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Abstract: For a simple graph Γ, Γ is said to be s-regular, provided that the automorphism group of Γ regularly
acts on the set consisting of s-arcs of Γ. Given a positive integer n, the question on finding all s-regular graphs of
order n and degree 3 has received considerable attention. An s-regular graph with degree 3 is so-called a cubic
symmetric graph. Let p be a prime. We show that if Γ is a cubic symmetric graph of order p88 , then ∈p

5, 11, 23{ }; if Γ is a cubic symmetric graph of order p88 2, then =p 11. Moreover, we classify all cubic symmet-
ric graphs of order p88 and p88 2.
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1 Introduction

In the short note, it is assumed that every graph being discussed is finite and connected. For a given graph, say
X , V X( ) always denotes the vertex set of X , and E X( ) denotes the edge set of X . In this graph X , the ordered

+s 1( )-tuple w w w, , …, s0 1( ), where ⊆w w w V X, , …, s0 1{ } ( ) that satisfies what −wi 1 is adjacent to wi for any
≤ ≤i s1 and ≠− +w wi i1 1 for every ≤ <i s1 is called an s-arc. For given graph X , the automorphism group

of X is denoted by XAut( ). If XAut( ) acting on the set consisting of all s-arcs of X is transitive, then X is said to
be s-arc-transitive. Particularly, 0-arc-transitive is also said to be vertex-transitive. Also, a 1-arc-transitive graph
is said to be arc-transitive, and sometimes, we also called it as a symmetric graph.

Assume thatG is a permutation group.G that acts on the set Ω is called semiregular, provided that no non-
trivial element ofG can fix a point ofΩ. Thus, from orbit-stabilizer theorem, it follows that ifG is a semi-regular
group, then the length of any orbit is G∣ ∣. In particular, if G is transitive and semi-regular, then G is said to
be a regular group. Recall that X is graph. If a subgroup of XAut( ) acts regularly on the set consisting of all
s-arcs of X , then this subgroup is called a s-regular subgroup. In particular, if we take the subgroup which is

XAut( ), then the given graph X is called a s-regular graph. Given a group G and a subset S of G, if
≔ ∈ =− −

S s s S S:1 1{ } , then S is called a inverse-closed subset. Now, suppose that e is the identity of G, and
S is a subset of G and is inverse-closed with ∉e S . The Cayley graph, denoted by G SCay ,( ), is a simple graph
with vertex set G where two distinct a b, are adjacent, provided that ∈−

ba S
1 .

Suppose that N is a subgroup of XAut( ) where X is a graph. The quotient graphwith N , denoted by XN , is a
graph whose vertex set is the set of all orbits of N , and two distinct orbits A and B are adjacent in XN if and
only if in graph X , there is an edge whose one vertex is in A and another vertex in B. Recall that in a graph,
N v( ) is the set consisting of all vertices adjacent to this vertex v. For two graphs X̃ and X , X̃ is said to be
a covering of X (with a mapping, say ρ, from X̃ to X , provided that this mapping ρ is surjective from V X̃( ) to
V X( ) satisfying that ρ N ṽ∣ ( ) from N ṽ( ) to N v( ) is bijective for each two vertices ∈v V X( ) and ∈ −

v ρ v˜ 1( ).
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Assume that →ρ X X: ˜ is a covering. If this group XAut ˜( ) has a semi-regular subgroup, say N , so that ≅X X̃N ,
then ρ is said to be a regular covering.

The next result from [1, Theorem 9] will be used frequently in this article.

Proposition 1.1. Suppose that X is cubic and symmetric. For ≥s 1, suppose that G is an s-regular subgroup of
XAut( ). If G has a normal subgroup, say N, which has more than two orbits acting on V X( ), then N is semi-

regular and this quotient group ∕G N is s-regular subgroup of XAut N( ). In particular, in this case, X is a regular
covering of XN .

In [2,3], Tutte proved that any cubic symmetric graph is also an s-regular graph, where ≤ ≤s1 5. All cubic
symmetric graphs with order p2 were classified by Cheng and Oxley [4]. Since then, for a given number n,
the classifying cubic symmetric graphs of order n became an interesting research topic, see [5–9].

We use n� to denote a cyclic group of order n. Let = ⋉ ×G1 2

2

11

3
2� � �( ) and = ⋉ ⋉ ×G2 2 11 11

2

2

2� � � �(( ) ).
Write

≔ − − −
≔

G

G

Cay , 1, 0, 1, 0, 0, 1 , 0, 1, 0, 1, 0, 1 , 1, 1, 0, 0, 1, 1 ,

Cay , 1, 0, 0, 0, 0, 0 , 1, 0, 1, 0, 1, 0 , 1, 1, 0, 0, 0, 1 .

1 1

2 2

�

�

( {( ) ( ) ( )})

( {( ) ( ) ( )})
(1)

In 2014, Feng et al. [5] proved that both 1� and 2� are cubic 2-regular graphs of order 10648.
In 2011, with the help of a computer, Conder obtained all cubic symmetric graphs of order at most 10000

and uploaded the results on the website [10]. With the help of [10], this article classifies the cubic symmetric
graphs with order p88 and p88 2, where p is a prime. The main results of our article are the following:

Theorem 1.2. Suppose that p is a prime and X is a cubic symmetric graph with order p88 . Then, X is isomorphic
to one of these graphs in Table 1 from [10].

Theorem 1.3. Assume that p is a prime and X is a cubic symmetric graph with order p88 2. Then, X is isomorphic
to either 1� or 2� in (1).

We will prove Theorems 1.2 and 1.3 in Sections 2 and 3, respectively.

Table 1: All cubic symmetric graphs of order p88

Graph Order ∣∣ (( ))∣∣XAut Girth Diameter s-Regular

C440.1 ⋅88 5 2640 10 12 2
C440.2 ⋅88 5 2640 10 11 2
C440.3 ⋅88 5 5280 12 10 3
C968.1 ⋅88 11 5808 6 29 2
C2024.1 ⋅88 23 12144 14 13 2
C2024.2 ⋅88 23 12144 11 14 2
C2024.3 ⋅88 23 12144 14 13 2
C2024.4 ⋅88 23 12144 12 14 2
C2024.5 ⋅88 23 12144 8 15 2
C2024.6 ⋅88 23 12144 12 14 2
C2024.7 ⋅88 23 12144 11 14 2
C2024.8 ⋅88 23 12144 8 14 2
C2024.9 ⋅88 23 12144 11 12 2
C2024.10 ⋅88 23 12144 11 15 2
C2024.11 ⋅88 23 12144 12 13 2
C2024.12 ⋅88 23 12144 12 12 2
C2024.13 ⋅88 23 24288 16 16 3
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2 Proof of Theorem 1.2

In the following, we always assume that graph X is cubic and symmetric. Recall that XAut( ) acting on this set
consisting of all s-arcs of X is transitive, where ≤ ≤s1 5. Note that the size of the set consisting of all s-arcs
of X is equal to ⋅ ⋅−

V2 3 Γs 1 ∣ ( )∣, we have

= ⋅ ⋅−
X V XAut 2 3 .s 1∣ ( )∣ ∣ ( )∣ (2)

In the following, we first prove Theorem 1.2.

Proof of Theorem 1.2. Note that p is a prime. If <p 127, then X has order at most 10000, and so by Conder [10],
X is isomorphic to one of these graphs in Table 1, as desired.

Suppose next that ≥p 127. In order to show Theorem 1.2, it suffices to prove that such a graph X does not
exist. Suppose, for a contradiction, that X is a cubic symmetric graph with order p88 . Note that it follows from
(2) that we have

= ⋅ ⋅ ⋅ ≤ ≤+
X p sAut 2 3 11 , 1 5.s 2∣ ( )∣

Let =A XAut( ) and N be a minimal normal subgroup of A. We shall divide our proof into four steps.
Step 1. A has no normal p-subgroups.

Suppose that P is a normal p-subgroup of A. Then, =P p∣ ∣ , which implies that P has more than two orbits
on V X( ). By Proposition 1.1, we have that XP is a cubic symmetric graph of order 88, this is in contradiction
to [10].
Step 2. A has no normal 2-subgroups.

Suppose that H is a normal 2-subgroup of A. By Proposition 1.1, XN is a cubic symmetric graph, and H on
V X( ) is semiregular. As a consequence, H∣ ∣ is a divisor of X∣ ∣, and therefore, we have =H 2∣ ∣ , 4, or 8. If =H 2∣ ∣ ,
then XH is of order p44 , which is impossible by [8, Theorem 2.4]. If =H 4∣ ∣ , then XH is of order p22 , which is
impossible by [9, Theorem 3.3]. If =H 8∣ ∣ , then V XH∣ ( )∣ is odd, which is impossible.
Step 3. N is solvable.

Suppose that N is non-solvable. Then, N is a direct product of several copies of a non-abelian simple group
T . Observe that any prime factor of T∣ ∣ belongs to p2, 3, 11,{ }. If > ⋅ ⋅p 2 3 117 , then A has a normal p-subgroup,
it obtains a contradiction by Step 1. Therefore, ≤ <T A 1025∣ ∣ ∣ ∣ . By [11, pp. 239–242], the simple groupT does not
exist, it obtains a contradiction.
Step 4. Final contradiction.

By Step 3, we see that N must be an elementary abelian r-group where r is prime. It follows from
Proposition 1.1 that N acting onV X( ) must be semi-regular, which implies that N∣ ∣ is a divisor of X∣ ∣. Therefore,

≅N 11� by Steps 1 and 2. Let ∕J N be a minimal normal subgroup of ∕A N . Since ∕ = ⋅ ⋅+
A N p2 3s 2∣ ∣ , it is similar

to Step 3, one has that ∕J N is elementary abelian. Since ∕J N is semi-regular on V XN( ), p8 is divided by ∕J N∣ ∣.
It follows that ∕ ≅J N p� or ∕J N is a 2-group. If ∕ ≅J N p� , then =J p11∣ ∣ and so J has a normal Sylow p-subgroup
P. Since P is characteristic in J and J is normalized by A, P is normal in A, contrary to Step 1. So, ∕J N is
a 2-group. If ∕ =J N 8∣ ∣ , then XJ is a cubic graph on p vertices, which is impossible. So, ∕ =J N 2∣ ∣ or 4. If ∕ =J N 2∣ ∣ ,
then XJ is a cubic symmetric graph of order p4 , contradicting [6, Theorem 6.2]. Now, suppose ∕ =J N 4∣ ∣ . Then, XJ

is a cubic symmetric graph of order p2 . Let ∕K J be a minimal normal subgroup of ∕A J . It is similar to Step 3, ∕K J

is elementary abelian. Then, ∕ =K J p∣ ∣ and =K p44∣ ∣ . Also, by the proof of Case 1, we have a contradiction.
By the above discussion, we end the proof of Theorem 1.2. □

3 Proof of Theorem 1.3

Given a group G, let H be a subgroup ofG. The center of G is denoted by Z G( ). We use ′G to denote the derived
subgroup of G. The symbol G H:[ ] denotes the index of subgroup H in G, which is equal to the number of all
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right (or left) cosets of H ofG. Two integers a and b are said to be coprime if the only positive factor that divides
both of them is 1, and we denote it by =a b, 1( ) .

Lemma 3.1. Suppose that G is a group. Let H be a subgroup of G with ′ =G H H H: , : 1([ ] [ ]) . Then

∩ ′ ∩ ⊆ ′H G Z G H .( )

Proof. Take ∈ ∩ ′ ∩x H G Z G( ). According to the transfer from G to ∕ ′H H (cf. [12, Chapter 10]), one has
∈ ′x H

G H:[ ] . Further, since ′ ∈ ∕ ′xH H H , it follows that ′ = ′′
xH H

H H:( )[ ] , which also implies ∈ ′′
x H

H H:[ ] . Now
in view of

′ =G H H H: , : 1,([ ] [ ])

we have ∈ ′x H , as desired. □

In group G, the largest normal p-subgroup is denoted by O Gp( ).

Lemma 3.2. Suppose that p is a prime at least 13. There is no cubic symmetric graph with order p44 2.

Proof. Suppose, to the contrary, that there exists a cubic symmetric graph, say X , which has order p44 2.
We write =A XAut( ). Assume that P is a Sylow p-subgroup of A. Then

= ⋅ ⋅ ⋅ ≤ ≤+
A p s2 3 11 , 1 5.s 1 2∣ ∣

In view of [10], one has that P is not normal in A.
Since the number of orbits of O A2( ) acting on V X( ) is greater than 2, p44 2 is divisible by O A2∣ ( )∣. It follows

that =O A 12∣ ( )∣ , 2, or 4. If =O A 22∣ ( )∣ , one has =X p22O A

2

2
∣ ∣( ) , which is a contradiction by [9, Theorem 3.4].

If =O A 42∣ ( )∣ , then XO A2( ) is a cubic graph with odd order, which is a contradiction. Therefore, =O A 12( ) .
Similarly, by [6, Theorem 6.2], we obtain =O A 111( ) .

Suppose, now, that T is a minimal normal subgroup of A. If T is nonsolvable, then, by [11, pp. 239–242],
one has ≅T PSL 2, 23( ) or PSL 2, 23( ). Since T on V X( ) has more than two orbits, X∣ ∣ is divisible by T∣ ∣, which
is impossible. As a result, T is an elementary abelian group, which implies that ≅T p� .

Now note that XT is cubic and symmetric, which has order p44 . In view of [8, Theorem 2.4], one has that XT

is 2- or 3-regular and =p 23. Thus, A is at most 3-regular. As a consequence, A∣ ∣ is a divisor of ⋅ ⋅ ⋅ p2 3 114 2.
Hence, A has +p 1 Sylow p-subgroups.

Suppose that N is the normalizer of P in A. Now, let A act on the set of all right cosets of N of A, by right
multiplication. Then, ∕A NA can be imbedded in the symmetric group on +p 1 letters, where NA is the largest
normal subgroup of A contained in N . It means that ∕A NA∣ ∣ is a divisor of +p 1 !( ) . Since p A

2∣∣ ∣, one has p NA∣∣ ∣.
If p NA

2∣∣ ∣, the fact that ∕ =A N 24∣ ∣ implies that ≤ ≤ ⋅ ⋅N N p2 11A

2∣ ∣ ∣ ∣ . Therefore, NA has a characteristic Sylow
p-subgroup of order p

2. Since NA is normalized by A, one has that P is normal in A, which is a contradiction.
Thus, NA∣ ∣ is not divisible by p

2. This forces that the number of orbits under the action NA on V X( ) is greater
than 2. Proposition 1.1 implies that NA∣ ∣ is a divisor of p22 .

Let K be a Sylow p-subgroup in NA. It follows that K is normal in A. Also, in A, we say that C is the
centralizer of K . By, ∕N C theorem (see, for example, [12, Theorem 1.6.13]), we know that ∕ = ∕N K C A CA( )

is isomorphic to a subgroup of KAut( ). Since ≅K p� , we have ≅ −KAut p 1�( ) , and so ∕A C∣ ∣ is a divisor of −p 1.
So, p C

2∣∣ ∣. It is straightforward that ′ ∩ =C K K or 1. If ′ ∩ =C K K , then ≤ ′K C . Since ≤K Z C( ), ′ ∩p C Z C∣∣ ( )∣.
Let P1 be a Sylow p-subgroup of C . Then, ∩ ′ ∩p P C Z C1∣∣ ( )∣. However, by Lemma 3.1, ∩ ′ ∩ =P C Z C 11 ( ) ,
which is a contradiction. Thus, ′ ∩ =C K 1 and so ′C is not divisible by p

2. It follows that ′C is semiregular.
As a result, ′C p44∣ ∣∣ . Now, suppose that ∕ ′H C is a Sylow p-subgroup of ∕ ′C C . By p C

2∣∣ ∣, one has p H
2∣∣ ∣. It follows

that H p44 2∣ ∣∣ . Thus, H has a normal Sylow p-subgroup. In view of the commutativity of ∕ ′C C , one has that P

is normal in A, which is impossible. □

Finally, we prove Theorem 1.3.
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Proof of Theorem 1.3. If ≤p 7, in view of [10], there is no cubic symmetric graph with order p88 2. If =p 11,
in view of [5, Theorem 6.1], X is isomorphic to 1� or 2� .

Now, suppose that ≥p 13. Write =A XAut( ). Let P be a Sylow p-subgroup of A. Then, = ⋅ ⋅ ⋅+
A p2 3 11s 2 2∣ ∣ ,

where ≤ ≤s1 5. Note that there is no cubic symmetric graph with order 88. It follows that P is non-normal
in A.

Suppose ≠O A 12( ) . Then, =O A 22∣ ( )∣ or 4. Thus, XO A2( ) is a cubic symmetric graph of order p44 2 or p22 2,
contradicting Lemma 3.2 or [9, Theorem 3.4], respectively. Hence, =O A 12( ) .

Suppose ≅O A11 11�( ) . Then, XO A11( ) is cubic and symmetric, which has order p8 2. In view of [7, Theorem
5.2], we have that X AO11

( ) is either cyclic or elementary abelian cover of the hypercube. It means that ∕A O A11( )

has a normal Sylow p-subgroup, say ∕M O A11( ). Thus, =M p11 2∣ ∣ . Since M is normal in A, P is normal in A,
which is a contradiction. As a result, =O A 111( ) .

Now, let N be a minimal normal subgroup of A. If N is nonsolvable, in view of [11, p. 239], ≅N PSL(2, 23)
or PSL(2, 32). Now, by Proposition 1.1, we have that X∣ ∣must be divisible by N∣ ∣, which is impossible. As a result,
N must be an elementary abelian group. As mentioned in the previous paragraphs, one has ≅N p� . Thus, XN

is a cubic symmetric graph with order p88 . In view of Theorem 1.2, one has =p 23 and XN is 2- or 3-regular.
Thus, A is at most 3-regular. Therefore, A∣ ∣ is a divisor of ⋅ ⋅ ⋅ p2 3 115 2. This forces that A has +p 1 Sylow
p-subgroups. Now, it is similar to the last two paragraphs of the proof of Lemma 3.2, we can also obtain
a contradiction.

Based on the discussion, we complete the proof of Theorem 1.3. □

4 Conclusions

For a positive integer n, the question on classifying s-regular graphs of order n and degree 3 has received
considerable attention. A s-regular graph with degree 3 is so-called a cubic symmetric graph. It was proved
that every cubic symmetric graph is also a s-regular graph, where ≤ ≤s1 5. For some prime p and a graph Γ,
if Γ is a cubic symmetric graph of order p88 , this article showed that ∈p 5, 11, 23{ }. Moreover, if Γ is a cubic
symmetric graph of order p88 2, this article showed that =p 11. In fact, this article classified all cubic symmetric
graphs of order p88 and p88 2 for each prime p.
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