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Abstract: In this article, we construct filling disks for meromorphic functions of order zero and that way
we prove the existence of Borel directions of these functions. In the latter part of this article, we demonstrate
the existence of filling disks using the Borel direction of meromorphic functions.
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1 Introduction

We assume the reader is familiar with the basic notion of Nevanlinna’s value distribution theory such as
T r f m r f N r f n r f, , , , , , ,( ) ( ) ( ) ( ), and so on, which can be found, for instance, in [1–4]. The theory of finite
positive-order meromorphic functions is well known to be more affluent than the theory of zero-order
meromorphic functions. Techniques that work well for functions of finite positive-order often do not work
for functions of zero order.

There are many results on the Borel direction of meromorphic functions [4]. At the end of the nineteenth
century, Picard and Borel obtained Picard’s theorem and Borel’s theorem, respectively. In studying the
behavior of an entire or meromorphic function near a ray, Milloux [5] introduced the concept of filling disks.

In 1928, Valiron [6] obtained the Borel direction for meromorphic functions of finite positive order based
on Nevanlinna’s theory.

Rauch [7] proved in 1933 that a sequence of filling disks can be obtained from the Borel direction of
meromorphic functions. Shortly after this, Hiong [8] obtained the result about the Borel direction for mer-
omorphic functions of infinite order.

In 1982, Yang [4] improved the proof of these theorems. The natural question is whether a sequence of
filling disks exists for meromorphic functions of finite logarithmic order and whether a sequence of filling
disks can be obtained from the Borel direction of the function. Results on the Borel direction of meromorphic
function have also been studied by many scholars in recent decades [9–16].

Valiron [17] was the first to investigate the Borel direction for meromorphic functions of zero order. In
1995, Rossi [18] studied filling disks for meromorphic functions satisfying the growth condition (1.1). In order to
facilitate the study of meromorphic functions of zero order, Chern [19,20] obtained some results on mero-
morphic functions of zero order using the concept of logarithmic order
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In 2004, he used the Ahlfors theory to obtain the existence of the Borel direction for meromorphic functions of
zero order.

Theorem A. [21] Let f z( ) be a meromorphic function in the complex plane � with finite logarithmic order ρ,
if f z( ) satisfies the growth condition
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then there exists a direction = ≤ <z θ θ πarg 0 2
0 0

( ), such that for every small positive number ε and every
∈a ˆ� , the equation
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holds with at most two possible exceptional values of a, where =n r θ ε f a, , ,
0

( ) denotes the number of zeros of
−f z a( ) in the angular region − ≤ <z z θ ε z r: arg ,

0
{ ∣ ∣ ∣ ∣ }.

The ray =z θarg
0
in Theorem A is called a Borel direction of finite logarithmic order −ρ 1 for f z( ). It is

natural to wonder if we can determine the existence of Borel directions for meromorphic functions of zero
order by constructing the filling disks.

In 2004, Wang [22] obtained the following results by way of constructing the filling disks.

Theorem B. [22] Let f z( ) be a meromorphic function in the complex plane � with finite logarithmic order ρ,
then there exists a direction = ≤ <z θ θ πarg 0 2

0 0
( ), such that for every small positive number ε and every ∈a ˆ� ,

the equation
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holds with at most two possible exceptional values of a.

However, we found that his result is inaccurate compared to Chern’s. Next, we construct a sequence of
filling disks using the method of Yang [4] to obtain the following two theorems.

Theorem 1.1. Let f z( ) be a meromorphic function in the complex plane � with finite logarithmic order, that for
every sufficiently large R and >k 1, satisfies the following inequality in the annulus < <r z R∣ ∣ :
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Then, there must exist a point zj in the annulus < <r z R∣ ∣ such that f z( ) takes every complex number at least
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∣ ∣ ∣ ∣,where C is a constant and q is sufficiently large positive integer,

except possibly for those numbers contained in two spherical disks each with radius −e n.

Theorem 1.2. Let f z( ) be a meromorphic function in the complex plane � with finite logarithmic order ρ.
If f z( ) satisfies the growth condition (1.1), then there exists a sequence of disks

− < = = ∞ =
→∞ →∞

z z ε z ε z jΓ : , lim 0, lim 1, 2, … ,j j j j
j

j
j

j∣ ∣ ∣ ∣ ∣ ∣ ( )

such that f z( ) takes every complex number at least − −zlog j
ρ δ1 j( ∣ ∣) times in Γj, where =→∞δlim 0j j , except possibly

for those numbers contained in two spherical disks each with radius − ∣ ∣ − −
e zlog j

ρ δj1( ) .
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Theorem A can be obtained by using the method of Yang in Theorem 3.8 of [4] from the aforementioned
two theorems. This means that we obtain another proof for Theorem A. Conversely, given the Borel direction
of the function, can we derive a sequence of filling disks? The answer is given in Theorem 1.5.

Theorem 1.3. Let f z( ) be a meromorphic function in the angular domain − <z θ ηarg
0

∣ ∣ , and there are three
distinct values aν (ν = 1, 2, 3) and a positive number σ , such that

∑ = −r θ η f alog , ,
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0
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converges, where ν = 1, 2, 3, and = =r θ η f a j, , 1, 2, …j ν0
( ) ( ) denote the moduli of the zeros of −f z aν( ) in the

domain − < >z z θ η z: arg , 1
0

{ ∣ ∣ ∣ ∣ }, arranged by nondecreasing order and counted with their multiplicities.
Then, ∑ − = −r θ η ε f alog , ,j j

σ
0

( ( )) is convergent, for any positive number <ε η and all ∈a ˆ� , possibly except
at most for a set whose line measure is zero.

Theorem 1.4. Let f z( ) be a meromorphic function in the complex plane � with finite logarithmic order +λ 1,
if f z( ) has no Borel direction of finite logarithmic order λ in the angular domain < <θ z θarg

1 2
, then for any

small positive number α, there exist three distinct values aν (ν = 1, 2, 3) and a positive number <τ λ( ), such that
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where + − =n r θ α θ α f a, , , ν1 2
( ) denotes the number of zeros of −f z a( ) in the domain + ≤z θ α:

1
{

≤ − < <z θ α z rarg , 1
2
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Theorem 1.5. Let f z( ) be a meromorphic function in the complex plane� with finite logarithmic order + >λ 1 2,
if

= ≤ <B z θ θ π: arg , 0 2
0 0

is a Borel direction of finite logarithmic order λ for f z( ), then there exists a sequence of disks

− < = = ∞ =
→∞ →∞

z z ε z ε z jΓ : , lim 0, lim 1, 2, …j j j j
j

j
j

j∣ ∣ ∣ ∣ ∣ ∣ ( )

such that f z( ) takes every complex number at least −zlog j
λ δj( ∣ ∣) times in Γj , where =→∞δlim 0j j , except possibly

for those numbers contained in two spherical disks each with radius −j 3.

2 Some lemmas

The following lemmas will be needed in the sequel.

Lemma 2.1. [4] Assume that f z( ) is a meromorphic function in the complex plane � , and D is a bounded region.
Divide D into p subregions =D j p1, 2, …,j ( ). For each Dj, make a disk ⊃K Dj j, and then make a concentric disk
′Kj of Kj, such that the radius is twice as large as Kj. If the set of complex number a such that = ≥n D f a N,( )

cannot be covered by a collection of spherical disks with radius total equal to 1

2

on the Riemann sphere, then

there must exist a circle ′Kj with a constant C such that f z( ) takes every complex number at least C
N

p
times in ′Kj ,

except possibly for those numbers contained in two spherical disks each with radius −e C
N

p .

Lemma 2.2. [4] Assume that f z( ) is a meromorphic function in the disk <z R∣ ∣ , and let

= = + = + =N n R f a n R f a n R f a, , , ,
1 2 3

( ) ( ) ( )
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where a a,
1 2

, and a
3
are three distinct complex numbers, with their spherical distances larger than a positive

number d. Then, there exists a point z
0
, with <z R

0
∣ ∣ , such that for every ∈r R0,( ), and any complex number a,
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where C is a positive constant, and f z a,
0

∣ ( ) ∣ denotes the spherical distance between f z
0

( ) and a.

Lemma 2.3. [4] Let =a μ n1, 2, …,μ ( ) be n complex numbers and h a positive number. Then, the points that
satisfy the inequality
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⎞
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h

e
,
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∣ ∣

can be covered by a collection of spherical disks whose number does not exceed n and the sum of whose radii
does not exceed h2 .

Lemma 2.4. Assume that f z( ) is a meromorphic function in the complex plane � , and let =r j 1, 2, …j ( ) be the
moduli of the poles of f z( ) in the domain >z z: 1{ ∣ ∣ }, with ≤ +r a r aj j 1

( ) ( ). For any >r 1
0
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Similarly, the following lemma can be obtained in the angular domain.

Lemma 2.5. Assume that f z( ) is a meromorphic function in the complex plane � , ≤ < > ∈θ π η a0 2 , 0,
0

� .
Let =r θ η f a, ,j 0

( ) be the moduli of the a-points of f z( ) in the domain − < >z z θ η z: arg , 1
0

{ ∣ ∣ ∣ ∣ }, with

≤ +r a r aj j 1
( ) ( ). For any >r 1

0
, if >σ 0, then the series ∑ = −r θ η f alog , ,j
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simultaneously convergent or simultaneously divergent.

3 Proofs of Theorems 1.1 and 1.2

In this section, the proof method is based on the content of [4] (Section 3 in Chapter 3), but there are some
differences in the details of constructing the filling disks. This construction method provides a different
perspective for proving Theorem A.
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Proof of Theorem 1.1. Assume that f z( ) is a meromorphic function in the complex plane � , by the definitions
of =n r f a,( ) and =N r f a,( ), we have
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From the second fundamental theorem of Nevanlinna, for suitably large R and every complex number a,
we have
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Taking a sufficiently large positive integer q, the annulus < <r z R∣ ∣ is divided as follows:
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Let =z j p1, …,j ( ) be the center of Dj, then ⊂ = − < −D K z z z z: .j j j

π

q j
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log 1

{ ∣ ∣ ∣ ∣} The division of the annulus
is shown in Figure 1.

By Lemma 2.1, then there must exist a concentric circle ′ = − < −K z z z z:j j
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Proof of Theorem 1.2. Since f z( ) is a meromorphic function with finite logarithmic order ρ and (1.1) holds,
there exists a sequence rk{ } that tends to infinity such that
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Figure 1: The division of the annulus.
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4 Proof of Theorems 1.3 and 1.5

In [4] (Section 4 in Chapter 3), the relevant results about finite-order meromorphic functions are given. Here,
we use the identical method but the quadrangles we split are different.

Proof of Theorem 1.3. Split the angular domain − < −z θ η εarg
0
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Let = ∪ = ∩ ∪= =
∞

=
∞

D D D D,l j

J

jl k l k l1 1
( ), and we see that = ∪ =→∞ =

∞
D Dmes lim mes 0k l k l( ) .

For any complex ∉a D, there exists l
0
, such that ∉ ∪ =

∞
a Dl l l

0

. So when ≥l l
0
, (4.2) holds for =j J1, 2,…, .
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Thus,

∑ ∑ ∑ ∑ ∑ ∑= <
⎧
⎨
⎩

′ = +
⎧
⎨
⎩

+ ⎛⎝ + ⎞
⎠
⎫
⎬
⎭
⎫
⎬
⎭= = = = = =

n f a C n f a J
σ

r
ε

Ω , Γ ,

2

log 1

4

,

l l

L

j

J

jl

l l

L

j

J

ν

jl ν

l l

L l

1 1 1

3

0

0 0 0

( ) ( ) ∣ ∣

which implies

∑− = <
⎧
⎨
⎩

− = +
⎫
⎬
⎭=

n r θ η ε f a C n r θ η ε f a r, , , 2 , , , log .

ν

ν0

1

3

0
( ) ( )

By (4.1), for any complex ∉a D, we have

∫ − =
< ∞

∞

+
n r θ η ε f a

r r
r

, , ,

log

d .

r

σ

0

1

0

( )

( )

Furthermore, by Lemma 2.5, the theorem is proved. □

Proof of Theorem 1.4. According to the conditions of the theorem, for any ∈ + −φ θ α θ α,
1 2

[ ], =z φarg

is not a Borel direction of finite logarithmic order for f z( ). Nevertheless, there must exist three distinct values
β

j
( j = 1, 2, 3) and positive numbers <ε φ τ φ λ,( ) ( )( ), such that

= < =n r φ ε φ f β r j, , , log 1, 2, 3 .
j

τ φ( ( ) ) ( ) ( )( )

It follows that, for < <τ φ τ φ τ φ λ
1 1
( )( ( ) ( ) ) and >r 1

0
, we have

∫
=

< ∞ =
∞

+

n t φ ε φ f β

t t
t j

, , ,

log

d 1, 2, 3 .

r

j

τ φ 1

0

1

( ( ) )

( )
( )

( )

By Lemma 2.5, the series∑ = −r φ ε φ f βlog , ,
j

τ φ
1( ( ( ) )) ( ) is convergent. As a result of applying Theorem 1.3, for any

complex number a, the series ∑ = −r φ f alog , ,

ε φ
τ φ

2

1( ( ))
( ) ( ) is convergent possibly except for at most a set D φ( )

whose line measure is zero.

We note that − + + ≤ ≤ −φ φ θ α φ θ α, :

ε φ ε φ

2 2
1 2

{( ) }
( ) ( ) forms an open covering of the closed interval

+ −θ α θ α,
1 2

[ ]. Therefore, there exists a finite set of intervals − + =φ φ l L, 1, 2, …,
l

ε

l

ε

2 2

l l

( ) ( ) that are an

open covering of + −θ α θ α,
1 2

[ ].
Corresponding to each φ

l
, its exceptional zero measure set is =D D φl l

( ). Let = ∪ =D Dl
L

l1
, then it is still

the zero measure set. If = ≤ ≤τ τ φmax l L l1 1 1
{ ( )}, then < <τ λ0 .

1

Hence, for every complex number ∉a D( ), we obtain

∑⎛⎝
⎛
⎝ = ⎞

⎠
⎞
⎠ < ∞
−

r φ
ε

f alog ,

2

, .j l

l

τ
1

So

∑ ⎟⎜
⎛
⎝

⎛
⎝

+ −
− = ⎞

⎠
⎞
⎠

< ∞
−

r
θ θ θ θ

α f alog

2

,

2

, .j

τ

1 2 2 1

1

By Lemma 2.5, we obtain

∫ + − =
< ∞

∞

+
n t θ α θ α f a

t t
t

, , ,

log

d .

r

τ

1 2

1

0

1

( )

( )

In particular, this holds for any three distinct complex numbers aν (ν = 1, 2, 3) that do not belong to D,
and positive numbers < <τ τ τ λ

1
( ). Hence, we obtain

∑ + − = <
=

n r θ α θ α f a r, , , log .

ν

ν
τ

1

3

1 2
( ) ( ) □
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Proof of Theorem 1.5. Choose a small angular region with B as its bisector, which is defined by

≔
⎧
⎨
⎩

− <
⎫
⎬
⎭

z z θ
η

Ω : arg

2

.
0

∣ ∣

Using the arcs of circumferences = =z j2 1, 2, …

j∣ ∣ ( ), divide Ω into a sequence of small quadrangles

≔ ⎧⎨⎩ ≤ ≤ ∪ ⎛⎝ − < ⎞
⎠
⎫⎬⎭

+z z z θ
η

Ω : 2 2 arg

2

.j
j j 1

0
( ∣ ∣ ) ∣ ∣

Subsequently, each Ωj is further divided by −s 1 arcs of = + = −z η l s2 1 , 1, 2, …, 1 ,

j l∣ ∣ ( ) ( ) where s is
a positive integer determined by + < ≤ +− +η η2 1 2 2 1

j s j j s1 1( ) ( ) . This results in s smaller quadrangles, denoted
as =l sΩ 1, 2, …,jl ( ). Choose concentric disks Γjl and ′Γ jl with radius ⋅ +C η2

j 1 and ⋅ +C η2 2

j 1 , respectively, such
that

⊂ ⊂ ′Ω Γ Γ .jl jl jl

Define njl as follows:

∑≔
⎧
⎨
⎩

=
⎫
⎬
⎭=

′
n n f amin Γ , ,jl

v

jl v

1

3

( )

where the minimum is taken over all the triples of complex numbers, provided that the mutual spherical
distances among these three complex numbers are at least −j 3. By Lemma 2.2, f z( ) takes every complex
number a at most + +C n jlog 1jl{ [ ] } times in Ωjl, except for those complex numbers contained in a disk
with spherical radius −j 3.

For each fixed value of j , there exist s exceptional spherical disks. As j varies, the aggregate radius of these
exceptional spherical disks is given by the series:

∑
=

∞

−
s

j
.

j 1

3

By selecting a sufficiently large value for j
0

, we can ensure that

∑ <
=

∞

−
s

j

1

2

.

j j

3

0

Since B is a Borel direction of logarithmic order λ of f z( ), by Lemma 2.5, the series

∑⎛⎝
⎛
⎝ = ⎞

⎠
⎞
⎠

−

r θ
η

f alog ,

2

,n

τ

0

diverges for any positive number <τ λ and every complex value a, except for at most two values. If a is not
an exceptional value and does not belong to all the exceptional spherical disks, then we have

∑⎛⎝
⎛
⎝ = ⎞

⎠
⎞
⎠ = ∞
−

r θ
η

f alog ,

2

, .n

τ

0

(4.3)

On the other hand, by setting = ≤ ≤n nmaxj l s jl1
, we have

∑ ∑ ∑ ∑⎛
⎝

⎛
⎝ = ⎞

⎠
⎞
⎠ <

+ +
<

⎧
⎨
⎩

+
+ ⎫

⎬
⎭

−

r θ
η

f a C
s n j

C
n

η

j

η
log ,

2

,

log 1

log2 log2

log 1

log2

,n

τ

j

j

j τ

j

j

j τ

j

j τ0

( [ ] )

( ) ( )

[ ]

( )
(4.4)

where <τ λ.
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Choose a decreasing sequence η
l

{ } of positive numbers tending to zero and an increasing sequence of

positive numbers τl{ } tending to λ. Let >τ 1
1

, then ∑ < ∞+
j

j

η

log 1

log2

j τ
1

1

[ ]

( )
. Combining (4.3) with (4.4), we have

∑ = ∞j

n

η log2

j

j τ
1

1( )
. Thus, there is a positive integer j

1

such that

> >
+

+ −n
η

j j

log2

log

log2 .j

j τ

j τ λ1

1

1 1

2

1 2

1

1 1

1
1

( )

( )
( )

Similarly, from ∑ < ∞= +
∞ +
j j

j

η1

log 1

log2

j τ
1

2

2

[ ]

( )
, we have ∑ = ∞= +

∞
j j

n

η1
log2

j

j τ
1

2

2( )
. Hence, > + −n log2j

j τ λ1 2

2

2
2( ) for a certain posi-

tive integer j
2

.
Thus, we obtain a sequence of disks − <z z Cη zΓ :l l l l∣ ∣ ∣ ∣, where =z θarg l 0

, such that f z( ) takes every
complex value at least − −zlog l

λ λ τ2 l( ∣ ∣) ( ) times, except possibly for those values contained in two spherical disks
each with radius −

j
l

3. □
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