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Abstract: We introduce a generalization of the quandle polynomial. We prove that our polynomial is an
invariant of stuquandles. Furthermore, we use the invariant of stuquandles to define a polynomial invariant
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1 Introduction

Stuck links can be considered a generalization of singular links. They were introduced in [1]. Stuck links are
physical links where the strands are stuck together in a fixed position, with one strand above the other.
As a result, their projections have two types of crossings: the classical crossings from classical knot theory and
a different type of crossing called a stuck crossing. Stuck knots and links have applications to RNA folding
through a transformation relating stuck link diagrams to arc diagrams of an RNA folding, see [1-3]. Addition-
ally, the use of this generalization of classical knot theory is uniquely equipped to model both the entangle-
ment and intra-chain interactions of a biomolecule as described in [1].

In [2], a generating set of the oriented stuck Reidemeister moves for oriented stuck links was introduced.
The generating set of oriented stuck Reidemeister moves was used to define an algebraic structure called
stuquandle. The motivation of the stuquandle algebraic structure was to axiomatize the oriented stuck Rei-
demeister moves, thus allowing the construction of the fundamental stuquandle associated with a given stuck
link. Using the fundamental quandle, the coloring counting invariant of stuck links was defined. As a con-
sequence, the coloring counting invariant for arc diagrams of RNA foldings was constructed through the use
of stuck link diagrams. The coloring counting invariant of stuck links is defined as the cardinality of the set of
homomorphisms from the fundamental stuquandle to a finite stuquandle. Although the stuquandle counting
invariant is a useful invariant of stuck links, it is not strong enough, and thus, we define an enhancement of it
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Figure 1: (Left) Singular crossing in a singular link, and (right) singular crossing in a singular link diagram.

in this article. In the case of racks and quandles, the study of enhancements of the counting invariant is a very
active area of research, see [4-7].

Specifically, in [8], a two-variable polynomial from finite quandles encodes a set with multiplicities arising
from counting trivial actions of elements on other elements of the quandle. This polynomial was used to define
a polynomial invariant of classical links and was shown to be an enhancement of the quandle coloring
counting invariant. Additionally, the quandle polynomial invariant was extended to the case of singular knots
in [9]. In this article, we generalize these polynomials to the case of stuck links. We then use these polynomials
to define an enhancement of the coloring counting invariant of stuck links and of RNA foldings. Our approach
in this article is different from the enhancement of the stuquandle counting invariant in [3], which was
achieved by assigning Boltzmann weights at both classical and stuck crossings and thus leading to a single-
variable, a two-variable, and a three-variable polynomial invariant of stuck links and applied to arc diagrams
of RNA foldings.

This article is organized as follows. In Section 2, we review the basics of stuck knots and their diagram-
matics. In Section 3, we recall the relationship between stuck links and arc diagrams. Specifically, we review
the transformation to obtain a stuck link diagram from an arc diagram and vice versa. In Section 4, we discuss
the algebraic structures motivated by the diagrammatic representation of stuck knots and the fundamental
stuquandle, leading to the stuquandle counting invariant. Section 5 reviews the definition of the quandle
polynomial, the subquandle polynomial, and the link invariants obtained from the subquandle polynomial. A
generalization of the quandle polynomial is introduced in Section 6. We end this section by proving that this
generalization is an invariant of stuquandles and then use the generalization to define a polynomial invariant
of stuck links. Finally, in Section 7, we provide explicit computations of our invariants for both stuck links and
RNA foldings. In the case of RNA foldings, we give an example of two arc diagrams that are not distinguished
by the stuquandle counting invariant but are distinguished by the substuquandle polynomial invariant.

2 Review of stuck knots and links

In [1], a generalization of singular knots and links was introduced. In this article, we will follow the definitions
and conventions established in that paper. Similar to the case of the theory of classical and singular links, one
may consider diagrams when studying stuck links. A stuck link diagram may include classical and stuck
crossings. A stuck crossing is a singular crossing with additional information about the stuck position.
Figure 1 shows a singular crossing, while Figure 2 illustrates the two types of stuck crossings.
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Figure 2: (Left) Stuck crossings in a stuck link, and (right) stuck crossings in a stuck link diagram.
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To specify the stuck information in a diagram at a stuck crossing, we will use a thick bar on the over arc at
a stuck crossing (Figure 2). The top crossings in Figure 2 are called positive stuck crossings, while the bottom

crossings are negative stuck crossings.

In [2], the set of moves shown in Figure 3 was identified as a generating set of oriented stuck Reidemeister
moves. We will follow the naming convention established in that paper. The oriented stuck Reidemeister
moves are essential for studying stuck links through the use of stuck link diagrams. Specifically, two stuck link
diagrams are equivalent if and only if one diagram can be transformed into the other by a finite sequence
of planar isotopies and the moves in Figure 3. A stuck link is defined as an equivalence class of stuck link

diagrams modulo the oriented stuck Reidemeister moves.

3 Stuck links and arc diagrams

In this section, we review arc diagrams and the relationship between stuck links and arc diagrams.
Specifically, stuck links provide a way of studying the topology of RNA folding, as discussed in [1-3].

In [10], Kauffmann and Magarshak introduced arc diagrams as a combinatorial way of studying the
topology of RNA folding. Arc diagrams, as noted in [10], were motivated by the fact that the RNA molecule
is a long chain consisting of the bases A (adenine), C (cytosine), U (uracil), and G (guanine). In an RNA molecule,
the pairs A-U and C-G can bond with each other. Therefore, an RNA molecule can be represented by a linear
sequence of the letters A, C, U, and G, and folding the molecule involves pairing the bases in the sequence.

Example 3.1 is taken from [10].
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Figure 3: Generating set of oriented stuck Reidemeister moves.

A polynomial invariant of stuck knots
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Figure 4: Folding of the sequence after the A-U pairing.

Example 3.1. In this example, we will see how to obtain an arc diagram from the description of RNA folding as
a linear sequence with pairings A-U and C-G. In this case, consider the chain - CCCAAAACCCCCUUUUCCC .
From this linear sequence, the pairing of A-U and C-G will produce the folding in Figure 4. Furthermore,
the folding in Figure 4 can be simplified and represented by the diagram in Figure 5.

The diagram in Figure 5 is called an arc diagram introduced in [10]. We note that in the original formula-
tion of an arc diagram, the bonds were denoted with connecting arcs. To see examples of these arc diagrams,
please refer to [10]. In this article, we will use the convention introduced in [1] and used in [2,7] by replacing
the connecting arcs with just one solid gray stripe, as shown in Figure 5. We also note that in order to study the
topology of RNA folding in three-dimensional space through the use of an arc diagram, a set of Reidemeister-
type moves was introduced in [10]. Therefore, a specific RNA folding is an equivalence class of arc diagrams
modulo the Reidemeister-type moves. For more information on the Reidemeister-type moves allowed on
an arc diagram and the theory of arc diagrams, please refer to [10].

The following transformation was defined in [1] and formalizes the connection between stuck links and arc
diagrams. To obtain a stuck link diagram from an arc diagram, we can apply the transformation, T (Figure 6).
We note that the transformation, T, may also be used to obtain an arc diagram from a stuck link diagram;
see [1] for examples.

Figure 5: Arc diagram of the RNA folding in Figure 4.

Transformation T° W\ ~ \M
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Figure 6: Transformation T.
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In the following example, we will consider an arc diagram of an RNA folding and apply the transformation
T to obtain a stuck link diagram. Since the endpoints of an arc diagram can be connected in several ways,
we will use the convention from [1,11] of self-closure. Specifically, the self-closure of the arc diagram, will mean
that each strand of the arc diagram is connected to itself.

Example 3.2. Consider the arc diagram of an RNA folding with two strands in Figure 7. In this case, the arc
diagram contains two strands, so the self-closure means that we connect the endpoints of one strand to each
other and the endpoints of the other strand to each other. Next, we replace the gray stripe by applying T
to obtain the corresponding stuck link diagram; see the figure on the right in Figure 7.

The transformation T will play a key role in allowing us to define an invariant of RNA folding via
an invariant of stuck links.

4 Algebraic structures from stuck knots

In this section, we discuss the algebraic structures motivated by the diagrammatics of stuck knots and links.
For more details on quandles, singquandles, and stuquandles, the reader is referred to [2,12,13].
The following definition is motivated by the Reidemeister moves in classical knot theory.

Definition 4.1. A quandle is a set X with a binary operation * : X x X —» X satisfying the following three
axioms:

(right distributivity) for all x,y,z € X, we have (x * y) * z = (x * z) *x (y * z);

(invertibility) for all x € X, the map R, : X — X sending y to y * x is a bijection;

(idempotency) for all x € X, x * x = x.
If S C X is itself a quandle, we call S a subquandle of X.

In the rest of the article, for all x, y € X, we will denote Ry‘l(x) by x * y. The next definition is motivated
by the generalized Reidemeister moves in singular knot theory.

Definition 4.2. Let (X, *) be a quandle and R; and R, be maps from X x X to X. The quadruple (X, * , R, Ry) is
an oriented singquandle if for all x,y,z € X:

R(x*y,2) *y=R(X,z * y), (4]
R(x*y,z) =Ry(x,z*y) ¥y, 2

O * Ri(x,2)) * x = * R(x,2)) * 2, ®
R(x,y) = Ri(y, x * y), @
Ri(X,y) * Ry(X,y) = Ry(y, X * y). ®)

Transformation T’

. self-closure ~—

4

Figure 7: Arc diagram, self-closure, and corresponding stuck link diagram.
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Definition 4.3. Let (X, * , R;, R,) be a singquandle and R; and R4 be maps from X x X to X. The six-tuple
(X, *, R, Ry, Ry, Ry) is called an oriented stuquandle if the following axioms are satisfied for all x,y, z € X:

R(y, X) * Ry(y, X) = Ry(Xx * y,y), (6)
Ry(y, X) = Rs(x * y,y), (7)

Ri(y * x,2) = Ry(y, z * X) * X, ®
Ry(y,z ¥ x) = Ry(y * x,2) * X, 9

(X * Ry(y,2)) * y = (X * Ra(y, 2)) * z. (10

Let (X, *, Ry, Ry, R;, Ry) be a stuquandle, and let L be a stuck link with diagram D. A coloring of D by X is
an assignment of elements of X to the semiarcs at stuck crossings and to the arcs at classical crossings of D,
obeying the coloring rules in Figure 8.

We note that the stuquandle axioms correspond to the oriented stuck Reidemeister moves, following
the coloring rules in Figure 8. We will now review some key concepts about stuquandles, including basic
examples.

Definition 4.4. Let (X, *,R, R, R;,Ry) be a stuquandle. A subset SC X is called a substuquandle
if (S, *, Ry, Ry, R, Ry) is itself a stuquandle.

Definition 4.5. [2] Let (X, * , R, By, R3, Ry) and (Y, >, S, Sy, S3, S4) be two stuquandles. A map f: X — Y that
satisfies the following conditions:

fx*y)=f0)=fO), an
F@Rx, ) = S$i(f OO, fF)), (12)
f(R(x,¥)) = S2(f (), fFY)), 13)
FR(x,¥)) = S3(f(X), f(¥)), 14
FR4(x, ¥)) = Sa(f (XD, fO)), (15)

is called a stuquandle homomorphism. If, furthermore, f is a bijection, then it is called a stuquandle
isomorphism.

Lemma 4.6. Let (X, * , Ry, Ry, R3, Ry) and (Y, >, Sy, Sy, S3, S4) be two stuquandles. If f: X - Y is a stuquandle
homomorphism, then the image of f, denoted by Im(f), is a substuquandle of Y.

Proof. By definition, the image of f is Im(f) = {f(x)|x € X} C Y. Since f is a stuquandle homomorphism,
it preserves the stuquandle operations and maps. Specifically, for any x,y € X equations (11)-(15) from
Definition 4.5 are satisfied. Therefore, for any f(x), f(y) € Im(f), the elements f(x) = f(y), Si(f(x), f)),
So(f (%), f)), Ss(f(x), f¥)), Sa(f(x), f(y)) are also in Im(f). Hence, (Im(f), =, Sy, Sy, S3, S4) satisfies all the

stuquandle axioms and is a substuquandle of Y. O

Yy

SN

T*Y R3(y,z) Ra(y,z)

Figure 8: Coloring relations at classical and stuck crossings.
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The following example was introduced in [2]. To see the construction details of the following stuquandle,
the reader should refer to [2].

Example 4.7. Consider the set X = Z,. Let a be an invertible element of Z,,, and let b and e be any elements of
Z,. Define the operations as follows:

x*y=ax+ (1-a)y, 16)
Ri(x,y) = bx + (1 - b)y, )]
R(x,y) =a(l - b)x + (1 - a(1 - b))y, (18)
Ry(x,y) = (1-e)x +ey, (19)
Ryx,y)=(1-aldl-e)x +al - e)y. (20)

Then, the six-tuple (Z,, * , Ry, Ry, R3, R,) is an oriented stuquandle.

Definition 4.8. [2] Let D be a stuck link diagram of a stuck link L and let S = {aj, ay, ...,an} be the set of labels of
the arcs in D at classical crossings and semiarcs in D at stuck crossings. In a similar way to the case of classical
knot theory, we define the fundamental stuquandle of D as follows:
¢ The set of stuquandle words, W(S), is recursively defined.

-SCwW(),

- If a;, a; € W(S), then

a; * aj, a; * aj, Ri(a;, @), R(ay, ay), Rs(ay, a;), Ry(ay, a;) € W(S).

» The set Y is the set of free stuquandle words which are equivalent classes of W(S) determined by the
conditions in Definition 4.3.

* Letg,..., ¢, be the crossings of D. Each crossing ¢; in D determines a relation r; on the elements of Y.

* The fundamental stuquandle of D, STQ(D), is the set of equivalence class of words in W(S) determined
by the stuquandle conditions and the relations given by the crossings of D.

In the following example, we use the notation and naming convention of stuck knots and links from [2].

Example 4.9. In this example, we compute the fundamental stuquandle of the following oriented stuck link.
Consider the stuck trefoil, denoted by 25~, with one negative stuck crossing and two negative classical crossings
(Figure 9).

We will label the arcs of the diagram D by a, b, ¢, and d. Then, the fundamental stuquandle of 2’1"
is defined by

ST7Q(2FK)=(a,b,c,d| a=d ¥ b, b=Rya,c), c=b % a, d=Rya,c)).

Figure 9: Diagram D of the stuck trefoil 2k,
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The fundamental stuquandle can be used to define the following computable and effective invariant of
stuck links. Given a finite stuquandle (X, =, R/, Ry, Rs, R;), the set of stuquandle homomorphisms from S7TQ(L)
to X, denoted by Hom(S7Q(L), X), may be used to define computable invariants. Specifically, by computing
the cardinality |Hom(S7Q(L), X)|, we obtain an integer value invariant called the stuquandle counting invar-
iant, denoted by Coly(L) introduced in [2].

We can think of each f€ Hom(S7Q(L), X) as assigning an element of X to each arc in D at a classical
crossing and to each semiarc in D at each stuck crossing, satisfying the coloring rules in Figure 8. Therefore,
each f€ Hom(S7Q(L),X) can be represented by the m-tuple (f(ay), f(ay), ....,f(an)), where a;, a,..., n
are the arc labels of any diagram of D. Furthermore, the image of each element of Hom(S7Q(L), X)
is a substuquandle of X by Lemma 4.6.

5 Review of the quandle polynomial

In this section, we recall the definition of the quandle polynomial, the subquandle polynomial, and the link
invariants obtained from the subquandle polynomial. For a detailed construction of these polynomials, see [8,12].

Definition 5.1. Let (Q, *) be a finite quandle. For any element x € Q, let
Cx)={y€Q : y*x=y} and RX)={y€Q : x*y=x}
and set r(x) = |R(x)| and c(x) = |C(x)|. Then, the quandle polynomial of Q, qu(s, t), is
qpy(s, t) = Y sTOew),

XEQ

In [8], the quandle polynomial was shown to be an effective invariant of finite quandles. In addition

to being an invariant of finite quandles, the quandle polynomial was generalized to give information about
how a subquandle is embedded in a quandle.

Definition 5.2. Let S C Q be a subquandle of Q. The subquandle polynomial of S, qpsc (s, t), is

qPsco(s, t) = Z §Te0eC),

X€ES

where r(x) and c(x) are defined above.

Note that for any knot or link K, there is an associated fundamental quandle, Q(K), and for any given
finite quandle T the set of quandle homomorphisms, denoted by Hom(Q(K), T), has been used to define
computable link invariants, for example, the cardinality of the set is known as the quandle counting invariant.
In [8], the subquandle polynomial of the image of each homomorphism was used to enhance the counting
invariant.

Definition 5.3. Let K be a link and T be a finite quandle. Then, for every f € Hom(Q(K), T), the image of f
is a subquandle of T. The subquandle polynomial invariant, ®,,(K, T), is the set with multiplicities

Ogp(K, T) = {qPyn prc1(S: ©) | £ € Hom(QK), T)}.
Alternatively, the multiset can be represented in polynomial form by

¢qp( K,T) = Z Ui pycr(S:0).
§feHom(Q(K),T)
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6 Generalized quandle polynomials

In this section, we introduce a generalization of the quandle polynomial in [8]. We show that this general-
ization is an invariant of stuquandles. We then use the generalization to define a polynomial invariant of stuck
links.

Definition 6.1. Let (X, * , R, R,, R, R,) be a finite stuquandle. For every x € X, define

Cl)={yeXly*x=y} and R'(x)={y€X|x*y=x},
C*(x) ={y €X|R(y,x) =y} and R*x)={y € X|R(x,y) = X},
C¥(x) ={y EX|R(y,x) =y} and R3x) ={y € X|Ry(x,y) = x},
C'(x) ={y EXIR(y,x) =y} and R*(x) ={y € X|Rs(x,y) = x},
C(x) ={y €X|Ry(y,x) =y} and R(x) = {y € X|Ry(x,y) = x}.

Let ci(x) = |Ci(x)| and ri(x) = |Ri(x)| fori = 1, 2, 3, 4, 5. Then, the stuquandle polynomial of X is

1 1 2 2 3, 3 4 4 5 5
stqp(X) = z S1r (X)tf (X)Szr (X)tzc (X)sgr (X)tgc (X)SZ (X)t40 (X)ssr (X)tsc (X).

X€X

Proposition 6.2. If (X, *,R,R, R, Ry) and (Y,> R{,R),R;,R;) are isomorphic finite stuquandles,
then stqp(X) = stqp(Y).

Proof. Suppose f: X — Y is a stuquandle isomorphism and fix x € X. Forall y € Cl(x) ={y € X| y * x = y},
we have f(y) > f(x) = f(y * x) = f(¥), thus f(¥) € CY(f(x)) and |C'(x)| < |CL(f(x))|. Applying this argument
to f7, we obtain |[C(f(x))| < |CY(x)|, and therefore, c'(x) = c!(f(x)). By definition of a stuquandle
isomorphism we have, R/(f(y), f(x)) = f(Ri(y, x)) = f(y) for j=1,2,3,4. By applying a similar argument
used to show cl(x) = c'(f(x)), we obtain ci(x) = ¢/(f(x)) for i = 2,3,4,5. A similar argument also shows
that ri(x) = ri(f(x)) fori = 1, 2, 3, 4, 5. These facts give the following:

1 1 2 2 3 3 4 4 5 5
stqp(X) = Z slr (X)tf (X)Szr (X)tzc (X)S?’r (X)tg,c (x)si (X)tzf (X)ssr (X)tsc )
x€X
1 1 2 2 3 3 4 4 5, 5,
- z slr (X)tlc (X)Szr (x)tzc (X)s3r (X)tgc (X)SI (X)téf (X)Ssr (X)tsc x)
fx)eyY
1 1 2 2 3 3 4 4 5, 5
- Z S 1r (f(x))tf () 2r (f(X))tzc g 3r (f(X))tsc (f(X))s4r (f(x))tf (f(X))ssr (f(X))tsC (f(x))
f(xey
= stqp(Y). O

Definition 6.3. Let X be a finite stuquandle and S C X be a substuquandle. Then, the substuquandle poly-
nomial is

Sstqp(S C X) = 3 s Wt 0] 0 05T 00, C0gr 00 00g 00, 00
X€ES
Note that fori € {1, 2, 3, 4, 5}, r'(x) (respectively c!(x)) is the number of elements of X that act trivially on x
(respectively, is the number of elements of X on which x acts trivially) via *, R;, Ry, R3, and R,. These values can
be easily computed from the operation table of *, R, Ry, R3, and R, by counting the occurrences of the row
numbers. Please refer to Example 6.4 for further explanation.
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Example 6.4. Let X; = Z, be the stuquandle with operations x * y = 3x + 2y, Ri(X,y) = 2x + 3y, Ri(x,y) = x,

Ry(x,y) = 3x + 2y, and R4(x,y) = y. These operations have the following operation tables:

and the operations have the following ri(x) and ci(x) values fori =1, 2, 3, 4, 5:

[r100) ()

[r2(x) c*0) x |r’x) X

*x[01 23 R|0123 R[0123
000202 00321 00000
113131 1{2103 1(1111
2012020 20321 2(2222
311313 312103 313333
RjJ0O 123 RJO123
00202 00123
113131 10123
22020 20123
311313 310123

X
1
2
3
0

2

2
2
2

X
2 1] 1 1 1| 4
2 2 1 1 21 4
2 31 1 1 3| 4
2 0 1 1 0l 4
x [r'x) 0 x [r’) X))
1 2 2 1 1 1
2 2 2 2 1 1
3 2 2 3|1 1 1
0l 2 2 0l 1 1

Thus, the stuquandle polynomial of X is

sqp(Xy) = 4sit{sytsitysitissts.

4

4
4
4

Next, consider the stuquandle X, = Z, with operations x * y = x, Ri(x,y) =y, R(x,y) = x, Ry(x,y) = y and

R4(x,y) = x. The operations have the following operation tables:

and the operations have the following ri(x) and ci(x) values fori =1, 2, 3, 4, 5:

Ir'c0 ')

x [r(x) 20 x |r*0) )

|01 23 R|0123 RI|0T1 23
0j000O0 0(0123 00000
111111 10123 1{]1111
212222 210123 212222
313333 3/10123 313333
R|0123 RO 123
0(0123 00000
110123 11111
210123 22222
310123 3133333

O W N =X

1
1
1
1

4 4 1
4 4 2
4 4 3
4 4 0
X r*t0) c*x)
111 1
21 1 1
31 1 1
0l 1 1

4

4
4
4
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Thus, the stuquandle polynomial of X is
sqp(Xy) = 4s{'t{'spbysity'sit sty

We obtain that sqp(X;) # sqp(X;). Therefore, the two stuquandle structures defined on Z, are distin-
guished by the contrapositive of Proposition 6.2.

Example 6.5. Let S = {1, 3} be a substuquandle of X from the previous example. Thus, the substuquandle
polynomial of S is

Sstqp(S C X) = 2sitist,sits st ssts.

By Lemma 4.6, we know that the image of a stuquandle homomorphism is a substuquandle. Suppose that
X is a stuquandle and L is a stuck link. For each f€ Hom(S7Q(L), X), the image Im(f) is a substuquandle
of X. This allows us to define the following polynomial.

Definition 6.6. Let L be a stuck link, T be a finite stuquandle. Then, the multiset
Dgsiqp(L, T) = {Sstqp(Im(f) C T)|f € Hom(STQ(L), T)}

is the substuquandle polynomial invariant of L with respect to T. We can rewrite the multiset in a polynomial-
style form by converting the multiset elements to exponents of a formal variable u and converting their
multiplicities to coefficients:

Psstqp(Ls T) = > uSstapam(f)CT),
5f€Hom(STQ(L),T)

7 Examples

In this section, we present examples that demonstrate the effectiveness of the substuquandle polynomial
invariant in distinguishing stuck links. Specifically, we include an example that illustrates how the substu-
quandle polynomial invariant enhances the stuquandle counting invariant. Additionally, we include an
example of two stuck links that are not distinguished by the X polynomial, but can be distinguished by the
substuquandle polynomial. Finally, we explicitly compute the substuquandle polynomial of two RNA foldings
and differentiate them using the substuquandle polynomial.

Example 7.1. Consider coloring the stuck knots 2¥~ and 0X* in Figures 10 and 11, respectively, by using
the stuquandle X = Z, with operation defined by x * y = 3x + 2y and maps Ri(X,y) = x + 2y%, Ry(x,y) =
2x* +y, Ry(x,y) = 3x, and Ry(x,y) = 2x +y. It was found in [3] that the stuquandle counting invariant
for both of these knots is equal to 4. Given the stuquandle defined above, the colorings for Figure 10
are Hom(S7Q(05"), X) = {(0, 0), (0, 2), (2,0), (2, 2)}, and the colorings for Figure 11 are Hom(S7Q(2X"), X) =
{(0,0,0,0),(1,3,3,1),(2,2,2,2),(3,1,1, 3)}. Thus, the coloring invariant for both knots is 4. To calculate the

Figure 10: Diagram of the stuck knot 0*.
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Figure 11: Diagram of the stuck trefoil 25~

substuquandle polynomial invariant of these stuck knots, we show in the tables below the operations have the
following ri(x) and ci(x) values fori =1, 2, 3, 4, 5:

x| rl(X) cl(X) x| 0 ) x| r’g) ¢x)
0 o 2 4 of 1 1
1 z z 11 2 0o 1 1 1
2l 2 2 20 2 4 201 1
3l 2 2 382 o 31 1

x|t ¢ x[rPx) 0

ol 4 2 o1 1

110 2 1|1 1

204 2 2|1 1

30 2 301 1

We collect the colorings of each stuck link and the substuquandle polynomial of the image of each coloring
in Tables 1 and 2.

Using the coloring set of each stuck knot, we obtain the following substuquandle polynomial invariants:

- (0 LX) = Qui2sitisitysstssitissts 4 gy sttisitysstssitissts
Stqp

and

2,2,2.4
= S{t{syty 53t354 t4 S5t Zs1 tl S5 53t3t455t5
¢Sstqp(2 X)=2u +2u

Table 1: Colorings and substuguandle polynomial of each coloring of 0k*

fla) f(b) Im(f) C X Sstqp(Im(f) C X)
0 0 {0} sitisttysstys it issts
0 2 {0, 2} 252t 252t isstss it Issts
2 0 {0,2} 252t2s 2t sstss ft2ssts
2 2 {2} sitisttysstys it issts

Table 2: Colorings and substuquandle polynomial of each coloring of 2

fla) f(b) flc) f(a) Im(f)c X Sstqp(Im(f) C X)
0 0 0 0 {0} sitisit,sytss it dssts

1 3 3 1 {1,3} 281 tl Sy S3t3t485t5

2 2 2 2 {2} sitisitysstssitissts

3 1 1 3 {1, 3} 281 t1 Sy S3t3t435t5
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Example 7.2. Consider coloring the stuck knots K; and K, in Figures 12 and 13, respectively, by using
the stuquandle X =2Z; with operations x*y=x, R(x,y)=2%R(x,y) =2x>, Ry(x,y) = 2x + 2x?,
and R,(x, y) = 2y + 2y% The operation tables are given by

«[012 R[012 RJO 12
0000 0{022 o0fl000
11111 11022 1|22 2
21222 20022 20222
R0 12 Ry|O 12
0000 0[010
1111 1(010
20000 2010

The X polynomial was defined in [1] for stuck links. Moreover, X(K) = 2xy — (x2 + y2)(4 + A - 2) = X(K,) as
shown in Example 3 in [1]. Also, note that

Hom(S7Q(K), X) = {(0, 0, 0, 0),(0,1,0,1),(1,0,1,0), (1,1,1, 1)}
and

Hom(S7Q(K), X) ={(0, 0,0, 0), (0, 2,0,2), (2,0,2,0),(2,2,2,2)}.
Thus, the coloring invariant for both is 4. To calculate the substuquandle polynomial invariant of these stuck
knots, we show in the tables below the operations have the following r'(x) and c'(x) values fori = 1, 2, 3, 4, 5:

x|rix) ) x|r’x) cXx) x|r’x) Ax)
0l 3 3 0| 1 1 0| 3 2
1
2

3 3 1, 0 1 1} 0 2
3 3 2y 2 1 23 2

x| rtx) ) x [r°() (x)

0] 3 2 0 2 1

1] 3 2 1] 1 1

21 0 2 21 0 1

d b
Figure 12: Diagram of the stuck link K.

d c a b

Figure 13: Diagram of the stuck link K;.
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Table 3: Colorings and substuquandle polynomial of each coloring of K

fla) f(b) flo) f(d) Im(f) C X Sstqp(Im(f) C X)
0 0 0 0 {0} sitdsytystdsitists
1 0 1 0 {0,1,2} sitisgtsitisitisits + sitittsdtlssts + sitis,tystitits
0 1 0 1 {0,1,2} sPtdsytysitdsitisits + sitittsitissts + sitis,tsstitits
1 1 1 1 {0,1,2} sitisgtsitisitisits + sitittisdtlissts + sitis,tystitits

We collect the colorings of each stuck link and the substuquandle polynomial of the image of each coloring
in Tables 3 and 4.
Using the coloring set of each stuck link, we obtain the following substuquandle polynomial invariants:
Dosran K, X) = usitisasitisiiisits 4 gy sitisansitsitisitsrsitittisitisststsitisats ety
stqp\T L

and

¢sStqp( K, X) = uSLtSats tisitisdts 4 3usftfsztzsftfsftfsszts+sft13s2tzs33t32t§t5’
which shows that our invariant is stronger than the X polynomial of [1] in this case.

Now we will compute our new substuquandle polynomial invariant to distinguish the topology of RNA
structure. First, we will consider an arc diagram of RNA folding, then use the transformation T and apply the
self-closure to obtain a stuck link diagram. We will then compute the substuquandle polynomial invariant
using the stuck link diagram corresponding to the arc diagram of an RNA folding. Note that since the
substuquandle polynomial invariant is unchanged by the Reidemeister moves, the invariant only depends
on the stuck link and not the diagram.

Example 7.3. Let (Z4, *,R, R, R, Ry) be the stuquandle with operations x *y =x, Ri(x,y) =3x +y,
Ry(x,y) = x + 3y, Rs(x,y) = x + 2y, and Ry(x, y) = 2x + y. The operation tables are given by

#0123 R|0123 R|0123
000000 o0f0o123 0[0321
111111 13012 1/10 3 2
202222 22301 2/2103
313333 3/11230 313210
R0 123 RJO 123
o202 ofo123
11313 12301
202020 2(0123
33131 312301

We will consider the two arc diagrams of RNA foldings and their corresponding stuck links (Figures 14 and 15).

With respect to the stuquandle defined above, the colorings for Figure 14 are hom(S7Q(Ky), X) =
{(0,0,0),(1,3,3),(2,2,2),(3,1,1)} and the colorings for Figure 15 are hom(STQ(K;), X) = {(0,0, 0),
0,2,0),(2,0,2),(2,2,2)}. In this case, the stuquandle counting invariant cannot distinguish the two arc dia-
grams. Now, we will consider the substuquandle polynomial invariant of the two arc diagrams. In the tables
below, we collect our operations ri and ¢! values:

X |r'00) ') x|r¥x) ) x |r*x) )
4 4 0| 1 2 0| 1 4

0

1| 4 4 1) 1 0 1] 1 0
2| 4 4 2| 1 2 20 1 0
31 4 4 311 0 311 0
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Table 4: Colorings and substuguandle polynomial of each coloring of 25

fla) fb) f(c) f(d) Im(f) C X Sstqp(Im(f) C X)
0 0 0 0 {0} sitisytysitisitisits
0 2 0 2 {0,2} sitdsstsdtisitislts + sitisytsititits
2 0 2 0 {0,2} sitisstsitisitists + sitistsititits
2 2 2 2 {0,2} sitisstsitisitisits + sitisytsititits

x|r 4(x) C4(x) x| r3(x) c3(x)
0 0o 1 1
1 2 1 1 1
2 2 21 1 1
31 2 311 1

We collect the colorings of each arc diagram and the substuquandle polynomial of the image of each coloring
in Tables 5 and 6. Using the coloring set of each arc diagram, we obtain the following substuquandle poly-
nomial invariants:

5 = ysttisatgsatsiulssts 4 gstts2Tsatysit st st sat7 535y ssts
Sstqp
X + Qu2sitisisasisstst s ts2tysats'stissts s tisatysasitssts
b
and
4.4 20 4024 440020 4024 440 2 2.4
¢S . =u81 by SatS3t3 Sty Ssts 4 3u81 t,'S2t5S3t3 S5ty Ssts+Sy ty SatyS384t4 Ssts
stqp )
WX

Thus, the RNA foldings are distinguished since

¢Sstqp 7’é ¢Sstqp

X H
self closure b ; g

Figure 14: Arc diagram and corresponding stuck link Ks.
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b
T C
>
self-closure
Figure 15: Arc diagram and corresponding stuck link diagram denoted by K;.
Table 5: Colorings and substuquandle polynomial of each coloring of K
fla) fb) flo) Im(f) cXx Sstqp(Im(f) C X)
0 0 0 {0} sitlsytlsatisit ssts
1 3 3 {0,1,2, 3} 25t lsyssstssts + Sptis2tlsstisitissts + sitisytsysitissts
2 2 2 {0,2} sitltsotisstisltissts + sptisatisssitissts
3 1 1 {0,1,2,3} 287 t{s,835755ts + St 's2tIsstasTt ssts + Sitisotisssit ssts
Table 6: Colorings and substuquandle polynomial of each coloring of K,
f(a) f(b) f(c) Im(f)C X Sstqp(Im(f) C X)
0 0 0 {0} sitls,tlsstisit st
0 2 0 {0,2} sitsotisstisitissts + sptpsptisssitassts
2 0 2 {0, 2} sitis2tlsatisttissts + sitisytisssityssts
2 2 2 {0,2} sitsotisstisitissts + sptpsptisssitassts

Acknowledgments: The authors would like to thank the referee for the fruitful comments, which improved
the article.

Funding information: Mohamed Elhamdadi was partially supported by Simons Foundation collaboration
grant 712462.

Author contributions: All authors contributed equally. All authors have accepted responsibility for the entire
content of this manuscript and consented to its submission to the journal, reviewed all the results,
and approved the final version of the manuscript.

Conflict of interest: Prof. Mohamed Elhamdadi is an Editor of the Open Mathematics journal and was not
involved in the review and decision-making process of this article.



DE GRUYTER A polynomial invariant of stuck knots == 17

References

[11 K. Bataineh, Stuck knots, Symmetry 12 (2020), no. 9, 1558.

[2] J. Ceniceros, M. Elhamdadi, J. Komissar, and H. Lahrani, RNA foldings and stuck knots, Commun. Korean Math. Soc. 39 (2024), no. 1,
223-245.

[31 J. Ceniceros, M. Elhamdadi, B. Magill, and G. Rosario, RNA foldings, oriented stuck knots, and state sum invariants, ). Math. Phys. 64
(2023), no. 3, 031702.

[4] A.S.Crans, S. Nelson, and A. Sarkar, Enhancements of rack counting invariants via dynamical cocycles, New York J. Math. 18 (2012),
337-351.

[5] J.S. Carter, D. Jelsovsky, S. Kamada, L. Langford, and M. Saito, Quandle cohomology and state-sum invariants of knotted curves
and surfaces, Trans. Amer. Math. Soc. 355 (2003), no. 10, 3947-3989.

[6] J.S. Carter, M. Elhamdadi, and M. Saito, Homology theory for the set-theoretic Yang-Baxter equation and knot invariants from
generalizations of quandles, Fund. Math. 184 (2004), 31-54.

[71 ). S. Carter, M. Elhamdadi, M. Grannna, and M. Saito, Cocycle knot invariants from quandle modules and generalized quandle homology,
Osaka J. Math. 42 (2005), no. 3, 499-541.

[8] S. Nelson, Generalized quandle polynomials, Canad. Math. Bull. 54 (2011), no. 1, 147-158.

[9] . Ceniceros, L. R. Churchill, and M. Elhamdadi, Polynomial invariants of singular knots and links, J. Knot Theory Ramifications 30 (2021),
no. 1, 2150003.

[10] L. H. Kauffman and Y. B. Magarshak, Vassiliev knot invariants and the structure of RNA folding, Knots and Applications Series on Knots
and Everything, vol. 6, World Scientific Publishing, River Edge, NJ, 1995, pp. 343-394.

[11] W. Tian, X. Lei, L. H. Kauffman, and J. Liang, A knot polynomial invariant for analysis of topology of RNA stems and protein disulfide
bonds, Mol. Based Math. Biol. 5 (2017), 21-30.

[12] M. Elhamdadi and S. Nelson, Quandles-an introduction to the algebra of knots, Student Mathematical Library, vol. 74, American
Mathematical Society, Providence, RI, 2015.

[13] K. Bataineh, M. Elhamdadi, M. Hajij, and W. Youmans, Generating sets of Reidemeister moves of oriented singular links and quandles,

J. Knot Theory Ramifications 27 (2018), no. 14, 1850064.



	1 Introduction
	2 Review of stuck knots and links
	3 Stuck links and arc diagrams
	4 Algebraic structures from stuck knots
	5 Review of the quandle polynomial
	6 Generalized quandle polynomials
	7 Examples
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


