, ny, az) < (U1 N Uz, n+n+
1, x). Thus, I is a directed set. Let x; = a fori = (U, n, a) € I.Itis easy to see that the net (x;);c; converges to X in
(X, Og,(X)), and hence, (X;)ier % x. So there exists an irreducible set F € Irr(X) such that (x;);c; and F satisfy
conditions (i) and (ii) of Definition 3.1. Now we show that F C {;,x.

Suppose that s € F. We verify that s <;, x. Let E € Irr(X) and x € E°. Then by Lemma 3.5, there exists
a net (¢)je; such that all of its terms are in E and (¢;);e; SI-converges to X, and hence, it converges to X in
the space (X, Og,(X)) by Lemma 3.3.

For V€ O(X) with s € V, we have s € FN V, and hence, FN V # &. As (x;);e; and F satisfy conditions
() and (ii) of Definition 3.1, there is iy = (Up, mg, z) € I such that x; € V for all i = iy. For any t € Uj,
(Up, mg + 1, t) > (Up, Mg, ), whence t = Xy, me+1,) € V. S0 x € Up € V. Since Uy € Ngp,(x) and (¢);e; converges
to x in (X, Os,(X)), ¢ € U eventually, and consequently, ¢; € V eventually. Hence, E N V # & (note that (¢));e;
is a net in E), proving that s € clyE.

In summary, we have proved that for any E € Irr(X) with x € E%, s € clxE. Hence, s <, X. Thus, F C {,x.
Therefore, F € Irr(F), F C ;,x and x € F3. So by Proposition 3.13, X is I-continuous. O

Proposition 3.18. Let X be a Ty-space. If Sl,-convergence in X is topological, then for any x,y € X with x <, y
and U € O(X) with x € U, there exists an Sh,-open set W such that y € W C U.

Proof. Suppose that x <, y,U € O(X) and x € U.Then y € %, x € U. Consider the net (y)je; similarly defined
in the proof of Proposition 3.17, where J = {(V, n, b) € Ng,(y) x N x X : b € V} with the lexicographic order

St
on the first two coordinates and Yy, ,, 5, = b for any (V, n, b) € I. Then (y})je; = y (see the proof of Proposition
3.17). Hence, there exists an irreducible set M such that y € M%, and for any O € O(X), 0 N M # @ implies
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Y; € O eventually. By x <, y, we have x € clyM, and consequently, UN M # @. So y; € U eventually, more
precisely, thereis j, = (W, [, ¢) € J such that y; € U for all j 2 j,. Then W is Sh-open. For any z € W, we have
(W,1+1,2) > (W, c), whence z = Ywe1) € U SoyeWwWcU. O

Motivated by Propositions 3.17 and 3.18, we introduce the following concept.

Definition 3.19. A Ty-space X is called strongly I,-continuous if the following two conditions hold:
(i) for any x € X, {;,x € Irr(X) and x € (4, x)¢ (i.e., X is I,-continuous), and
(i) for any x,y € X with x <, y and U € O(X) with x € U, there exists an SI,-open set W with y e WC U.

Proposition 3.20. Let X be an I,-continuous space such that %, x is SL-open for all x € X. Then X is a strongly
I,-continuous space.

Proof. We only need to verify condition (ii) of Definition 3.19. Let x, y € X with x <}, y and U € N(x). Then by
the assumption %, x is Sh-open. By Remark 3.8(i), we obtain y € f, x € U. Thus, X is strongly L-contin-
uous. 0

Proposition 3.21. If X is an SL,-continuous space, then X is strongly I,-continuous.

Proof. By Corollary 3.14, it is sufficient to verify condition (ii) of Definition 3.19. Let x, y € X with x <, y and
U € N(x). Since X is Sk-continuous, is;, y € Irr(X) and y € ({s;, y)° (note that y = Vv {g, y is equivalent to
Yy € (Y1, y)%). As x <Yy, we have x € cly {5, y, and hence, {5, yN U # & by U € N(x). Select a point
z € {5, y N U. Thenfy, z € Og,(X) by Proposition 2.10 and y € 5, z € U. So X is strongly I,-continuous. [

The converse of Proposition 3.21 may not be true, as shown in the following example.

Example 3.22. Let X.,s be the space in Example 3.15. Then by Example 3.15, we have the following conclusions:
(@) Xcof 1s an I,-continuous T3-space.
(b) Xt is not SI,-continuous.
(© Irr(Xeor) = {§x}: x € X} U {A : A is a countable infinite set of X}.
(d) Foranys,t€X,s<,tiffs=t.

Now we show that X is strongly I-continuous. Suppose that x <, y and U € N(x). We first verify that U
is SI,-open. For F € Irr(X o) with Fé N U # @, by (c) F = {z} for some z € X or F is a countable infinite set of X.
Then F® = {z} or F¥ = X, and hence,z€ FN U or FN U # @ by |F| = w and U is an co-finite open set. So U
is SI,-open, and by (d), we have y = x € U C U. Thus, X is strongly I,-continuous.

Proposition 3.23. If X is a strongly I-continuous space, then Sk-convergence in X is topological.

Proof. Let (X;)ie; be a net in X and x € X. Obviously, (X)ier ht x implies that (x;);e; converges to x in
(X, O(SI5(X))). Conversely, suppose that (x;);e; converges to x in (X, O(SZyX))). Then by Lemma 3.3,

SL
(x)ie; converges to x with respect to the topology Og,(X). We will show that (X;)ies = x. Let E = X

Then by the strong I-continuity of X, we have that F, € Irr(X) and x € F¢. For any U € O(X), if E, N U # @,
then we can select au € F, N U. Hence, u <, x and U € N(u). By the strong I,-continuity of X again, there is
an SL-open set W such that x € W C U. Since (X;);e; converges to x in (X, Og,(X)), there is iy € I such that

I
X; € WC U for alli 2 iy, proving that (x;);e; 2 x. Thus, Sk,-convergence is topological. ]

By Lemma 3.3, Propositions 3.17, 3.18, and 3.23, we obtain the main result of this article.
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Theorem 3.24. For a Tj-space, the following conditions are equivalent:
(1) Sk-convergence X is topological.

Sl

(2) For any net (X))ie; in X and x € X, (Xp)ier = x iff (x;)ier converges to x with respect to the Sl
topology Og,(X).

(3) X is strongly I-continuous.

From Proposition 3.21 and Theorem 3.24 we directly deduce the following [8, Proposition 5.13].

Corollary 3.25. [8] If X is an Sk,-continuous space, then the Sl,-convergence in X is topological.

4 SI5-continuous spaces

In this section, as a common generalization of the irr-convergence and the S-convergence, we introduce the
concept of SI5-convergence in Ty-spaces and the related concept of SI3-continuous spaces. Some basic proper-
ties of them are discussed. It is proved that if X is SI5-continuous, then the SI5-convergence in X is topological.

Definition 4.1. We say a net (x;);e; SI5-converge to a point x in a Ty-space X if there exists an irreducible set F
in X such that

(i x € F$, and

(ii) for each e € F, e < x; holds eventually.

*

SI; SI
In this case, we write (X;)ie; — X. Let ST35(X) = {((X)ier, X) : (X)ier isanetin X, x € X and (X)ie; — X}.

Remark 4.2. For a Ty-space X a net (X;)ie; in X, we have the following statements:
(1) The constant net (x)je; in X with value x SI3-converges to x.

SI, SI,
) If (X)ie; — x in X, then (x;);c; — y for any y < x. So the SI}-convergence points of a net are generally not
unique.

*

SI; SI SI.
() (X)ier — x implies (x);e; — x. In fact, if (X;)ic; — X, then there exists an irreducible set F of eventual
lower bounds of (x;);e; such that x € Fé. For anyU € O(X),if F N U # &, then we can selectane € FN U.

Sl
Hence, e < x; holds eventually, and consequently, x; € t U = U eventually. Thus, (X))er = x.

(4) Let P be a poset and (s;);jc; be a net in P. Then (sj);¢; SI3-converges to s in (P, a(P)) iff (s;);;S-converges
to s iff (sj)je; SI-converges to s by Lemma 2.3.

Definition 4.3. Let X be Tj-space. Then

SI;
O(ST3(X)) = {U C X : whenever (x)ic; — x and x € U, then eventually x; € U}

is a topology, called the SI-topology on X. A subset U of X is said to be SI3-open if U € O(SI3). Complements
of SI3-open sets are called SI3-closed sets.

Lemma 4.4. Let X be Ty-space and A € X. Then the following two conditions are equivalent:
(1) A is SI-closed.

SI,
(2) For any net (x)ie; in A, (X))ie; — x implies x € A.

SI;
Proof. (1) = (2): Let (x;)icr be a net in A and (X;);es S x.Ifx¢ A thenx € X\A € O(ST3(X)). Hence, the net
(x)ier must be eventually in X\A, being a contradiction with the fact that (x;);c; is in A. Thus, x € A.
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SI
(2) = (1): We show that X\A is SI;-open. Let (X;);e; =3 x and x € X\A. Then X; € X\A eventually. Otherwise,
for each i € I, there exists a ¢(i) € I with ¢(i) 2 i such that x,;) € A. Let J be the subset of I consisting of all
SI; SIy
J € I such that x; € A. Then J is cofinal in I and (x;)j; is a subnet of (x;)ier. As (X;)ier — X, we have (x)je; — X,
and hence, x € A by the assumption, which contradicts x € X\A. So x; € X\A eventually. Hence, X\A €

O(ST5(X)), that is, A is SI3-closed. O

Remark 4.5. For a Ty-space X, we have the following statements:
(1) IfU C X is an SI,-open set, then U is SI-open, that is, Og,(X) € O(ST5(X)).

SIy
@ If (Xpier =3 x, then (x)ie; converges to x with respect to the topology Og(X).

Proof. (1) Let U € Og},(X). ThenU € O(SI,(X)) by Lemma 3.3. It follows from Remark 4.23) that U € O(S7 5(X)).

S,
(2) Suppose (X)ier =3 x. Then (X)ier converges to x in (X, O(SI3(X))). By (1), we have that (x;);; con-
verges to x with respect to the topology Ogp,(X). O

The following example shows that for a Ty-space X, Os,(X) generally does not agree with O(S75(X)).

Example 4.6. Let X, be the space in Example 3.15. Then we have the following conclusions:
(@) Xcof is a Ti-space and hence the specialization order of X, is the discrete order.

(b) Irr(Xeor) = {{x} : x € X} U {A : A is a countable infinite set of X}.

(c) For any x € X, {x} is not open in X, and hence, {x} & Og,(X).

(d) For any x € X, {x} € O(ST5(X)).

*

Suppose (X))ier ! x. Then there exist an F € Irr(X.or) such that conditions (i) and (ii) of Definition 4.1 hold.
For any two points e;, e; € F, since F satisfies condition (ii) of Definition 4.1, there is (ij, i;) € I % I such that
ep<x;ande; < xjforanyi 2 i and j = ip. As I is directed, there is i3 € I such thati; € 1 i; N 1 i,. Then for any
i 2 i3,e; = X; = e, (note that the specialization order of X, is the discrete order). Hence, F is a single point set.
So x € F¥ = F and x; € {x} eventually. Thus, {x} € O(ST3(X)).

Now we give an example to show that for a Ty-space X, O(S75(X)) generally does not agree with O(X).

Example 4.7. Let L =N U {T}, where N is the set of all natural numbers N = {1, 2, 3, ...,n, ...}, as a poset
with the partial order defined by for anyn € N,n < n + 1 and n < T. We consider the Alexandroff topological
spaces (L, a(L)). Obviously, {T} =1 T € a(L). For any n €N, let x,=n. Set F={n:n €N}. Then F €

Irr(L, a(L)), T € L = F4, and for each n € F, n < X, holds eventually. Thus, (X;)nen e T. But x, & {T} for
anyn €N, So {T} &€ O(ST5(X)).

Lemma 4.8. Let X be an Sl,-continuous space, x € X and (x;)ic; be a net in X. Then the following three condition
are equivalent:

SI,
M ier — x.
I
@ ier — X.
(3) (x)ier converges to x with respect to the topology Osp,(X).

Proof. (1) = (2): By Remark 4.5.

(2) © (3): By Proposition 3.21 and Theorem 3.24.

(3)= (1): Let F = {g,x. Then F € Irr(X) and x € F9 by the S-continuity of X. For any e € F, by Proposition
2.10, we have x € fg,e € Og,(X). As (Xp)ies converges to x in (X, Os,(X)), x; € T, € eventually. Since s, e € 1 e,

5

SI
we obtain that x; > e eventually. Thus, (X;)ies = x. O
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By Lemmas 3.3 and 4.8, we obtain the following.
Corollary 4.9. For any SL-continuous space X, O(S715(X)) = O(SIx(X)) = Og,(X).

SIy
Lemma 4.10. Let X be a Ty-space and x, y € X. If x <g, y, then for any net (x;)ie; in X, (X))ier = y implies x; = x
eventually.

Proof. Suppose that x <, y and (X;);s is a net of X SI3-converging to y. We show that x < x; holds eventually.

SI;
Since (X;)ie; — y, there is an F € Irr(X) such that y € F%, and for each e € F, e < x; eventually. By x <gp, y and
y € F%, we have x € | F, and hence, there is e, € F such that x < e,. Consequently, x < x; eventually. O

Proposition 4.11. Let X be a Ty-space, y € X and (x;);c; be a net in X. Consider the following two conditions:

SIy
M (ier — Y-
(2) For any x <1, y, X; = x eventually.

Then (1) = (2), and two conditions are equivalent if X is Sk-continuous.

Proof. (1) = (2): By Lemma 4.10.
(2) = (D: Suppose that X is SL-continuous. Let F = {g, y. Then by the SL-continuity of X, F € Irr(X) and

*

St
y € Fé. For any e € F, x; > e eventually by the assumption. Thus, (X)ic; — Y. O

Definition 4.12. A Ty-space X is called SI3-continuous if for every x € X, the following two conditions hold:
(1) f,x is an SI-open set in X.

(2) dsp,x is irreducible and x = Vig,x (equivalently, x € (45;,X)%).
Theorem 4.13. If X is an SI3-continuous space, then SI;-convergence in X is topological.

SI;
Proof. Suppose that (X;);; converging to x in (X, O(SI3(X))). We need to show (x;);er 3 x.LetF= Y51, X. Then
F € lrr(X) and x € F9 by the SI}-continuity of X. For any e € F, by the SI3-continuity of X again, we have
X € 15, e € O(ST5(X)). As (x)ier converges to x in (X, O(ST5(X))), X; € %, e eventually. Since %, e C 1 e,

SI;
we obtain that x; 2 e eventually. Thus, (X))er = x. O

But we do not know whether the converse of Theorem 4.13 is true. So naturally we asks the following
question.

Question 4.14. Characterize those Ty-spaces X for which the SI3-convergence in X is topological.

Theorem 4.15. For a Ty-space X, the following conditions are equivalent:
(1) X is SI,-continuous.
(2) X is SI3-continuous and O(SI5(X)) = Os,(X).

SI;
(3) X is SI3-continuous, and for any net (x;)ier in X and x € X, (X;)ies Sx iff (x;)ie; converges to x with respect
to the topology Os,(X).

o

. . . sty Sl
(4) X is SI3-continuous, and for any net (x))ier in X and x € X, (Xier Sx iff (X)ier = x.

Proof. (1) = (2): Suppose that X is SI-continuous. Then by Proposition 2.10 and Remark 4.5 (1), X is
SI5-continuous. By Corollary 4.9, O(ST35(X)) = O(SIyX)) = Os,(X).
(2) = (: Trivial.
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SI;
)= 3): If (Xy)ier = x, then (Xier % x by Remark 4.5(2), and hence, (x;);c; converges to x with respect to
the topology Os;,(X) by Lemma 3.3. Conversely, if (x;)ie; converges to x with respect to the topology Osg,(X),
then it converges to x with respect to the topology Og;3(X) by O(S75(X)) = Os,(X). Then by Theorem 4.13,

*

I
we obtain (X)ie; — X.

SI;
(3) = (4): Suppose (X))ie; — x. Then (x;)ie; converges to x with respect to the topology O(SZ3(X)).
It follows from Remark 4.5(1) that (x;)ie; converges to x with respect to the topology Ogy,(X). Conversely,

if (X)ier % x, then (xy);e; converges to x with respect to the topology Og,(X) by Lemma 3.3. By (3),

we obtain (X;)ier i X.
(4) = (2): By (4) and Lemma 3.3, we have that O(S75(X)) = O(SZ1(X)) = Os,(X). O

By Theorems 4.13 and 4.15, we obtain the following corollary.
Corollary 4.16. If X is an SL-continuous space, then SI;-convergence in X is topological.
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